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Solving Jigsaw Puzzles by a Robot

GRIGORE C. BURDEA. siemeer, 1668, ANn HAIM J. WOLFSON, MEMEER, IEEE

Absrracr—An integrated visson-manipubation algorithm lor assembiy
of apictorial jigsaw puzdes is presented. The paper discusses the solution
of targe jigsaw purebes using viskos, combinatorial optimization, and fine
assembly techmigues. The implementations of a vision slgorithm for
nssembly of large jigsaw puzzies, and a fally integrated robotie-vision
slgorithm for assembly of small puzzles are presented. The problem of
nssemmbling pieces with unprediciable shape is discussed,

[. InTRODUCTION

SSEMBLY and repaic are major robotic application

tasks. Much waork has been done to investigate assembly
of parts with relatively simpie shapes (see [1]-[5]). The
famous ‘‘peg in the hole'" problem [6]-[11] was intensively
investigated for such shapes. Less work was done on assembly
of parts with complicated and a priori unpredictable shapes,
The decision to tackle the jigsaw puzzle assembly problem was
made, since we regarded it as a strenuous test to our
capabilities both in machine vision and robotic assembly.
Here, not only the shapes of the different pieces are complex
and a priori unknown, but also the correct mating of the pieces
is unknown, and has to be solved using the geometric shape
information, This problem is even complicated for humans,
since we solved an apictorial [12] or "“white'’ puzzle, where
no picture is given to facilitate the solution. Only the shape of
the different pieces can be considered. As far as we know, the
first algorithm to solve apictorial jigsaw puzzles was pro-
posed by Freeman and Garder [12], who successfully solved a
U-picce jigsaw puzzle using visual information only. Although
one may argue that in most industnal assembly tasks the
problem is usually less complicated, and much of the
information can be given in advance, there are obvious
applications of the puzzle assembly. For example, repair of
broken objects or restoration of archeological findings 15 a
puzzle assembly problem.

There are numerous problems which have 10 be tackled in
puzzie assembly. First. and for humans the most complicated,
is the puzzle solution iself. An approach which is usually
taken in this case by a human operator 15 to conjecture a
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mating between twe picces based on the visual mformaton of
their shape, and then try 10 assemble these two picces along
their supposedly matching boundary. In case the actual
assembly fails another match is conjectured and checked, and
so far. [o this straightforward approach we already see a close
interaction between the visual tasks and the manipulation
tasks, We use vision 10 identify the different picces and to
conjecture their mutual match. Next we use our hands to grasp
a picce, move it o i position where it fits the other (the
position was “‘computed’” by vision), and then make small
adjustments of fine assembly. Finally, using both vision and
touch we decide whether the parts actually fit, We have
tackled the above mentioned problems, and the proposed
solutions are described both in Section 1i-B, which deals with
the visual information extraction and the “‘local™ visval best
possible matching of two puzzle pieces, and in Section I,
which describes a fully implemented robotic assembly (see
also [13]) of a small number of puzzle pieces integrating both
the visual and 1acule aspects of the solution.

The machine vision module is used to detect puzzle picces
in the work area, and for each pair of such pieces. to find a
rigid motion giving the best possible least squares (see Section
[11-B) match of the boundaries of these pieces. If the Jeast
squares score of such a match 15 below a certain threshold, the
actual assembly is attempted. The picce interlocking 1s done
using force feedback based fine matings. In the assembly stage
we are faced with the problem of fine assembly of parts with
quite complicated shapes. Although these shapes belong to a
certain class of typical jigsaw puzzle pieces (see Fig. 2}, their
exact shape is a priori unknown. This uopredictability of
shapes excludes the use of special fixtures to facilitate the
assembly task. The assembly module has also o make a
decision, whether the proposed matching is feasible, thus
being able to distinguish between local errors in the fine
assembly that can be corrected and berween total incompatibil-
ity between the picces. Since our puzzle preces are actually
three-dimenstonal (3-D) (although of constant height) these
local errors involve possible 3-D translations and rotations. In
that sense we have 1o tackle a more complex case than
previous work that analyzes only 3-D translational errors (see
130.

The ahove discussed implementation mimics the human
puzzie solutiwon and assembiy technique. However. this “‘hu-
man-like'” approach might be guite inefficient, when onc is
faced with an assembly of a large apictorial puzzle with pieces
having visuaily quite similar shapes (see Figs. 2-5). In such a
case, @ mating conjecture based on purely local shape
comparison might be tnaccurate, since the distortion of the
visual data acquisition step may result in a wrong (although
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quite similar) picce achieving the best “‘matching score,™
Hence, a significant number of the matings suggested by the
vision module will be rejected by the assembly module,
resulting in & very time-consuming verification. This is,
usually, the case in a human solution of a large apiciorial
puzzle, when a significant number of puzzle picoe matings is
decided by @ very rough visual comparison and a subsequent
venfication by direct assembly. Even in the latter case, where
we use our superb and fast fine assembly capabilities.
enhanced by vision, the solution takes an impractical amount
of time. To overcome this difficulty, we twm to u global
solution of the puzzle assembly problem (see Section 11-C).
The rationale for this approach is based on the fact, that
although focally some incorrect solutions may score higher
than the correct one, the globaf score of the correct configuri-
tion will probably be much higher than of a wrong one. This
global approach has been first applied to the solution of large
jigsaw puzzles using vision only (see [14]). There we
sucoessfully solved 100-piece puzzies (see Figs. 3 and 5).

Earlier approaches to the solution of jigsaw puzzles by
computer vision [12], [15] were based only on local piece
mating considerations. They successfully tackled assembly of
small puzzles (about 10 pieces 1 [12], 4 picces in [15]). The
above mentioned algorithms did not assume any knowledge of
the frame picces of the puzzle, which is exploited in our
approach. On the other hand. they did require nonmatching
puzzle sides to be significantly different from each other.
Also, in an earlier experiment the /ocel matching algorithm of
Section [1-B was applied with some backtracking 1o a solution
of a 16-piece puzzle with quite similar shapes. The perform-
ance of such Jocal techniques is usually limited to small
puzzles and can be significantly improved by a global
upproach.

In this paper we emphasize the fact that even the latter
global solution, which is based on combinatorial optimization
techniques, can strongly benefit from a robotic interaction.
One can not only venfy a proposed solution by actual robotic
assembly, but a truly inegrated process can be developed (see
also [16]). In Section II-C we discuss our integrative approach
(see Fig. 1) combining application of machine vision tech-
niques for local curve matching estimation, mathematically
sophisticated combinatorial optimization techniques to get
global solution proposals, and robotic fine assembly tech-
niques, which are used to verily these solutions and feed back
partial resuits, thus enabling significant speedup in the
iteratave application of the previous modules. The difference
between this global! upproach and the nne discussed before is
that we use the robotic verification step only 1o verily
sugeested global solutions, and not the local ones. This will
bring a significant reduction in the application of the rime-
consuming verification step.

This paper 15 organized as follows, Section Il describes the
machioe vision algorithm for solution of large jigsaw puzzles.
its experimental results, and the proposed integrative method
using robotic assembly feedbuck. Section TI1 desribes the
integrative roboti: assembly system for solution of small
Jigsaw puzzles and its practical implementation by an [BM
7565 (RS-2) Caresian robot, It focuses on the solution of the
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grasping and manipulation problems involved in fine assem-
bly, and in coping with uncertinty. Section IV states some
future improvements and research directions.

[, THe VistoN ALGORITHM

In this section we preent the vision algorithm for assembly
of large jigsaw puzzies. The proposed integrative solution
including robotic assembly feedbuck is described in Section IT-
C. The global solution algorithm using vision only has been
successfully implemented (see Figs. 3 and 5),

Usually puzzle ussembly is considered as a strenuous test
for curve-matching algorithms [15}). We have used such an
algorithm due to Schwartz and Sharir [17], which proved 1o be
very robust. However, in our c¢ase, the solution has been
complicated by two major factors. The first one is the large
number of puzzie picces 1o be assembled. Previous work [12],
[15] dealt with small puzzles, The second one is the shape
sumalarity of different puzzie picces (see Fig. 2). This made
correct decisions, based on Jocal best match of two pieces,
almost impossible. Hence we introduced combinatorial opti-
mization techniques to achieve a globae! solution. The section
describes this technigue. The reader is referred o [14] for
additional details on the implementation of the global puzzle
solution using vision only, and & solution 10 the problem of
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simultaneous assembly of several puzzles. We also emphasize
the benefits of integranon of rubotic assembly and verificaton
stages in the global solution scheme.

It should be noticed that finding a nonheuwristic efficient
puzzic assembly algorithm might be impossible. Specifically,
the related square-tiling problem is known to be NP-
complete |18]. There, one is given N* rectangular tiles with
colored swles (the number of different colors 15 not less than
N, and the task is to find whether there is a uling of an NV %
N square such that only sides of equal colors ure marched.
There 15 a ¢lose relation berween this problem and the puzzle
assembly problem since a specific side of a puzzle piece can be
considered as a geomefric color., Consequently, the al-
gorithms proposed in this section, which apply fast heuristic
techniques, will not always lead to the discovery of the correct
solution, The integration of these techniques with a robotic
assembly verification should ensure convergence (o the correct
solution,

A. Definition of the Problem

We consider the solution of an apicforiel large jigsaw
puzzle, Specifically, we will refer o the examples of Figs. 3
and 5, which are 104-picce pgsaw puzzies of overall size 18 in
»* 13 10, These are two-dimensional (2-D) rectangular puzzles
which are arranged in a grid. Every interior puzzle piece has
four neighbors, and every frame piece (except the four corner
pieces) has three neighboring pieces. As will be seen later, the
erid-like form is not essential for the successful solution of the
problem.

The puzzle pieces are presented to the vision svstem one by
one in a random order. The camera is assumed to be at the
same height directly above the pieces, so that a piece shape is
acquired modulo transiation and rotation. Our task is to solve
the puzzle. namely, to find the ¢orrect configuration of all the
pieces, and the relative translation and rotation of each pair of
neighboring  preces, so that the acrual assembly can be
established.

B. Local Matching

In thus section we desribe the shape acquisition and the local
shape matching. The following procedure is applied:

1) The puzzie pieces are photographed one by one by a
black and white RCA 2000 camera from the same distance and
viewing angle, and the pictures are digitized und thresholded
to get u binary image [or each puzzle piece.

2) The boundary of each picce is extracted from the binary
image. These are our experimental shapes.

31 A smoothing procedure 15 applied to each boundary
curve. We use the procedure which is described in detail in
[17]. Basically, this cxpands the noisy boundary curve 1o a
narrow sinp defined by a certain threshold value ¢ and then
{inds the shortest polygonal path lying in this 2e-wide sanp. (It
may be imagined as stretching a loose rbber band within a
narrow sleeve. ) This gives a polygonal approximation of each
observed curve.

4) The boundary curve of gach piece 15 divided inte four
subcurves corresponding to the four sides of the puzzle piece
and these curves are Later used in the matching procedure, This
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An assembled jgsaw purzle.

Fig. 3.

division is based on finding four, so-called breakpoints on the
boundary curve of each piece, These breakpoints are points
of sharp convexities on the houndary of the piece (see [17] and
[19] for the description of 4 procedure to find these break-
poinis).

S5) Bach corve is sampled at equal arclength and represeated
by the sequence of (¥, ») coordinates at its sample points.

f) Pieces having an (almost) straight section between
adjacent comners are identified as frame pieces (sce Section [1-
C for the importance of frame piece identification).

7 A local curve-matching procedure is applied, For each
pair of two different puzzle piece boundary subcurves {one of
four from each piece), the subcurves are matched using a
matching algorithm due to Schwartz and Sharir (sce [14],
[17]), which finds the rotation and translation minimizing the
least squares sum of the distances between corresponding
sample points on the (wo subcurves. Specifically, if the two
subcurves are represented by the sequences of 2-D points
(7., and (v)7, (et n = m), it finds the Euchdean

transformation £ of the plane mummizing the [* distance

dre
min Y |Euw—-ul?,
£ J=dr

min d=0, v, m—n.

d
The obeained best least squares distance 15 later used as a
matching (penalty) score for the corresponding subcurves in
the global matching algorithm.

The actal computation ume of the least squares matching
score for two curves s Jess than a second. however, for large
puzzles, the pre-computation of all the maiching scores is the
most time-consurning step of the algorithm. There are a number
of ways w0 speed it up. First, one does oot have 1o compute all
the local matching scores except those scores which will be
actually required by the global algorithm (Section 1I-C).
Second, a fast preliminary scoring procedure can be applied to
eliminate obviously unsuitable candidates for mating. Such a
procedure ¢an be based on features such as coavexity!
concavity, arclength, etc, (see [12]). Finally, all the focal
matching scores can be computed in parallel,

Remark: The breakpoints heuristic (item 4, above) has
been used since we applied the local curve matching of [17]
which requires one of the matched curves 10 be 3 proper
subcurve of the other. Recently, this matching algorithm has
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been extended to the more general case of two curves with an
arbitrary, a priori unknown matching portion (sec [20]).
Hence the breakpoint heunstic is unnecessary, if the latter
curve-marching algorithm is applied.

C. The Global Puzzle Assembly Algorithm

The global puzzle assembly algorithm consists of two major
substeps. The frame of the puzzle is assembled first. and then
it is used as a starting point for assembly of the entire puzzle.
This is also the conunon human heuristic in puzzie assembly.
However, our consideration to apply it has been purely
mathematical. If we view the assembly of a full jigsaw puzzle
as a 2-D problem, the frame assembly may be considered as an
assembly of u one-dimensional {1-D) circular puzzie, (By a 1-
D puzzle we mean a puzzle consisting of only one row {or
column) of pieces.) Thus the frame assembly should be
inherently easier, Moreover, as will be seen Jater, it gives a
solid starting point to tackie the assembly problem of the entire
puzzle,

Frame Assembly: The frame picces are recognized by their
straight hine side (see item 6 in Section 1-B). Lel us name the
sides of a picce in the order of their appearance counterclock-
wise—bottom, right, top, and lefl side, the straight line being
the bottom side (see Fig. 2). The exceptional four comner
pieces have two bottom sides and one right and left side. It is
casy to sce that a correct matching along the outer frame may
oceur only between a nght side of one prece with a left side of
another. Let K be the number of frame pieces, and assume that
some arbitrary order has been induced on these pieces. Our
task is to find a (cyclic) K permutation which will give the
correct order of the pieces around the frame,

Define a matrix M4, j), i, = |,---, K, by agreeing that
M(i, J ) should equal the inter-curve L* distance obtained by
best matching the right side of piece i to the left side of piece
(see item 7 in Section H-B). Any choice of exuctly K entries,
one from each row and one from cach column, defines a X
penmutation P of the frame pieces so that P{i) = j,, where
is the entry chosen from the ith row. Since for the correct
piece order the corresponding piece sides should match, their
L? discance has to be very small (ideaily, zero). Hence, we are
looking for X entries in M, one in each row and one in eiach
column. such that the sum of these K entries is minimal and the
K permutation £ is u cycle. {An alternative approach can try (o
minimize the maximal entry.) Suppase that these entries have
been determuned to be ji,* Sy, where J, 1s the entry 1n the ith
row. Then we can assemble the outer frame by simply putting
piece 4, next 1o the right of piece 7,

The combinatorial problem that we have just stated is well
known in the literature as the froveling salesrman probiem
(see, for example, [21], [22]) which is usually formulated as
follows:

Given K cities and their pairwise distances, find the
shorrest closed path which pusses through every city
exactly once.

In our case we must solve the so-cailled asymsmetric problem,
which means that the distance from city 1 to ity J is nol
necessarily equal to the distance from city J to city i.
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The traveling sulesman problem s known 1o be NP
complete {see [18]), but for small K's there are efficient
algorithms that solve it (see. for example, [22]). (Note that in
our example K = 2 X {13 + 6) = 38.} T'hese algorithms may
be divided into two main caregories:

a) Time-efficient wlgonthms which use heunstic methods
and therefore only assure discovery of the optimal solution
with high probability (see, for exampie. [21]. [23)).

b) Algorithms which always find the optimal solution, bul in
some cases may be very time consuming (sce [24]).

We actually use the algorithm of 1ype a) which was
published in [25], and is hased on a hewristic tour building
approach of [23], |26] enhanced by an improvement phase dug
w Lin [27].

This type of heunistie algorithm s especially suited for
robotic interaction. First, it guarantees fast performance.
Second, even if it does provide the full correct tour of the
traveling salesman, due to the heuristics applied, there is a
high probability that sigmficunt portions of the tour are
correct, Hence the following interactive procedure can be
applicd (see also Fig. 1):

1) Apply the fraveiing salesman algorithm to the problem
defined by matrix M.

2) Feed the solution to the robot, and try o assemble the
pieces according to the proposed order. For cach proposed
matching pair, the robotic fine assembly procedure decides
whether the specific match is correct, incorrect, or {possibly)
undecidable. This information 1s fed back to the computer.

3) If all the matches are correct. the frame is assembled. If
some of the matches are wncorrect, change the matrix M
according to the information obtained from 2). Specifically,
three cases are observed. 1f a moatch (/, /) 15 correct, assign
zero to the (i, j) entry of the matrix and assign "‘almost
infinity™ to all other entnes of row ¢ and column #, since an
ideal match has a zero (penalty) score and only one ideal match
cxists in a given row and column. If a match (4, /) is incorrect,
assign ‘almost infinity™' to the entry (i, §), since wrong
matches should artain heavy (penalty) scores. If a match (4, /)
1s undecidable, make no changes in this entry of the matrix,
since no additional information is gained by this check. Then
go back to 1) with the improved matrix M.

This itcrative procedure has the advantage of quickly
reducing the “*practical dimension’™' of the rraveling salesman
problem being considered, especially if a big percentage of the
suggested matches was correct. We believe, that a very small
number of such iterations will be needed in order to get the
correct solution.

We intend to expand our robotic assembly procedure which
is described in Section I 1o accommaodate for such an
integrative solution. At this stuge, our expertments were bused
purely on computer vision equipment, so no feedback was
available. nevertheless we have obtwmed the correct frame
assembly after the firse application of the traveling salesman
algonthm on the onginal matnix (see Fig. 41 Although the
traveling salesrman is known to be difficult. this result :s not
entirely surprising, since the solution algorithms are usually
evaluated for arbitrury random mitnices In our case, how-
ever. the matrix M is not arbitrary, but strongly favorable 1o
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its optimal solution by virtue of the good performance of the
locul matching algorithm. In our experiments, the algorithm
converged to the correct solution in less than a mnute,

The above mentioned strategy will produce a unique
solution when the puzzle piece sides have different shapes,
This was the case in our experiments, aithough the shapes of
the preces are quite similar and cannot be visually easily
distinguished. The robotic verification step assures us that
only *‘correct’” matings are accepted. However, in case there
are pieces with identical left and night sides there might be
several consistent solutions. In such case one might try and
find all these solutions, and reject the wrong ones in the later
puzzle interior assembly stage. Also, @ number of heuristics
can be applied to reject the wrong solutions already it thig first
stage. One 15 1o check. if the outer frame is actally closed, if
not, the proposed solution can be rejected and the iterative
algorithm redisected to another solution by exchanging a pair
of pieces having a left (right) side with an identicul shape. This
procedure can be reiterated, In case the puzzle is rectangular,
as in our examples, the special four corner piece information
can be exploited to constrain the proposed solutions. It should
be noted that in our algorithm we did not use this information
or the fact that the puzzles are rectangular, except for the
identification of the frame picces.

Arrangement of the Puzile Interior: After complete
arrangement of the outer frame {see Fig, 4), we proceed (o the
arrangement of the interior pieces. Basically, this is done by
considering the four interior corners of the frame (see Fig. 4)
and using the fact that an interior picce, which [its into one of
the four corners of the frame has to match fwo sides with rwo
previously known frame pieces. This is advantageous because
the matching curve is approximately twice as long compared
10 the previous case.

A simple approach to solve the interior is to use a greedy
algorithm. Using such an approach we could start with the
piece which has the best matching score with one of the
comers. After such a piece is discovered and Jocated. it wiil
create two other corners with the same property. Then, we
could look for another piece having the best possible match
with one of the remaining corners, and proceed iteratively in
this way. Of course. at some stage we will get places in which
a piece must match along three of its sides: this strengthens our
sconing procedure even more. Finally. the last picce will have
to match along four of its sides.
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However, in our situation, in which the boundanes of the
picces are quite similar, even when two sides are being
matched (see Fig. 2) a greedy algorithm is unlikely to succeed,
One way to overcome this problem is by using robotic
feedback 10 verify the proposed matches in every corner. Such
an approach can lead (o the correct solution, however it will be
time-consuming. In this stage. as n the previous onc. we
prefer to use robotic feedback for wverification of partial
solutions involving a big number of puzzle pieces, and not at
each local stage, Hence, as in the frame assembiy, we nvolve
first a global computer algorithm. to achieve a proposed
solution. The algonthm is based on the following backtracking
technique, which processes sequentially the puzzle interior
comers, beginning with the lower lefl side of the puzzie
interior and advancing within each row to the night, {This
procedure is less general than picking up the best comers
wherever they may be, but it is easier to program and the loss
of information is nonessential.)

1) For the first corner, all the puzzle pieces, which are not
frame pieces, are matched at this cormer and their local
matching score is computed, The results are sorted and a
prescribed number of best solutions (denoted as KBEST) is
passed 1o the next stage.

2) At the second corner the same procedure is repeated for
each of the KBEST partial solutions which passed the previous
stage, and only KBEST overall (for both executed steps) best
solutions are passed o the pext stage.

3) The algorithm then proceeds iteratively. At the last
corner in each row we have three sides to match. In the last
row we have three matching sides for every piece and four
matching sides for the last piece.

In such a way we explore the interpretation (ree of the
interior puzzle arrangements in an efficient way by pruning all
but KBEST solutions at each stage. Of course, the number
KBEST need not be the same for all corners but it 15 more
appropriale 10 vary it from stage to stage. A mure sophisti-
cated approach would be to make a dyoamic decision as to
which solutions should pass to the next stage by assigning an
upper hound (as a function of the stage) for the overall
matching of a partial solution and to pass along only those
solutions that do not exceed this bound,

In our vision experiments (Figs. 3 and 5) we used KBEST
= 200, which was kept the same at every stage. Actually, the
correct solution in the puzzle of Fig. 3, for example, always
lay among the ten best solutions. The running time of the
puzzle interior ussembly with KBEST « 200 was about 10
min on a VAX 780. The program was written in Fortrun and
no special attempt was made to optimize the code. The intenior
assembly algorithm accepted as input the matrix of the focal
matching scores.

Since the solution of the puzzle interior is also based on a
heuristic algorithm, an integrated solution, which includes
robotic verification, can ensure convergence o the correct
solution. Here again, as in the frame assembly case. we can
check by a robot the proposed solution after it has heen
completed. discover its correct and vbviously wrong subsets,
and return to the computer algonthm with this additional
information for another (probably much more successful)
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Fig. 5. An assembled jigsaw puzzk

iteration. This interactive procedure can even be handled
dynamically. For example, if at some stage of the puzzic
interior assembly all the matching scores become obviously
had (above a certain dynamic threshoid), it indicates that we
arc heading towards a wrong solution, since, probably, the
correct solution has been pruned at some earlier stage. This is
an obyious place to halt the backtracking algorithm and check
the best partial solutions achieved so far by robotic assembly.
After some of the matchings are verified. and others rejected,
the backiracking algorithm can proceed from a more solid
starting point.

In our visual experiments we have also developed an
cffictent algorithm for simultancous assembly of a number of
Jigsaw puzzles and successfully assembled the 208 pieces of
the puzzles in Figs. 3 and 5 into two different puzzles. The
reader 1s referred to [14) for the details of this method, as weil
as for the discussion on the complexity of the above mentioned

algonthms.
I, Rasot AssiMery oF Puzzis Preces

Any physical assembly process raises problems related to
part availability and detection, retrneval and stable grasping,
friction, and jamming. Positon, sensing, and control errors
make assembly success uncertain. Additionally. the robot work
envelope is reduced by the jigs and fixtures that keep pants in
place. When industnal assembly is attempted, feeders, con-
veyor belts, and fixtures are standard. The specifics of jigsaw
puzzle shape makes this solution impractical, since it is hard to
design a feeder that can accommodate all the varying puzzle
pieces, A large number of jigs would also drastically limit the
mobot work envelope. Moreover, grusping becomes a problem
when using a parallel gripper on the curved shapes characteris-
tic to jigsaw puzzle pieces. In view of these assembly
difficultics, we designed an installation that aims to assure
uniform and stable grasping, maximum robot workspace, and
good sensor feedback.

A. Experimental Installation

This section presents an experimental installation used in the
puzzle aussembly, Integrating a vision system, robet controtler.
and an additional master computer. Subsequentiy, we detail
the modifications made on an off-the-shelf wooden puzzle w
assure @ stable robot grasping and eliminate the need for jigs
and fixtures.
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Fig. 6. Espenmental instaliativa for puzzle gssembly.

Puzzle assembly s & computationally intensive process that
incorporates visual data acquisition and procesing. routines for
piece matching, as well as robotic assembly routines, It
became cvident that the volume of computation involved
exceeds the capacity of the [BM 7565°s Series 1 robot
controller used for assembly, Thus we used a more powerful
Yax 78S computer to do the heavy computations related to
vision and planning, as presented in Fig. 6. Local force data
anulysis done by the robot controller then permits real-time
control, which would be impossible under remate contsol,

The vision system uses a Fairchild CCD camera and a
VICOM image processor with a 512 x 512 array. The
Fairchild camera sensor head was installed directly on the
robot arm, at & fixed height above the robot work table. This
climinates the need for special lens drives o compensate for
variable focal fengths, while allowing a good scan of the table,
For our cxperiments we selected an off-the-shelf wooden
puzzle with tojerances of 0.04-0,06 of an inch, Our visval
matching algonithm uses only the picce shape. therefore we
covered all piece pictures with black nonrellective paper. It is
important that the picces do not slip on the metal work table
during robot assembly, Therefore, the bottom of the puzzle
picces was fitted with Koroseal flexible magnetic strip [28] to
prevent shiding at small assembly forces. The magnetic toree is
limited by piece size to about 4 N for a 2- to 3-in® area, The
force that the robol uses during assembly has to be of the same
order of magnitude so that stationary pieces do not slip on the
table top. A cylindrical handle was mounted on each puzzie
piece at its center of gravity to assure uniform grasping.
Specialiv designed nails were added 1o the gripper to increase
finger-handle contact surface and amplify assembly forces for
better force sensing by the gnipper fingers, as shown in Fig.7.

B. Rohotic Assembly of Two Puzzle Pieces

This section describes the strategy used to integrate the
vision algonthm with imelligent, force-feedback-based, as-
sembly planner in order to physically interlock two 3-D puzzle
pieces. Although the vision algorithm does nol require a
spectid puzzle shupe in order to match toundanes. the robotic
assembly actively exploits the generic shape of the puzzle
peces in Fig. 2. We use the fact that each interlockang side has
either a convexity or a concavity, bul not both. Also explovted
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15 the presence of two low-curvature segments on each
matching side (subsequently called *““elbows'”). Therefore, the
procedures descnbed m this sectivn may not be directly
extended to a different type of puzzie.

The physical ussembly steps are shown in Fig. 8. We named
the statonary picce Piece [, while Piece 2 is the one
manipulated by the robot. These steps become building blocks
for the assembly of multiple picces as described in the
subscquent section

I} Vision Steps for Assembly: The puzzle picces are
placed randomly on the work table within the robot work space
and within the camera ficld of view, In this way, the pieces are
both visible and reachable. This scanmung space 1s subdivided
i quadrants with overlapping borders. During thus imtial
assembly stage, the algonthm determines whether a puzzic
piece exists in a given quadrant, If a piece exists, then its raw
center of gravity n vision coordiomtes is determined, In
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Fig. 9.

Object system of covrdunanes.

general, the piece center of gravity does not coincide with the
cenler of an image. In an extreme case only part of the piece
shape is visible 1o the camera. The robot has therefore the
additional task of centering the camera on tp of a discovered
piece in order to minimize vision errors. At the same time, the
assembly planner sumples robot arm coordinates when a plece
is centered in the picture. This is used later to give a goal for
raw assembly steps. The visual scarch and piece pickup are
based on the correspondence between camen field of view and
robot work space. This relation is determined by the camera
position offsee, x/y distortion factor, and projection factor

Once the vision algorithm has acquired a piece, a new
scarch 18 initiated for a subscquent piece. The local piece
matching procedure (sce Section [1-B) is applied, and the
vision algorithm returns the relative rotation and translation of
the matching sides. This rotation and translation is then
transformed into the corresponding modon of die faodle on
the puzzle piece. This motion goal 15 then sent to the assembly
routines for execution.

2) Robot Assembly Steps: Sununovich [29] states that the
robot range of moton for gross assembly must be about two
orders of magnitude greater than the characteristic size of parts
to be assembled, while accuracies required for gross assembly
are of the sume order of magnitude as the size of the pans, He
describes fine motion assembly as having a range of the same
onder of magnntude as the part characternistic size. Accuracies
may be as much as three orders of magmitude smaller than the
part size. For puzzles with a geometry similar to that presented
in Fig. 2, the charactenstic size may be the radius of the
concavity of the matching side. From this perspective, the
automated assembly of two pieces may be structured in three
sieps: raw posiioning, transition 10 fine assembiy, and fine
assembly. During raw positioning, Piece 2 is picked up.
rotated and translated, then tilted and lowered on top of Piece
1. When determining motion trajectories for assembled parts it
15 necessary to attach a system of coordinates to each part
being manipulated. The specific geometry of a given pant
determunes the position and onentation of the object system of
coordinates attached (o it. In the case of a puzzic piece, we
define u Cartesian object system of coordinates with the origin
at the center of gravity of the matching side P Y, axis
passes through the cemter of gravity of the picce G, as shown
in Fig. 9. For square puzzies such as the ones we used, this
divides the prece shape into a quasi-symmetrical area with
respect o PGy, The choice of P, as ongin for the object
svstem of ¢coordinates is related to the vision solution which is



grven i terms of Py, While the centers of gravity of two
mutching sides will not exactly comcide, olerances are such
that they can be overcome during the asembly process The
ot e wicrasces e mot very amall combaned wih e
relatvely small thacknces of the puczie prces reducm e
chance of wedging. Frction between parts s Sherefore
minimal during assembly.

The robot grgper fingers have up. sade  and puch wran
gauges pring force readngy © troe deectons a3 ows 0
Fig 7 Readings on the grgper semson we influcaced by &
mumber of factors such as onentation, sensor offset, calibra-
von. mechanical amplification, crosstalk. vibeations  Tests
hove shown [30f thet small rotatson crron do ot fhecnce
fosce readings swbstantially. However, & large emvor (1)57)
may return readings that differ from actual forces by as s h
s 100 percest. Therefore, force readings during assembly
mught dopend e grgger onestatoe dunng pan pak wp 1 e
Serefore mmportant 10 determine what & the best gripper
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contact with Piece | Inowe |11), Lozaoo-Perez (4], and othens
have shown that & purposely induced positional error with a
magnradc larper han the socenamty will duambeguae the
comfiguranon of assembiod proces b O case of 3 coTu oy
Ows induced erron reswlts i (he peg doing kowered made raher
than o sts matching hole. From this known configurston
sliding motion with monitored contact forces will find the
hode. The same principic & applicd & o srmegy which
induces an overshont of Prece 2 past the odge of Pece | The
last move Juring rew POMDORAG avcEidy 1 4 verboal move
that brings the preces in comact ay shown in Fig. 100a). This
» force feadhack hased guarded move that lermunates upon
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the tiling of ome of the parts reduces the initial contact ares,
winch means that tolerances hecome larger Whes exccuting
the move i Fig. 100b), Pece 2 s tied and larper tolcrances
mcrease the chance W wcessfully mtersect adge | of Phece |
After edge | was detected, the next move s lowards cdge 1,
where contact between the two pleces is reestablished as
Fg W)

An sverage of the wo lermURaton POIs represents (he
arget for the next move. The same procedure i repeased for
edges ) and 4, but the move proceeds along o trajeciory
perpendicular © PG, m i Fig 100d) and (2) Averaging the
fowr (omact PoDE) Clamanatss aRRlaton CTTon metrudeced
the vison sysems (Fig Wi

The final and crucial siep o fine assermbly based on forve
feedback  During fine assembly, Piece 2 must be pushed down
im0 Pece | and then tihed back © » horzostsdl posiion. The
ot back must mates contat with Ploce | and ot
vertcally aroumnd e Contact poust
push-in moves have 1o succeed despite rotational errors. First
the conveniry of Prece 2 » brought » contact with Peece | by
moving Prece 2 back 1o odge | slong G, P Omce the contact s
cstabluhed, the sext move pushes Pece 2 o Paece | The
tilting angle @ is such that if rotation errors exis, the efbow of
Prece 2 hats the 109 of Prece | hebore the pushung 0 complotcs
The algorsthen dntmguishes berween e two pumasbie cases of
right or left efbow hit. The force torgue systiem hat
corresponds to these cases 15 prescoted in Fig. |1 During the
last move of fine assembly Pece 2 s browght back 10 »
borwestsl configurstes o shown o Fg 12

Force rendings during assembly are presested m Fig 1)
These readings represent provessed data that have boen
compensated for sensor offset und calibration amphification
Measared force covelope during pene nesting s of the order
of $ N, or 2.5 N for 0 peroem mechancal amphification dec
10 hamdie -grppet combmatson  Thes force level mocts comdb
nom set carlier reganding magnetic retention forces, and no
slip Is present during initial assembly stepy Dynamic effects
have mo heen comadered hore wnce assermidy o Jone a how
spoods (0 2 ns). This s sccrssary  onder 10 EMQIOVE Sysom
respoase © guarded move wrmmanon fNags  Derag (e
assembly veps forces occasiomally pass the bt of magnetic
pull resistance. and shp is present.
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Fig. 11, Force-torque system for elbow hit.

Tilt-back mave,

Fig. 12,

When analyzing Fig. 13 we note a large tip force increase
from A to B, lollowed by a sharp decrease C w D, These
represent the end of raw positioning moves at point B and the
detection of edge | at point D, as described previowsly. Both
left and right finger sensor outputs follow the same pattern
ABCDE, bt scparate along EFG and EHI, respectively.
This corresponds to nesting moves that detect edges 3 and 4.
when sensors are subject to torques in opposing direction,

To 1est the algorithm robustness it is important 10 estimate
the limit on rotational and translational crrors that the
assembly algorithm can tolerate. We define the vision rotation
error 0., as

Upe =8" -1 (2)
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where

fl,, rotation error from vision solution
¢’ solution returned by vision match
§ comect solution.

Due to puzzie asymmetry, any rotation crrors produce
translation errory of the initial contact point, This translution
errors are given by

X" 'Xc'=Gl|'~'-Gth' lir*l)

X i
* sin (‘-J-") COs (:E:U'"J (3
2 2
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Yer = Y.f:GS» ot ! _Gl,f nm+2(T‘f}

* &n (’j;") si0 (28;{"") (4)

where

X,Y; robot coordinates of contact point with vision
rotaton error

X, Yr robot coordinates of contact point without rotation
crrors
Bere rotatron error from vision
T =a—cos (@ + (b = f)sin{F)
a,b,f  distances as described in Fig. 19 (Appeadix).

The translation error from vision may not be larger than the
pseudo radius of the stationary puzzle concavity, or the peg
will not intersect it, This is due to Piece 2 tilting which resuits
in a small contact surface at the peg edge, rather than contact
on the 1ol peg surface. This can be seen in Fig. 10(a).
Another condition requires the gripper 0 be as close as
possible to the perpendicular to #,G,, in order ta assure
symmetry in sensor readings, For a psewdo radius of 0.25 in,
the condition set o (3) returns & maximum #., of 4° for
successful assembly, Tests have been run with rotation errors
varying between 0° and 4.6°, with successful nesting at 3° and
failure at 4.6°, In order to improve assembly robustness it may
be necessary to modify the nesting algorithm 1o take alterna-
tive actions in case «lge 1 was not detected. The algorithm
might reverse the scan on a perpendicular direction 10 £,G, 0
detect edges 3 and 4 and then detect edges | and 2. Finally,
assembly success also depends on the friction between the two
pieces, as well as on the force sensor sensitivity. For example,
the horizontal friction force at the contact between Piece 2 and
Piece | at the first transition move shouid be less than the
magnetic force that keeps Piece | stationary, Otherwise, Piece
I will be dragged along on the work table. The limit on friction
between the two picces requires high sensor sensitivity as well
as low system inertin. Such a system is necessarily slow which
results in long overall assembly time, Robot assembly ume
was about 70 o 80 s excluding the time allocated to the vision
algorithm.

From the above discussion we see that the restriction
imposed by the assembly strategy on the geometry of the
assembled pieces is the existence of a concavity or a convexity
on the matching side {but not hoth). A second restriction 15 the
existence of two segments of small curvalure (previousiy
called “*elbows™), with lengths of the same order of magni-
tude as the diameter of the concavity, The existence of one
concavity assures imitiad elimination of translation errors
versus the center of gravity of the matching side. provided that
these errors are within the bounds previously described. In this
situation the interior of the concavity is found by the tilted and
moving part. The existence of the “‘elbows'’ combined with
small niting angles result in contact forces which occor before
the push-in motion completes. This represents a way to detect
rotational errors, It 35 expected that the same strategy will
apply 10 the mating of other parns with similar shapes. such as
gear-pump shafts.
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C. Assembly of Muluple Puzzle Pieces

Roboe assembly of multiple dissimilar industrial parts has
nol yet been intensively studied. Difficulties associated with
this task are duc to the changing geometry of assembled
picces. No single strategy, however efficient, will succeed in
dealing with many, different shapes. Tolerances with which
cach part is manufactured represent an additional problem.
These tolerances induce uncertainties that accumulate as the
assembly progresses. Large uncertanties may rend assembly
of Jater preces impossible. In general. multiple part assembiy
[32] may involve cither different operations applied to
dissimilar pants, or a common operation applied repeatedly to
several similar sets of parnts (c.g., nut-washer-screw assem-
bly). When several parts are assembled, it is essential to limit
error propagation, in order to solve the task.

This section addresses the problem of four inner puzzle-
picce assembly, and requires modeling uncemainty propaga-
tion in a four-piece kinematic chain. This model bounds
accumulated uncertainties that have to be dealt with during
assembly of the fourth piece, when that piece must nteclock
with two prior picces. The technique presented may be
extended to complete assembly of multi-piece puzzles.

Brooks [33] and Smith and Cheeseman [34] give methods
for crror analysis and uncerainty estimation, by using
compounding and merging of approximate transformations to
obtain a basic estimation of unceraintics at the end of a series
of operations, At each intermediate step an additional uncer-
tainty specific to that step is added. If no remedial action is
taken, then a large ecror may result between the desired and
actual final positions. In the case of puzzle assembly, the
tolerances with which pieces are formed allow for a small
degree of relative motion even after they are assembied. Each
piece can both rotate and translate relative to its neighbonng
picce. Their matching side may then be viewed as a three-
degree-of-freedom link (see Fig. 20 in the Appendix). Piece 4
has 10 interlock on two sides. rather than on one side only. as
do Picce 2 and Piece 3. Depending on the magnitude of
rotatzonal and translational errors. uncemainty propagation
may make the assembly of Piece 4 impossible, as shown in
Fig. 14, A strategy that succeeds despite previously described
assembly uncertainties is presented in Fig, 15, This strategy is
based on the principles of limiting uncertainty growth and
inducing errors to disambiguate piece position during assem-
bly. When locking Piece 2 into Picce [ the key move is
bringing Picce 2 in the configuration presented in Fig. 16{a).
This step uses (see (4], [11)} induced gross position errors 10
thsambiguute picce orientation. Force feedback stops the
motion of Piece 2 when curner A makes contact with Piece 1.
The assemnbly of Piece 4 may be viewed as having two phases.
In the first phase. Piece 4 ts ited and assembled in Piece 2,
ustng the methods oudined in Section [1-B, At the end of this
phase, Piece 4 has elimunated translational and rotational
errurs versus Piece 2, and is still rilted versus the work table.
as shown in Fig. 17, The next step is to tile back Piece 4 so that
it focks in Piece 3. Due to the rotation of Piece 2. Piece 4 hits
the “‘elbow™ of Picce 3 in # known orientation. Finally, Piece
2 15 pushed away until the contact berween Piece 4 and Piece 3
15 lost, and the tilt-back move completes.



762

Fig. 14, Uncersminty effects oa four puziie prece wssembly
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Strategy for Pece 2 Guy Inunal canfiguration. (1 Finel configura-
tion.

Fig. 18,

The strategy previously discussed necessitates pushing
Piece 2 away from Piece 3, while tilting back Piece 4 towards
its final horizomal configuration. During this final assembly
step. Piece 2 shides over the work tabic despite magnetic
fricuon.

Dunng sliding motion, the vertical componemt of the
pushing force is negligible, so 2-D anulysis of sliding objects
is apphicable 1], [35]-[39). Mason and Peshkn have shown
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Fig. 17, Assembiy configursiion before tlung hack Piece 4,

that a siiding object has three degrees of freedom, one rotation
and two translations. When the object is pushed, one degree of
freedom is lost due to interaction with the pushing object. [n
his analysis, Peshkin uses a configuration map that describes
sunultancously the geometric and physical consequence of the
pushing operation on alf imitial configurations. This configura-
tion map is then used for planning a series of pushing motions
designed o bring the object in a desired position and
orientation.

The case of a pushed puzzle picce is somewhat simpler.
When an assembled puzzle piece 15 pushed one more degree
of freedom is logl, The piece is (ree to rotate around a center of
rotation (COR) constraned in the concavity of the matching
side, as shown i Fig. 18. The distance from COR 10 the picce
center of gravity (CM) x, is known based on the piece
geometry. Force F is the contuct force necessary to push Piece
2 despite friction with the robot table, assuming Coulomb
fnction and quasi-static equilibrium.

The strategy previously described calls for sliding of Piece 2
combined with ulting Piece 4 towards its final horizontal
configuration, Rather than executing pushing and tlt-back
moves simultaneously, we chose to divide them into a series of
alternating, guarded, wlt-back and pushing moves. In this way
it is casier w0 monitor only one type of force sensor at a time,
namely tip forces for ult-back moves and side forces for
sliding moves, Similariy, force thresholdy for these guarded
moves may be divided into smaller steps. so that forces
increase gradually. The division into small moves minimizes
the effect of overshoot due to system inertia, and allows for
closer force control at the expense of assembly time. Al each
tilt-back step the goal is computed based on current position,
thus gradually climinating the effect of mduced error n the

position of Picce 2.
IV, Concrusions aND Future Resrarcs

We have suggested an algorithm for assembly of large
pgsaw puzzies by intcgration of curve-matching techmques
from Computer Vision, combisatorial opumizaton al-
gorithms, actual robotic venfication, and fine assembly. We
also presented an implementation of the vision algorithm, and
a small-scale robotic assembiv. The method should be
applicable in any assembly tasks where such than shapes have
to be interlocked. Closed-chain assembly problems could also
benelit from the present algonthm.

Several things can be explored in the future, among them:
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1) Applicanon of more sophisticated curve-matching al-
gorithms (see [40]), which will enable solution of arbitrary
shape puzzles.

2) Extension of the present assembly module into a module
capable of dealing with large jigsaw puzzles as suggested in
Section TI-C,

3) Use of dextrous manipulation nstead of parullel fingers.
This will eliminate the need to artach a handle at the center of
gravity of the puzzle pieces. Also, we can benefit from the
““rich"" force data at each finger, giving more information for
the verification step.

4) Study of encreased ratation error effects on force sensor
readings o improve algorithmic robustness.

APPENDIX
When two pieces are interlocked the push-in motion hus
goals given by (A1)-[AS) (see Fig. 19)
Zuue ~{f=b+)cos ()1
sin (8)

=

(Al

where

[ distance from the contact point to Piece 2 center of
gravity

I piece thickness

¢ tilting angle

i angle between Yy and Yoy s shown in Fig. 9

a distance P|G-,

Kousun = X — £ 8in0 (3) 810 (6) (A2)
Youssie = Yooned + 1 cos (3) sin () (A3
Zassie = Lopen — ¢ €05 (#) (Ad)

Pitch=48, (AS)

When multiple pieces are assembled. a Cantesian system of
coordinates X, Y; is anached 10 puzzle Piece i as descrined in
Section II1-B2. A second Cartesian system of couordinates
X+ Y. corresponds to the average position that Piece | may
take once it was assembled in Piece / ~ 1.

Small assembly uncerainties may be expressed by tnplets
(6X;:, 6Y,, 86,..). Each new assembled piece adds (o the
uncertanty so that at the end of the kinematic chain, P deviates
from the goal G, Thus it is necessary to determne the range of
possible positions of P(x,, ¥,) in a fixed system of coordinates
Xy ¥y We chose 1o anach this system to puzzle Plece | and
consider it fixed during the whole assembly. £ coordinates in
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Fig. 20.

Lncenainty propagaion model,

the system of coordinates X ¥y may be found with (A6)-(AR).
A measure of the final uncertainty s then given by
\"(X; -x{.'}2+ ()'g > )"9’?.

P TUTLTYTLTI TP

(AB)

where 9P are P's coordinates in the fixed system X, ¥y; & Tis
the transformation between the uncertain system of coordi-
nates § and the correct one i; *P are P’s coordinates in the
uncertain svstem X, Y, attached to the last puzzie piece in the
kinematic chain (sec Fig. 20).

The matnx transtormation | 7" may be written as

cos B —sinfly 0 Ax,
’ simf, cosd, 0O A, <
'T= 0 0 2 1 0 (AT)
] 0 1 S |
3" T are small rotations and teanslations and may be written as
I =g 0 8x5
o S R S (A8)

Fetass 1) o 1=
0 R | A |
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