
DEXTROUS HAPTIC INTERFACE FOR JACK

Viorel G. Popescu and Grigore C. Burdea
Department of Electrical and Computer Engineering,

Rutgers-The State University of New Jersey,
Piscataway, N.J. 08854, USA.

http://www.caip.rutgers.edu/vrlab/

ABSTRACT
This paper presents a simulation system which integrates a real-

time hand sensing and force-feedback interface (the Rutgers Master
II) with a full body modeling software (JACK). The RM–
II system and the Polhemus Fastrak 3D magnetic tracker were
initially integrated with “JACK" full-body simulation software. The
system performance (graphics update rates, sensor reading updates)
is evaluated on two graphic workstations (SGI High Impact and SGI
Infinite Reality). Next we propose the concept of a Virtual Human
Agent enhanced with haptic feedback. This concept is illustrated
by a simulation developed using the RM–II system, JACK software
library and a speech recognition engine.

INTRODUCTION
Many haptic systems are currently limited to providing feedback

to only one location of user’s body (mainly the hand) [1]. Due to
advances in VR technology [2] and increased workstation computa-
tion power the idea of a full body haptic suit comes closer to reality.
Virtual humans can be used as graphic interfaces for such complex
VR simulations. They have been used mostly for human factors
design, ergonomics visualization and virtual prototyping and less
in real-time simulation systems. Therefore some limitations are
inherent to the currently available Virtual Humans when used in
real-time applications.

Designing complex systems with full-body tracking and force
feedback require very powerful simulation tools. However, tracking
and feeding back forces for those parts of the body with the highest
haptic activity for a given application can be currently realized with
a single workstation and additional VR I/O devices. This paper
presents an implementation of a Virtual Human enhanced with
force feedback for the hand.

The following section presents the integration of the JACK soft-
ware with the RM–II haptic interface. The system performance is
evaluated for two platforms, medium and high-end graphic work-

stations. A proof-of-concept demonstration of a Virtual Human
Agent (VHA) performing tasks in a machine shop is described
next. Multimodal input needed to communicate with the VHA is
outlined briefly. Graphics and sensors update rates are evaluated
subsequently. Concluding remarks are given in the last section.

THE HAPTIC INTERFACE SYSTEM

System Components

JACK [4] is a full-body simulation environment which pro-
vides 3D modeling capabilities as well as extensive human factors
and analysis tools. The software provides a 3D human model cur-
rently used for human factors design, ergonomics visualization and
virtual prototyping. The articulated human figure consists of 39
segments, 38 joints, and 88 degrees of freedom, including a 17-
segment flexible torso; the fully-articulated hands add 30 segments,
30 joints, and 33 degrees of freedom. The JACK software includes
modules for torque and strength computation for the human model,
anthropometric scaling, walking behaviors, balance control, reach
and grasp behaviors, real-time animation previewing, real-time col-
lision detection, free-form deformations of surfaces, import and
export interfaces to CAD, and support for several input devices
(Ascension FOB, Cyberglove). The real-time application devel-
oper is provided with an API which includes a set of “C" functions
which allow accessing components of the virtual environment and
issuing simulation commands. Command files (in “jcl" format)
and geometry files (in “psurf" format) complement the develop-
ment toolkit. Objects created with CAD modeling packages (such
as Autocad) and converted to “psurf" format can be loaded in the
simulated environment.

The Rutgers Master II (RM–II) system is a portable haptic inter-
face designed for interaction with virtual environments [3]. Its two
main subsystems, shown in Fig. 1, are the and the

(SCI).

position

force

RS 232

Non-contact
position sensors

Pneumatic actuator

Host computer

Smart Controller Interface

80psi RM II SCI
user hand

RMII Hand Master

Figure 1: The Rutgers Master II system [3]

The RM–II hand master can read hand gestures (fingertip po-
sitions relative to the palm) and apply forces on the fingertip.
The hand–master unifies hand motion sensing and force display
in a small and compact structure which weighs approximately 100
grams. The main structure consists of a small “L” shaped palm base
on which are mounted four custom-designed linear-displacement
pneumatic actuators and 8 Hall effect sensors. The actuators are
equipped with a special non-contact sensor to measure their linear
displacement. A 3D magnetic tracker (Fastrack) [11] attached
to the back of the hand provides wrist position/orientation.

RM–II and Fastrak devices were initially connected with the
JACK simulation environment through the C API. The C API in-
terface included in JACK v1.1, has a severe limitation for real-time
application development: in this version the simulation loop exe-
cutes one command (issued by the interface) per frame. Therefore
hand motion tracking requires 16 commands: one for palm posi-
tion and orientation and 5(fingers)x3(joints) joint adjustment com-
mands. The next version of JACK (2.0) will allow for direct linking
of C/C++ modules into the JACK run-time. Transom (Ann Arbor,
MI), which commercializes JACK , provided us with a sample
code for loading a module into JACK 1.1 while still programming
against the C API. We were thus able to load the interface module
at run-time; the module contains a simulation function (including
all hand motion tracking commands) executed once per frame. The
experimental setup is shown in Fig. 2 [13].

RM-II

Hand real-time
 input

Jack F.O.V.

Figure 2: Hand input interface setup [13]

System Design
While JACK provides different types of automatic behaviors

(reaching, grasping, walking), we explored the enhancement of
JACK simulation system with real-time input and force feedback
for the hand. The task to be implemented with the RM–II system
is object grasping. In this case hand motion can be decomposed
in two distinct phases: “reaching" and “grasping". “Reaching" is
implemented using JACK inverse kinematics and Polhemus sen-
sor readings. Arm motion uses the shoulder as the starting point
and provides data only for palm position and orientation. The arm
motion is solved using a real-time inverse kinematics mechanism
implemented in JACK software [5]. RM–II sensor readings are
used to control JACK fingers. Only a few “grasping" configura-
tions [7] are achievable through our interface. The RM–II hand
master limits by design user finger motions to nearly half of the
maximum range. As a consequence, “circular" is the most suitable
type of grasping for our system.

JACK is able to execute 15 out of 16 types of grasping configura-
tions using an automatic behavioral control mechanism (PaT-Nets -
Parallel Transition Networks) [8]. To implement grasping a contact
detection queue has to be maintained for the hand. Finger positions
are checked against the object to be grasped. For automatic behav-
ior, this information is enough to control fingers’ motion according
to the constraints implemented in PaT-Nets. In our system, force
feedback can be used to help control fingers’ motion during grasp-
ing. When the palm has the appropriate position and orientation,
force feedback guides the user’s fingers in a stable grasping con-
figuration according to the shape of the object. Unfortunately, in
the absence of wrist and elbow force feedback, palm position and
orientation cannot be controlled through this mechanism. There-
fore hand position relative to the object to be grasped can be quite
arbitrary, resulting in unsatisfactory results. Constraints have to be
imposed to simulate a realistic grasping task. Two types of con-
straints can be implemented: fingers’ positioning or the grasped
object automatic positioning. The former solution gives priority
to the graphic simulation realism and suspends user input over a
short period of time. Once a grasping configuration is encountered,
the hand real-time input is suppressed and automatic behavior acti-
vated, until the grasp action is completed and the object is attached
to the hand. The latter solution maintains the direct input from the
user’s hand at the expense of unrealistic virtual object grasping.
The position and orientation of the grasped object are set such as to
optimize the grasping configuration (see Fig. 3 [13]).

Real-time constraints force us to choose the second approach,
since automatic behavior used in the first solution is computation-
ally intensive, leading to unacceptable time delays in user input. A
contact detection queue is maintained during the simulation. The
virtual human right hand is checked for intersections with objects
in the simulated environment. If an intersection is found, the hand
and intersecting objects are highlighted (in red), the grasped object
is set in an optimal grasping position while information about ob-
ject stiffness is sent to RM–II. The RM–II system provides force
feedback to the user hand according to the specified object stiffness.
Once a grasping configuration is detected, the object is attached to
the hand until a release configuration is signaled. Gravity simula-
tion adds realism to the virtual environment, as objects fall on the

Figure 3: Grasping a hammer [13]

floor. A block diagram of the integrated system is shown in Fig. 4
[13].

JACK

Simulation Engine

RMII SYSTEM

CAPI Interface

RMII
Interface

Fastrak
Interface

Objects
Dynamics

Hand
Collision
Queue

Figure 4: Block diagram of the integrated system [13]

We tried the interface for grasping of simple objects (sphere,
cylinder) on a simple environments with 2460 shaded polygons.
When only hand position tracking was activated, the hand move-
ment was rendered at 10 fps on the SGI High Impact workstation.
When finger joints updates were added, hand movement was ren-
dered very slowly with considerable delays (1-2 sec) between user
action and simulation response. Simplifications of the interface
were needed in order to achieve a reasonable time response for
simulated actions. The interface was designed according to the
grasping task characteristics, and the configuration of the RM–
II hand master. During the “reaching" phase, the user’s fingers
move very little; therefore no finger motion is issued and the global
hand movement is rendered at the maximum speed. During the
“grasping" phase, the hand position changes little while the fingers
dynamics are important. Therefore finger movements are quantized
(not continuous at sensor update rate); the quantization threshold

used is 1/9 of the full dynamic range of RM–II Hand Master. A
joint adjustment command is issued only if the change between
two successive readings of the RM–II is larger than the specified
threshold. In addition, “circular power grasping" with the RM–II
was simulated with only one joint update per finger. The experi-
ments with the new interface show smaller delays and a satisfactory
graphics display of hand movements. Hand interface with JACK
was redesigned subsequently using a module loading technique.
No simplifications were necessary for the hand interface since the
main limitation of simulation speed is the graphic rendering engine
and inverse kinematics computation.

System Evaluation
The interface was tested on two graphics platforms: a High Impact

and an Infinite Reality SGI workstations. Previous experiments
with hand positioning using magnetic sensors (Ascension Flock of
Birds) implemented in [6], achieved a frame rate of about 8-10
frames per second with a shaded environment of 2000 polygons
on a SGI 310/VGX. The limitation was due to the computation
overload of the inverse kinematics routine. The same limitation
applies to our simulation. In addition to hand positioning, the
interface we implemented uses RM–II sensors readings to control
finger positions. After implementing the interface, the performance
of the Virtual Human with real-time hand input system was tested.
The test program consists of a virtual human grasping objects in
an environment with 5315 shaded polygons. The results of the
simulation tests are summarized in table 1.

Table 1:

C API C API Dynamic
linking

1 2 1 2 1 2

10 5 22 12 17 9.5
2 1 3.5 2.1 17 9.5

With the simplifications described in the previous section, an
average frame rate of 10 fps (one view) was achieved on High
Impact SGI. The same simulation runs at about 22 fps on the Infinite
Reality machine. When using the C API the sensor update rate is
very small (3.5 updates/sec), even though the simulation runs at a
reasonable frame rate. No simplifications were necessary for the
hand interface when implementing run-time module technique since
the main limitation of simulation speed is the graphic rendering
engine and inverse kinematics computation. That creates however
a little bit of overload, reducing the frame rate from 22 fps to 17 fps
for one window on SGI Infinite Reality machine. The sensor update
rate is about five times larger than in the previous case, allowing
real-time grasping. When loading interface module in JACK, real-
time motion tracking delays depend only on the frame rate, and are
not affected by the overhead of communication between interface
and JACK simulation. The force feedback loop is executed locally
on the RM–II SCI, and is independent of the frame rate.

APPLICATION: VIRTUAL HUMAN AGENT WITH REAL-
TIME INPUT

A large scale simulation involving real-time full-body motion
tracking and force feedback requires very powerful tools. The first
step towards such a complex simulation is to provide real-time
user input and force feedback for some body segments used in VR
simulations (like the hand). A hybrid simulation system which
combines real-time input with automatic behavior of the virtual
human can be implemented using JACK - the Virtual Human -
integrated with a hand haptic device (as described in the previous
section).

a)

b)

Figure 5: Simulation scene: a) virtual hand grasping
a hammer (between eyes view); b) JACK grasping a
hammer (bird’s eye view) [13]

Automatic behaviors like walking, bending, turning and arm
movement add realism to the simulated environment. Addition-
ally the haptic device allows the user to feel forces in the hand
while grasping and manipulating objects. We define the concept of
a Virtual Human Agent (VHA) as a simulation system embedding
a Virtual Human with real-time haptic input and with user control
over the simulated actions. Such an agent could be useful in dif-
ferent VR simulations like CAD prototyping, medical simulations,
user training etc.

We illustrate the concept of a VHA in a machine shop simulation
in which the user grasps objects and controls the movement of
the virtual agent to different places in the simulated environment.
The virtual environment contains tables, shelves, a chair and some
tools (hammer, saw, etc.). Some objects were provided by the
JACK software package, while others were created in Autocad [9]
and translated to “psurf" formated files. The virtual environment
contains 5315 polygons rendered with flat shading. Two camera
views were implemented: virtual human view and “bird’s eye"
view, as shown in Figure 5 [13].

The simulation starts with JACK walking toward a table. Once
he reaches the table, JACK “looks" down to his right hand. Next
the contact detection mechanism for his right hand is activated and
real-time input enabled. VHA is now ready to grasp objects from
the table. The user can grasp tools in real-time and feel forces in
the hand. The grasping mechanism was implemented as described
in the previous section. The user can control the virtual agent
using the following verbal commands: “go to table", “go to shelf",
“lower head", “raise head", “turn around". JACK can carry tools
between work benches, change the viewpoint and execute tasks
involving grasping. Automatic walking behavior is used to move

Figure 6: Simulation scene: JACK walking between
two workbenches [13]

between work sites. To execute the “walk" command, the actual
position of the virtual human is first detected and the path trajectory
is interpolated to predefined locations corresponding to work sites.
To have a smooth path, the difference in orientation between the

actual position and the end position is calculated. If this difference
is above a threshold the virtual human is rotated before the walk
command is issued, otherwise the motion becomes unstable and VH
looses its balance. Figure 6 shows JACK carrying a tool (“hammer")
between two workbenches [13].

Real time hand motion tracking is suspended during walking;
when figure motion is detected the real-time input flag is invalidated.
The force feedback mechanism is always on, allowing the user to
feel the grasped object during walking. To facilitate the interaction
between the user and the Virtual Human Agent, a speech input
interface was added to the simulation as shown in Figure 7 [13].

RM-II

go to table

P
CRS232

Ethernet

Microphone
array

SG
I w

orkstation

"Go to Table"

" "

Figure 7: Multimodal interface to “JACK" using the
RM–II and the Microsoft SDK [13]

The speech interface uses a Microsoft speech recognition engine
[10] running on a PC Pentium Pro. A microphone array provides
a better input (with spatial localization) for hands free communica-
tion with the simulated agent [12]. A small grammar was imple-
mented for the speech recognition engine: it includes commands
for walking, head movement and turning. For this small vocabu-
lary, the recognition rate of the Microsoft engine is high (95 %). A
socket connection transmits string commands between the PC and
the graphics workstation. The command interface program uses C
API functions to control the simulated human figure, as illustrated
in Figure 8 [13].

CONCLUSIONS
This paper outlined the design and functional evaluation of a

haptic interface for JACK . Design solutions were optimized
according to the characteristics of the simulated task and simula-
tion tool limitations. Evolving from this interface a Virtual Human
Agent with a multimodal interface was subsequently designed. The
concept of Virtual Human Agent (VHA) with an “active" hand can
be applied to several VR simulations involving hand dexterity: lug-
gage inspection, aircraft inspection, surgical operation, palpation
training. With the increasing 3D graphics capabilities of comput-
ing systems, this will substitute current simulations which render
only flying hands navigating in VE. The concept can be extended
to include real-time tracking and haptic feedback to other body
segments.

The haptic interface for JACK can be improved using more com-
plex stiffness models. RM–II design specifications include a proto-
col for transmitting stiffness model parameters (polynomial model,
exponential model, etc.). Stiffness parameters have to be added
therefore in the objects representation, allowing for a better qual-

YesFigure in
motion ?

Read Polhemus

Move Arm

Read RMII

Set joints

Hand
free ?

Begin loop

No

Yes No

Send stiffness
Start force

Set object
position

Attach object
to hand

collision
& grasp?

Yes

No

Detach object

Stop force

Final
position?

Update object
position

release ?

No

Yes

No

Yes

RMII Interface Loop

Yes

No

Execute
command

Get VHA
position

Parse
command

Valid
command?

Speech Interface Loop

LOAD V.E.

- get pointers to objects
- set collision detection queue
- execute motions

SIMULATION
 LOOPS

Figure 8: Simulation block diagram [13]

ity haptic rendering of virtual objects. Future developments of the
VHA will include more simulated tasks and an enhanced commu-
nication between user and the virtual agent. The virtual human will
be “instructed" to perform different types of automatic behavior
like bending, siting, crawling, using speech commands. Speech
synthesis will allow the VHA to “answer" the user in response to
his commands.

ACKNOWLEDGMENTS
Research reported here was supported by grants National Sci-

ence Foundation (grant BES-9708020), from Rutgers University
(SROA) and the CAIP Center with funds from the New Jersey
Commission on Science and Technology and the CAIP’s industrial
members.

REFERENCES

[1] Burdea G., 1996,
, John Wiley & Sons, New York.

[2] Burdea G. and Coiffet P., 1994, ,
John Wiley & Sons, New York.

[3] D. Gomez, G. Burdea, N. Langrana, 1995, “Integration of the
Rutgers Master II in a Virtual Reality Simulation”,

, Research Triangle Park, NC,
March, pp. 198–202.

[4] Transom, Inc., 1996, , Ann
Arbor, Michigan.

[5] Tolani D. and N. Badler, 1996, “Real-Time Inverse Kinematics
of the Human Arm", , Vol. 5, No. 4, pp. 393–401.

[6] N. Badler, M. Hollick, J. Granieri, 1993, “Real-Time Control of
a Virtual Human Using Minimal Sensors", , Vol. 2, No.
1, pp. 82–86.

[7] Cutkosky M. R. and Howe R. D., 1990, “Human grasp choice
and robotic grasp analysis", in , T. Iberall
& S. T. Venkataraman (Eds.), Spriger-Verlag, New York, pp. 5–31.

[8] B. Douville, L. Levison, N. Badler, 1996, “Task-Level Object
Grasping for Simulated Agents", , Vol. 5, No. 4, pp.
416–430.

[9] Autodesk Inc., 1994, , Sausalito,
CA.

[10] Whisper Speech Recognizer by Microsoft Corp.,
http://research.microsoft.com/ msrinfo/demodwnf.htm

[11] Polhemus, 1993, , Colchester, VT.

[12] Q. Lin, C. Che, E. Jan and J. Flanagan, 1994, “Speaker /
Speech Recognition Using Microphone Arrays and Neural Net-
works." Proc. SPIE, Vol. 2277, San Diego, CA, pp.121–132.

[13] Popescu V. G. and Burdea G., 1998,
, CAIP Report CAIP-TR-223,

Rutgers University, Piscatawy, NJ, April, pp. 1–33.

