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Abstract—Multifingered dextrous robot hands can perform more complex tasks than simpler end effectors.
Teleoperation, in which a robot mimics the motion of a remote operator, provides a convenient method for
controlling these robot hands. Damage to the object being manipulated by the robot hand may result in
the case of open-loop control if there is no force-feedback sensation to the operator from the robot hand.
The need arises for new actuator technology to provide force feedback to the hand master. These actuators
have to meet the tight space and light weight requirements of a dextrous master. One candidate is the
shape memory alloy (SMA) actuator. SMAs, such as Nitinol, are materials with a unique ‘mechanical
memory’ and high force/weight ratio. A prototype SMA actuator and its hardware interface were designed
and tested. Results showed that the actuator met the space and weight limitations of the master (Exos
DHM™) and provided adequate reactive force feedback to the operator. However, the actuator had a
low bandwidth of operation, due to relatively slow engagement and disengagement motions. This makes
it unusable in real-time control situations.

1. INTRODUCTION

Anthropomorphic robotic end effectors such as the Utah/MIT hand [1], the Stan-
ford/JPL hand [2], the Belgrade/USC hand [3] and the NASA hand {4] have been
developed to allow increased dexterity in complex robotic tasks.

The autonomous control of robot hands using algorithmic methods is computa-
tionally expensive [5] and may be unstable. Teleoperation [6] provides an attractive
method for controlling robot hands by utilizing the human hand as the master and
the robot hand as the slave. To teleoperate a multifingered robotic end effector, a
device must digitize human hand motions. Two commercially available devices that
transduce human hand motion are the DataGlove™ [7] and the Exos (Dextrous Hand
Master) DHM™ [8]. The DataGlove uses optic fibers stretched over its joints while
the DHM is a metallic exoskeleton that uses Hall effect sensors to measure finger
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motions. The DHM is considered more accurate than the DataGlove due to better
sensors. Both of these masters operate in open loop.

Interaction between the operator and the environment surrounding the robot hand
through perceptual sensation of the remote operation process enhances the task perfor-
mance significantly. Studies done on non-dextrous systems show that task completion
times were often reduced by 40% when the operator was given force information [9].
The completion times for the most difficult tasks were reduced by up to 50%.

In considering dextrous masters with force feedback, it is important that they be
distinguished from those with tactile feedback. Unlike force feedback, tactile feedback
cannot produce rigidity of motion of the operator’s hand [10, 11].

A few prototypes of dextrous masters with force feedback have been built such
as the Portable Dextrous Master with Force Feedback (PDMFF) [12], the complete
hand-arm system built by Jacobsen et al. [13] and the master built by Iwata [14]. An
ideal force-feedback master should be able to provide the operator with the illusion of
‘actually being there’, feeling what the robot hand is feeling. Existing masters suffer
from one or more problems, such as non-compact non-portable design, restriction to
the work volume of the operator’s hand [15], inability to provide adequate force to
the operator or low bandwidth of operation [10].

Ideal hand masters need to be light and compact to reduce operator fatigue. The
requirement for compactness limits the use of cables and pulleys to transmit motion
from remotely placed actuators. Therefore, actuators need to be placed on the oper-
ator’s hand where the forces are to be sensed. This, however, limits the number of
degrees of freedom provided with force feedback, because existing actuator technol-
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ogy has a low power/weight ratio and therefore fewer actuators can be used on the
hand to provide force feedback.

To be able to supply multi-d.o.f. force feedback to the DHM, the need arises for
new actuator technology that allows more actuators to be placed on the hand. A
possible solution in the use of shape memory alloys (SMAs), since they have a high
force/weight ratio [16]. SMAs have been used in applications where miniaturization
is essential [17, 18]. SMAs are materials with a unique mechanical memory and
high force/weight ratio. These materials can memorize a certain ‘shape’ and can
retrieve that particular shape even when deformed. During the process of retrieving
their memory shape, SMAs produce large forces that are an order of magnitude larger
than those produced by micro-DC motors in the same weight category [16]. SMAs
are finding more and more applications into practical actuators, such as in the active
medical endoscope [19].

Since heating and cooling of the SMA element must be repeated to operate the
actuator, slow cooling rates result in reduced bandwidth of operation for the SMA
actuator. This has been a major obstacle towards increased usage of SMA for practical
purposes. Several methods have been proposed to increase the bandwidth such as air
cooling, water cooling and cooling using a heat sink [18].

Burdea proposed the use of SMAs as the force-feedback actuators for the DHM [20].
The architecture of the proposed system is shown in Fig. 1 [20]. Position sensors
on the DHM exoskeleton measure finger link angles, these signals are read by the
host computer through an A/D converter and transformed (using calibration software)
to finger joint position signals. These data are sent to the dextrous robot hand as
position feed-forward signals. The hand responds with force-feedback signals, these
signals are decoded and sent to the SMA actuator interface. The interface supplies
the necessary current to energize the SMA actuators.

This paper details the design of the SMA actuators and the modification to the
structure of the exoskeleton master. Next we present the design of the interface for
the SMA actuators. Finally we show how the master is tested using a virtual reality
simulation.

2. THE SMA ACTUATOR

Nitinol [21] is the most widely used SMA because of its high repeatability, long
life and high power output. If the material is cooled below a certain temperature,
called the martensite finish temperature, the alloy can be easily deformed permanently
(plastically strained). Upon heating above another temperature, called the austenite
finish temperature, the alloy will attempt to regain the shape it had prior to the
deformation. In the process of regaining its original shape the alloy exhibits large
forces that can be used for mechanical work. This property is known as the shape
memory effect (SME). The martensitic transformation from the austenite phase to the
martensitic phase starts at a temperature called the martensitic start temperature M;
as shown in Fig. 2. This transformation ends at the martensitic finish temperature
My, where the specimen is completely transformed into the martensite phase. Due to
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Figure 3. Cross-sectional view of the SMA force-feedback actuator.

hysteresis effects, the reverse martensitic transformation takes place at a different set
of temperatures. The evolution of austenite crystals starts at a temperature called the
austenitic start temperature A, and ends at the austenitic finish temperature A;.
Tests were conducted on several specimens of Nitinol wires, ribbons and springs.
It was found that Nitinol springs exhibit much larger sirokes as compared with wires
and ribbons, but they have smaller electrical resistance and can support smaller loads.
Large resistance for a Nitinol element in an SMA actuator is desirable since this
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reduces the current requirement and simplifies the design of the interface circuit. Two
factors contribute to the resistance of the springs. On one hand, larger loads tend to
increase the cross-sectional area and thereafter decrease the resistance. On the other
hand, the space compaction produced by the spring windings tend to increase the
overall length of the specimen and therefore increase the electrical resistance. The
results of these tests showed that Nitinol springs are the most suitable configuration
for the proposed force-feedback actuator (due to their large strokes), but at the expense
of a more complex driving circuit.

A cross-sectional view into the new actuator design is presented in Fig. 3. The
system is composed of the following parts:

(1) Axis screw. The axis screw is made out of brass and is fitted with a 16-toothed
gear.

(2) Actuator casing. The actuator casings is made of transparent plastic. It has a
cylindrical groove whose diameter is about 9 mm. The actuator casing comes
in two parts to ease the assembly.

(3) Sliding gear. This is also a 16-toothed brass gear similar to the gear on the
axis screw. The sliding gear has two electrically insulated stop pins on each
side. These pins provide space for the bias springs that supply the necessary
deformation force for the Nitinol spring. Enough space is available for an
electrical connection to the stop pin on the actuator back cover. This gear acts
as a heat sink and as an electrode for the Nitinol spring in addition to supplying
the necessary reactive force and torque.

(4) Actuator back cover. This has two slots where the actuator back screws fit in.
It has two pins facing the extension pins on the sliding gear where the bias
springs are attached. This piece also acts as a heat sink to the Nitinol spring
and as the other electrode for the heating current.

(5) Actuator back screws. These screws go through the actuator back cover, the
actuator casings and attach to the sensor casing.

(6) Nitinol spring. When excited, the Nitinol spring pushes the sliding gear against
the gear on the axis screw with sufficient force to make these two gears engage.
The force supplied by the Nitinol element overcomes the force supplied by the
bias springs and provides the necessary engagement force for the gears. The
Nitinol spring has small thickness to increase its resistance and speedup natural
cooling.

(7) Bias springs. They supply the necessary force to pull the sliding gear to a
position where the two gears disengage when the Nitinol spring is cooled to
its martensitic phase. '

The actuator prototype, shown in Fig. 4, is retrofitted on the Exos Master at the joint
where two linkages rotate. On one side of the joint there is the position sensor that
senses the operator’s finger motion, while on the other side the actuator is installed.

When energized, the actuator blocks the operator’s finger flexion towards the palm
but it does not restrict its extension away from the palm. This is achieved by the
use of one-directional gears such that they slip in one direction, but they block each
other’s motion in the opposite direction.



Figure 4. Augmentation to the DHM joint to inclode the SMA force-feedback actuator:

Table 1.
Data for bandwidth calculation.
Test number Heating tme (5] Cooling time (5)

The bandwidth of the force-feedback actuator is an important feature. Hogan es-
timates that the human force compliance control loop has a very low bandwidth of
about 1-2 Hz [22]. This represents an upper bound on the required bandwidth of
operation for the SMA actuator. The actuator was energized with a step input current
of 5.0 A at a duty ratio of 100% and then tumed off when the gears engaged. The
time needed for the gears to engage and disengage was recorded as shown in Table 1.
Using this data, the average bandwidth was calculated at 0.17 Hz. Heating the actua-
tor was responsible for 16% of the average cycle time while cooling was responsible
for 84% of this cycle. :

The Nitinol spring was in contact with two metallic electrodes, the actuator back
cover and the sliding gear. A test was conducted to quantify the effect of these
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7 Figure 5. Effect of the electrode heat sink on the cooling rate.

electrodes on the cooling time. A thermocouple was fitted on the spring to measure
the temperature while the spring was inside the actuator. The actuator was energized
with a DC current to elevate the temperature of the spring to 40°C and allowed to
cool while the host computer recorded its temperature. This procedure was repeated
with the spring taken out of the actuator and connected directly to the current wires.

Figure 5 shows the results of this experiment. It is noted that the cooling rate of
the spring inside the actuator is approximately twice as fast the cooling rate in free
air. This is due to the heat sinking effect of the metallic electrodes.

Heating of the actuator could be made arbitrarily higher by the use of a larger
power source. However, increasing the cooling rate is more difficult. There are
several methods that may be used in the future to increase the cooling rate. For
example, Hashimoto et al. provided curves for various cooling methods for a 0.8 mm
diameter Nitinol wire. The cooling rate when using a heat sink was found to be 30
times faster than that for natural cooling [18]. Cooling via a heat sink is especially
convenient for this application since it does not require connection to a central cooling
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system. This eliminates the need for pipes or cables to connect to the central unit and
therefore does not introduce an extra space requirement.

3, INTERFACE OF THE SMA ACTUATORS

The interface for the SMA actuators was designed to utilize pulse width modulation
(PWM) with an amplitude of up to 5.0 A and to provide a visual of the average
current flowing into the SMA element. The design is modular and can be expanded
for driving up to 16 SMA actuators.

The design of the interface is shown in Fig. 6. The interface with the host computer
is through A/D and D/A converters. The signal from the host computer representing
the duty cycle is connected to the input of the PWM control circuit. This voltage is in
the 0.9-3.5 V range, corresponding to duty ratios of 0~100%, respectively. The output
of the PWM control circuit is a low power PWM signal fed to the current chopper
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circuit at the gate of a high speed MOSFET switch. The current chopper circuit
chops a current of amplitude up to 5.0 A at a frequency of 500 Hz. The amplitude of
the current chopped by this circuit depends on the voltage setting of a high current
power source connected to the circuit. The outputs of this circuit are three signals
Vi, Vama+ and Vgya—. These signals are fed to the power transduction circuit. The
power transduction circuit feeds back to the host computer two signals proportional
to the average current and voltage of the SMA element. The host computer utilizes
these two signals to control the SMA actuator. The average current signal is also fed
to the current display circuit. The current display circuit is an LED bargraph current
meter with a step of 0.5 A.

There are two power supplies for the system. The first is a dual output/low current
power supply and the second is a low voltage/high current power supply. The first
supply energizes the interface while the second low voltage/high current power source
supplies the current needed for heating the SMA actuator.

Figure 7 illustrates the proposed design of the interface for 16 SMA actuators.
There are four printed circuit boards, i.e. the PWM control board, the current chopper
board, the current transducer board and the bargraph current display board [23]. Each
actuator requires connection with one channel of the D/A board and two channels of
the A/D board. Thus the total number of channels connected to the interface for 16
SMA actuators is 32 A/D channels and 16 D/A channels.
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Figure 7. Design of the interface for 16 SMA actuators: (a) overall view and (b} top view.
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4. VIRTUAL HAND SIMULATOR

A five fingered virtual robot hand was employed in a world containing virtual objects.
Each of its fingers is essentially a 4 d.o.f. robot with three joints just like the human
hand. This hand moves in the scene in both rotational and translational motions
around three mutually orthogonal axes whose origin is located at the wrist. These
motions produce roll, pitch and yaw as well as translation in the x, y and z directions.
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Figure 8. System configuration [24].
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The hand interacts with an object in the shape of a ball. A virtual force sensor was
installed on the index finger between the MP and PIP joints. As the finger is flexed,
it collides with the ball and the virtual force sensor triggers. Subsequently, the SMA
force-feedback actuator is energized and the operator ‘feels’ the interaction with the
virtual ball.

The system configuration is shown in Fig. 8 [24]. The dextrous hand simulator is
controlled by two devices, the Exos DHM and the Dimension6 Ball Controller [25,
26]. The Dimension6 Ball controller is used to control the position and orientation of
the hand wrist in the simulated world, while the DHM controls all finger joint angles.

The simulator utilizes two computers, a SUN 4/360 workstation and an HP 9000/375-
SRX Graphics workstation with a 98766 graphics accelerator. The HP displays the
virtual hand on the graphics display, while the SUN runs the drivers for the DHM
and Dimensioné controllers. The two workstations communicate via the ethernet in a
server—client arrangement [12]. On one side of the ethernet the SUN_server reads the
shared memory segment that contains the operator’s finger joint angles and wrist po-
sition and orientations. At the other side, the HP_Client reads the ethernet and stores
the received data in a corresponding shared memory segment. A hand simulator uses
a simple but realistic model of the human hand. It has a palm and a full set of fingers.
Simple objects are also part of the virtual world. A ‘display list’ technique together
with the HP ‘Starbase’ library [27] enabled the achievment of a graphic refresh rate
of up to 10 frames/s for the whole scene.

5. CONCLUSION

In this paper, the process of providing force-feedback sensation for a dextrous master
was studied. In addition to applications in telemanipulation, a force-feedback dextrous
master is useful in applications such as virtual reality where the operator interacts with
virtual objects created by a computer. In such applications, the bandwidth of operation
of the force-feedback actuators should be as high as 1-2 Hz or more.

Present actuator technology utilizing electrical solenoids and motors cannot provide
actuators with the necessary size and output force. Thus a novel actuator technology
is needed. SMAs are materials with high force/weight ratio. Thus they might meet
the imposed size requirement.

The SMA actuator was designed and tested. Results of these tests showed that the
actuator had a small size of 13 mm, thus it was able to meet the space and weight
requirements. The actuators had enough power to supply up to 5.0 N at the midpoint of
each finger phalange and thus was able to provide ‘near rigidity of motion’. However,
it had a relatively low bandwidth of operation of about 0.17 Hz and required a high
energizing current of 5.0 A. It is anticipated that even with the rather small bandwidth
of operation for the SMA actuators, there would be an improvement in performance
with the added force-feedback sensation as opposed to the open-loop performance.

The design of the actuator included metallic electrodes that acts as heat sinks in
addition to supplying the necessary energizing current. These electrodes doubled the
cooling rate of the Nitinol element.
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In the future, a more efficient heat dissipation technique should be utilized to in-
crease the bandwidth of operation of the SMA actuator. This could employ a more
efficient heat sink or the use of a forced cooling method such as water cooling that
can adhere to the space requirements of the master.
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