
�

�

�

�

�

�

�

�

Haptic Rendering



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

Haptic Rendering
Foundations, Algorithms, and

Applications

edited by
Ming C. Lin

Miguel A. Otaduy

A K Peters, Ltd.
Wellesley, Massachusetts



�

�

�

�

�

�

�

�

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.
888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright c© 2008 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Haptic rendering : foundations, algorithms, and applications / edited by Ming
Lin, Miguel Otaduy

p. cm.
Includes bibliographical references and index.
ISBN 13: 978-1-56881-332-5 (alk. paper) 1. Human-computer interaction. 2.

Touch. 3. Computer algorithms. I. Lin, Ming C. II. Otaduy, Miguel A.
QA76.9.H85H378 2008
004.01’9–dc22

2008013104

Printed in the United States of America
12 11 10 09 08 10 9 8 7 6 5 4 3 2 1



�

�

�

�

�

�

�

�

[DEDICATION].



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

Contents

Preface xiii

Introduction 1

I Fundamentals and Devices 5

1 Perceiving Object Properties through a Rigid Link 7
1.1 Surface Roughness: Direct vs. Indirect Exploration . . . . 8
1.2 Effects of a Rigid Link on Other Object Properties . . . . 12
1.3 Object Identification: Direct vs. Indirect Exploration . . . 13
1.4 Intersensory Influences via Indirect Touch . . . . . . . . . 14
1.5 Rendered Textures . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Implications for Virtual Objects . . . . . . . . . . . . . . . 18

2 Multi-Sensory Interactions 21
2.1 Introduction to Crossmodal Congruency . . . . . . . . . . 21
2.2 The Crossmodal Congruency Task . . . . . . . . . . . . . 22
2.3 Using the Crossmodal Congruency Task . . . . . . . . . . 35
2.4 Using the Crossmodal Congruency Task . . . . . . . . . . 47
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Design Issues in Haptic Devices 53
3.1 Towards Full-Body Virtual Touch . . . . . . . . . . . . . . 53
3.2 Sensory Modes and Interface Devices . . . . . . . . . . . . 54
3.3 Locomotion Interfaces . . . . . . . . . . . . . . . . . . . . 55
3.4 Desktop Displays . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Flexible Surface Displays . . . . . . . . . . . . . . . . . . 63
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



�

�

�

�

�

�

�

�

viii Contents

4 Rendering for Multifinger Haptic Devices 67
4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Multifinger Haptic Perception . . . . . . . . . . . . . . . . 68
4.3 Design of a Multifinger Haptic Device . . . . . . . . . . . 71
4.4 Multifinger Rendering Method . . . . . . . . . . . . . . . 75
4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Locomotion Interfaces and Rendering 83
5.1 Locomotion Interface Designs . . . . . . . . . . . . . . . . 83
5.2 Locomotion Rendering . . . . . . . . . . . . . . . . . . . . 87
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Variable Friction Haptic Displays 93
6.1 Human Perception of Friction . . . . . . . . . . . . . . . . 93
6.2 Friction Reduction Theory . . . . . . . . . . . . . . . . . . 96
6.3 Variable Friction Devices . . . . . . . . . . . . . . . . . . 104
6.4 Friction Reduction Measurements . . . . . . . . . . . . . . 111
6.5 Friction Patterns to Mimic Textures . . . . . . . . . . . . 115
6.6 Multidimensional Scaling . . . . . . . . . . . . . . . . . . 117
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Stability of Haptic Displays 123
7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Designing for Passivity . . . . . . . . . . . . . . . . . . . . 124
7.3 Passive Rendering of a Virtual Wall . . . . . . . . . . . . 125
7.4 Extensions to the Passivity Framework . . . . . . . . . . . 130
7.5 Control Methods . . . . . . . . . . . . . . . . . . . . . . . 136
7.6 Extending Z-Width . . . . . . . . . . . . . . . . . . . . . . 143
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

II Rendering Techniques 157

8 Introduction to Haptic Rendering Algorithms 159
8.1 Definition of the Rendering Problem . . . . . . . . . . . . 159
8.2 Components of a Rendering Algorithm . . . . . . . . . . . 163
8.3 Direct Rendering vs. Virtual Coupling . . . . . . . . . . . 165
8.4 Modeling the Tool and the Environment . . . . . . . . . . 168
8.5 Multirate Algorithm . . . . . . . . . . . . . . . . . . . . . 176



�

�

�

�

�

�

�

�

Contents ix

9 Overview on Collision and Proximity Queries 181
9.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . 182
9.2 Convex Polytopes . . . . . . . . . . . . . . . . . . . . . . . 183
9.3 General Polygonal Models . . . . . . . . . . . . . . . . . . 186
9.4 Penetration Depth Computation . . . . . . . . . . . . . . 190
9.5 Volumetric Representations . . . . . . . . . . . . . . . . . 193
9.6 Spline and Algebraic Objects . . . . . . . . . . . . . . . . 194
9.7 Deformable Models . . . . . . . . . . . . . . . . . . . . . . 196
9.8 Dynamic Queries . . . . . . . . . . . . . . . . . . . . . . . 197
9.9 Multiresolution Techniques . . . . . . . . . . . . . . . . . 198
9.10 Large Environments . . . . . . . . . . . . . . . . . . . . . 199
9.11 Proximity Query Packages . . . . . . . . . . . . . . . . . . 201

10 Collision Detection for Three-DOF Rendering 205
10.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.2 A Fast Proximity Query Algorithm for 3-DOF Haptic In-

teraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . 212
10.4 System Performance . . . . . . . . . . . . . . . . . . . . . 213
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 217

11 Voxel-Based Collision Detection for Six-DOF Rendering 219
11.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 219
11.2 Voxel Data Structures . . . . . . . . . . . . . . . . . . . . 222
11.3 Geometrical Awareness . . . . . . . . . . . . . . . . . . . . 228
11.4 Temporal Coherence . . . . . . . . . . . . . . . . . . . . . 231
11.5 Rendering with Virtual Coupling . . . . . . . . . . . . . . 236
11.6 Applications and Experiments . . . . . . . . . . . . . . . . 239
11.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

12 Continuous Collision Detection 253
12.1 Why Continuous Collision Detection? . . . . . . . . . . . 253
12.2 Arbitrary In-Between Motions . . . . . . . . . . . . . . . . 255
12.3 Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . 262
12.4 Elementary Continuous Collision Detection . . . . . . . . 264
12.5 Continuous Overlap Tests for Bounding Volumes . . . . . 268
12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 273

13 Contact Levels of Detail 277
13.1 Psychophysical Foundations . . . . . . . . . . . . . . . . . 278
13.2 Approaches to Multiresolution Collision Detection . . . . 280
13.3 Data Structure of CLODs . . . . . . . . . . . . . . . . . . 281



�

�

�

�

�

�

�

�

x Contents

13.4 Sensation-Preserving Simplification . . . . . . . . . . . . . 283
13.5 Multiresolution Contact Queries . . . . . . . . . . . . . . 285
13.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

14 Physically Based Haptic Synthesis 297
14.1 Haptic Synthesis as a Means for Passivity . . . . . . . . . 298
14.2 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
14.3 Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.4 Elastic Deformation . . . . . . . . . . . . . . . . . . . . . 304
14.5 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.6 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
14.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 309

15 Three-Degree-of-Freedom Rendering 311
15.1 Human-Machine Coupling . . . . . . . . . . . . . . . . . . 311
15.2 Single-Point Rendering of 3D Rigid Objects . . . . . . . . 315
15.3 Surface Details: Smoothing, Friction, and Texture . . . . 327
15.4 Summary and Future . . . . . . . . . . . . . . . . . . . . . 331

16 Six-Degree-of-Freedom Rendering of Rigid Environments 333
16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.2 Six-Degree-of-Freedom God-Object Simulation . . . . . . 336
16.3 Constraint-Based Force Computation . . . . . . . . . . . . 338
16.4 Haptic Surface Properties . . . . . . . . . . . . . . . . . . 341
16.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . 346
16.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

17 Rendering of Spline Models 355
17.1 The Spline Representation . . . . . . . . . . . . . . . . . . 355
17.2 Distance and Orthogonal Projection . . . . . . . . . . . . 356
17.3 Local Minima in Distance versus the Virtual Proxy . . . . 358
17.4 3-DOF Haptic Rendering of Spline Models . . . . . . . . . 359
17.5 Direct Parametric Tracing . . . . . . . . . . . . . . . . . . 359
17.6 Stability of Numerical Closest Point Methods . . . . . . . 365
17.7 6-DOF Haptic Rendering of Spline Models . . . . . . . . . 367
17.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 369

18 Rendering of Textured Objects 371
18.1 Perceptual Motivations . . . . . . . . . . . . . . . . . . . . 372
18.2 Three-DOF Haptic Texture Rendering . . . . . . . . . . . 373
18.3 Texture Force Model . . . . . . . . . . . . . . . . . . . . . 375
18.4 Penetration Depth between Textured Models . . . . . . . 377



�

�

�

�

�

�

�

�

Contents xi

18.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 383
18.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

19 Modeling Deformation of Linear Elastostatic Objects 395
19.1 Motivations for Linear Elastostatic Models . . . . . . . . . 395
19.2 Linear Elastostatic Boundary Model Preliminaries . . . . 398
19.3 Fast Global Deformation Using Capacitance Matrix Algo-

rithms (CMAs) . . . . . . . . . . . . . . . . . . . . . . . . 403
19.4 Capacitance Matrices as Local Buffer Models . . . . . . . 408
19.5 Surface Stiffness Models for Point-Like Contact . . . . . . 410
19.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

20 Rendering of Frictional Contact with Deformable Environments 421
20.1 Contact and Friction Models . . . . . . . . . . . . . . . . 422
20.2 Non-Smooth Dynamics for Deformable Objects . . . . . . 424
20.3 Integration Schemes . . . . . . . . . . . . . . . . . . . . . 425
20.4 Building Contact Space . . . . . . . . . . . . . . . . . . . 427
20.5 Solving Strategy . . . . . . . . . . . . . . . . . . . . . . . 429
20.6 Haptic Rendering . . . . . . . . . . . . . . . . . . . . . . . 433
20.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
20.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 440

21 Measurement-Based Modeling for Haptic Rendering 443
21.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . 444
21.2 Developing and Rendering a Measurement-Based Model . 446
21.3 Example Application: Tapping on Rigid Surfaces . . . . . 449
21.4 Example Application: Cutting Deformable Surfaces . . . . 457
21.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

III Applications 469

22 Virtual Prototyping 471
22.1 Brief State of the Art . . . . . . . . . . . . . . . . . . . . 471
22.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
22.3 The Stringed Haptic Workbench . . . . . . . . . . . . . . 477
22.4 The Mixed-Prop . . . . . . . . . . . . . . . . . . . . . . . 478
22.5 Putty Application—An Automotive Virtual Prototyping

Application . . . . . . . . . . . . . . . . . . . . . . . . . . 480
22.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 482



�

�

�

�

�

�

�

�

xii Contents

23 Haptics for Scientific Visualization 485
23.1 Lessons from Haptic-Enabled Visualization Applications . 485
23.2 Useful Techniques for Haptic Display in Scientific Visual-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
23.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

24 Haptics in Medical Applications 501
24.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
24.2 Visuo-Haptic Segmentation of Radiological Data . . . . . 507
24.3 Immersive Virtual-Reality-Based Hysteroscopy Training . 509
24.4 Multimodal Augmented Reality for Open Surgery Training 512

25 The Role of Haptics in Physical Rehabilitation 517
25.1 Robotic Systems for Physical Rehabilitation . . . . . . . . 518
25.2 Specifics of Haptic Feedback for the Disabled . . . . . . . 522
25.3 Safety Issues in Haptics for Rehabilitation . . . . . . . . . 526
25.4 Looking at the Future . . . . . . . . . . . . . . . . . . . . 528

26 Modeling and Creative Processes 531
26.1 Case Studies of Existing Systems . . . . . . . . . . . . . . 533
26.2 Haptic-Enhanced Painting with 3D Deformable Brushes . 534
26.3 Haptic Modeling and 3D Painting . . . . . . . . . . . . . . 541
26.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
26.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 548

Bibliography 549

Index 631



�

�

�

�

�

�

�

�

Preface

To date, most human-computer interactive systems have focused primarily
on the graphical rendering of visual information and, to a lesser extent,
on the presentation of auditory information. Among all senses, the human
haptic system provides an unique and bidirectional communication chan-
nel between humans and their physical environment. Extending the fron-
tier of visual computing, haptic interfaces that exploit our sense of touch
have the potential to increase the quality of human-computer interaction
through tactile and force feedback. They provide attractive augmentation
to visual and auditory display and enhance the level of understanding of
complex data sets. They have been effectively used for a number of applica-
tions including molecular docking, manipulation of nano-materials, surgical
training, virtual prototyping, digital sculpting, and many other interactive
applications.

Compared with graphics and audio, haptic rendering has extremely de-
manding computational requirements. In order to maintain a stable system
while displaying smooth and realistic forces and torques, haptic update
rates of 1 KHz or more are typically used. Haptics presents many new
challenges to researchers and developers in computer graphics, robotics,
psychophysics, and engineering. Some of the critical issues include the
development of novel data structures to encode shape and material prop-
erties, as well as new techniques for data processing, information analysis,
physical modeling, and haptic visualization.

This book provides an introduction to various disciplines within hap-
tics, surveys some of the latest developments on haptic rendering, and
examines several promising applications, while looking forward to excit-
ing future research in this area. The topics covered include novel haptic
rendering algorithms and innovative applications that take advantage of
haptic interaction and multiple sensory modalities. Specifically, this book
describes different rendering techniques for various geometric representa-
tions (e.g., point-based, volumetric, polygonal, multiresolution, NURBS,
distance fields, etc.) and physical properties (rigid bodies, deformable mod-
els, fluid medium, etc), as well as textured surfaces and multi-body inter-
action. Some chapters also show how psychophysics of touch can provide

xiii



�

�

�

�

�

�

�

�

xiv Preface

the foundational design guidelines for developing perceptually driven force
models and discuss issues to consider in validating new rendering techniques
and evaluating haptic interfaces. In addition, this book also discusses dif-
ferent approaches for designing touch-enabled interfaces for various appli-
cations, ranging from medical training, model design and maintainability
analysis for virtual prototyping, scientific visualization, 3D painting and
mesh editing, data acquisition for multi-modal display, to physical therapy.

The book is composed of contributed chapters from several leading au-
thorities in various sub-areas of haptic rendering, including psychophysics,
devices and mechanics, control and stability analysis, rendering algorithms,
modeling and simulation, and application development. We would like to
thank all the invited chapter authors who contributed to this book. We
are grateful to Alice Peters who worked with us in getting this book in
printed form, Whitney Vaughan and the staff at A K Peters who assisted
us painstakingly in copy editing various versions of this book. Finally our
sincere gratitude goes to Arantza Otaduy, who spent numerous hours de-
signing the attractive and imaginative cover art for this book.

Finally, we are especially thankful to Dinesh Manocha, Markus Gross,
and the University of North Carolina at Chapel Hill GAMMA Research
Group for their support and insightful discussion over the years. The ini-
tial scientific investigations and findings that led to the publication of this
edited book were supported in part by the National Science Foundation,
the U.S. Army Research Office, RDECOM, Defense Advanced Research
Project Agencies, Naval Research Office, and Intel Corporation.

The recent advances presented in this book indicate promising poten-
tials that haptic interfaces, together with interactive 3D graphics, can offer
a more powerful and more natural way of interacting with virtual environ-
ments and complex datasets in diverse domains.

Ming C. Lin and Miguel A. Otaduy



�

�

�

�

�

�

�

�

Introduction

The sense organs (eyes, ears, skin, nose, and tongue) take in information,
which is then sent to the brain for processing. They are the physical means
by which all living beings communicate with the world around them. The
ability to touch enables manipulation and active exploration that the other
senses cannot. In a similar manner to how humans interact with the real
world, visual, auditory, haptic, olfactory, and gustatory display can provide
the natural and intuitive means of interaction between humans and the
virtual environment created by a computer system.

However, most of existing human-computer interactive systems have
focused primarily on the graphical rendering of visual information, and,
to a lesser extent, on the display of auditory information. Extending the
frontier of visual computing and auditory display as the two dominant forms
of man-system interfaces, haptic rendering has the potential to further
increase the quality of human-computer interaction by exploiting the sense
of touch and enabling active exploration of the virtual world.

Haptic display has already provided an attractive augmentation to vi-
sual display, enhancing the level of understanding of complex data sets.
Haptics has also been effectively used for a number of applications, in-
cluding molecular docking, manipulation of nano-materials, surgical train-
ing, virtual prototyping, and digital sculpting. The field has experienced
a significant expansion during the last decade. Since the publication of
earlier review papers [Salisbury and Srinivasan 97, Srinivasan and Bas-
dogan 97], new rendering techniques and several new applications have
emerged (see the more recent reviews in [Basdogan and Srinivasan 02,Sal-
isbury et al. 04,Laycock and Day 07]).

This book provides an introductory view of recent work in the field,
with the focus on algorithmic perspectives that are important to researchers
and developers of haptic rendering algorithms and software systems, par-
ticularly those in computer graphics, virtual environments, robotics, and
CAD/CAM. It will first present some of the fundamental concepts in the
psychophysics of touch and discuss issues in device and interface design. It
will then describe a collection of state-of-the-art rendering algorithms and
finally survey some novel applications of haptic technology.

1



�

�

�

�

�

�

�

�

2 Introduction

Terminology and Definitions
The word haptic, possibly derived from the Greek word, “haptesthai,”
means “related to the sense of touch.” The sense of touch can be divided
into cutaneous, kinesthetic, and haptic systems, based on the underlying
neural inputs [Klatzky and Lederman 03]. The cutaneous system employs
receptors embedded in the skin, while the kinesthetic system employs re-
ceptors located in muscles, tendons, and joints. The haptic sensory system
employs both cutaneous and kinesthetic receptors, but it differs in that it
is associated with an active procedure controlled by body motion.

Among all senses, the human haptic system is the only key sensory
channel that provides the unique, bidirectional communication between
humans and their physical surroundings. As graphical rendering is the
process of generating an image in computer graphics, haptic rendering refers
to the process of computing and displaying contact forces, vibration, or
other tactile representations of virtual objects in a computer-simulated
environment.

Some of the earlier haptic rendering algorithms mainly consider the
approach of touching virtual objects with a single contact point. Such
rendering algorithms are typically referred to as three-degree-of-freedom (3-
DOF) haptic rendering algorithms, since a point in 3D has only three DoFs.
More recent haptic rendering algorithms start to address the challenging
problem of rendering the forces and torques arising from the interaction of
two 3D objects, often encountered in our daily routines. This problem is
typically called 6-DOF haptic rendering, as the haptic feedback comprises
3D force and torque and is displayed through to the haptic device that also
has six DOFs (position and orientation in 3D).

Design Principles and System Components
As compared with visual and auditory display, haptic rendering has ex-
tremely demanding computational requirements. In order to create and
maintain a stable haptic rendering system that displays realistic force and
torque feedback to the users, haptic update rates of hundreds or thou-
sands of hertz (Hz) are often required. Real-time haptic rendering presents
many new challenges to researchers and developers in computer graph-
ics and interactive techniques, robotics, virtual environments, CAD/CAM,
and experimental psychology.

The quality of haptic experience depends heavily on the interplay be-
tween the human perception system and the intrinsic quality of the haptic
interfaces (e.g., force resolution, dynamic range, etc.). Fundamental under-
standing derived from the psychophysics of touch can provide illuminating



�

�

�

�

�

�

�

�

Introduction 3

design guidelines, as well as improved force feedback hardware and soft-
ware systems. Insights in how a brain processes sensory information and
integrates various sensory cues is critical in designing truly multi-modal
interfaces.

Design of haptic devices presents some of the most challenging research
issues for the development of haptic technology. Various configurations
have been proposed, including programmable keyboard, augmented mice,
trackball, joysticks, horizontal 2D planar workspace, desktop scale, point
and probe-based interaction, exoskeletons, arrays of vibro-tactors, gloves,
magnetic levitation, passive devices, hybrid kinematics, isometric device,
etc. [Burdea 96].

In haptic rendering, the human user is part of the dynamic system, along
with the haptic device and the computer simulated virtual environment.
The complete human-in-the-loop system can be regarded as a sampled-
data system [Colgate and Schenkel 97] with a continuous component (the
user and the device) and a discrete one (the implementation of the virtual
environment and the device controller). Stability becomes a crucial issue,
because instabilities in the system can produce either oscillations that dis-
tort the perception of the virtual environment or uncontrolled motion of
the device that can even injure the user.

In the software system development, some of the critical computational
issues may include the design of novel data structures to encode shape
and material properties, new proximity query techniques for fast geometric
query and contact determination, physically-based modeling and dynamic
simulation for computing contact forces, novel methods for information
analysis and presentation, and haptic visualization.

In addition, new insights are needed to design touch-enabled inter-
faces for various applications ranging from medical training, rehabilitation,
model design and maintainability analysis, teleoperation, education and
entertainment, scientific discovery, engineering design, manufacturing, art
and creative processes, and data/information visualization.

Chapter Outlines
This book is divided into three main parts: fundamentals and device design,
rendering algorithms, and applications. The chapters are contributed by a
team of top researchers and developers from around the globe in academia,
research labs, and industry to cover topics on the fundamentals, algorithms,
and novel applications of haptic rendering.

In Part I, the book starts by presenting key results observed from ex-
perimental studies in perception of the object properties through a rigid
link, as the probe-based handles are among the most commonly used phys-



�

�

�

�

�

�

�

�

4 Introduction

ical interfaces to existing commercial haptic devices. The next chapter
reviews key findings on multi-sensory integration using crossmodal con-
gruency tasks over the last decade. This understanding of how the brain
derives common representations of external space across different sensory
modalities can enable researchers to design better human-computer inter-
faces. The following chapters then present an authoritative overview of
device designs and rendering using various forms of realization, including
multifinger, locomotion interfaces, variable friction devices, and stability
and performance analysis of haptic display.

Part II begins with an introduction to various algorithmic components
of haptic rendering, including collision detecton and contact force compu-
tations. The next few chapters present a series of surveys on proximity
queries and advanced methods (including voxel-based sampling, continu-
ous collision detection, sensation-preserving simplification, and queries on
spline models) for fast collision detection to achieve haptic update rates. It
then describes various rendering methods for three-degree-of-freedom (3-
DOF) and six-degree-of-freedom (6-DOF) display; modeling of deformable
objects; and rendering of textures, friction and other physical effects; as
well as measurement-based rendering techniques.

Finally, Part III discusses interface design issues and novel applications
of haptics. The case studies include rapid prototyping of complex mechani-
cal structures, scientific visualization of various forms of data, and physical
rehabilitation and other medical applications, as well as digital tools for
artistic expression (such as painting and modeling).

Computational haptics, although still in its early stages, already offers
much promise of significantly improving and enriching human-computer
interaction by engaging one of our most basic sensory channels—the sense
of touch.



�

�

�

�

�

�

�

�

Part I
Fundamentals and Devices



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

1
Perceiving Object Properties

through a Rigid Link
R. Klatzky and S. Lederman

When people interact with objects in the world using their sense of touch,
contact is often made with a tool. We use a key to open a door, a pencil to
write on paper, or a spoon to stir a pot. As David Katz [Katz 25] observed,
under these circumstances our phenomenology—our immediate experience
of the world—concerns the touched surface, not the tool, which in some
sense is transparent to the act of touching. The issues addressed in this
chapter begin with this observation:

• How well are the object properties sensed through a rigid linkage
between the skin and the surface?

• Can the outcomes and the perceptual mechanisms that mediate them
be altered by such indirect or remote exploration?

This chapter focuses primarily on surface texture, one of the principal
properties of an object that is perceived through touch. As a salient cue
to object identity [Lederman and Klatzky 90], the texture of an object is
valuable for haptic perception; however, it is also important for manipu-
lation, through its influence on how people plan and control grasping [Jo-
hansson and Westling 90]. Surface texture, specifically the dimension of
roughness, is well preserved through exploration with a tool. The chap-
ter further considers the accessibility of other object attributes explored
without direct skin-to-object contact. It evaluates people’s capabilities for
recognizing objects through touch under these circumstances and discusses
the role of auditory cues from contact. Finally, the implications of the
reviewed research for haptic rendering of objects and their properties are
discussed.

7



�

�

�

�

�

�

�

�

8 1. Perceiving Object Properties through a Rigid Link

1.1 Surface Roughness: Direct vs. Indirect
Exploration

Over decades of research, behavioral science and neuroscience have refined
our understanding of how roughness is perceived through the bare skin.
Seminal empirical work was performed by Lederman and Taylor [Taylor
and Lederman 75] and by Johnson and colleagues [Johnson and Hsiao 94].
Among the important behavioral findings is that surface roughness is pri-
marily determined by the inner spacing between the elements that con-
stitute the texture. Perceived roughness magnitude increases monotoni-
cally with increasing spacing until it reaches approximately 3.5 mm, al-
though increasing trends beyond that range have also been reported [Mef-
tah et al. 00]. The width of the ridges that constitute the surface has a
smaller perceptual effect. The magnitude of roughness is also affected by
the force of exploration, although it changes remarkably little with speed
and is essentially independent of whether exploration is under active control
or is induced passively. On the basis of these findings, Lederman and Tay-
lor [Lederman and Taylor 72,Taylor and Lederman 75,Lederman 74,Leder-
man 83] developed a mechanical model of roughness perception, which re-
lated perceived roughness to the total area of skin that was instantaneously
indented from a resting position while in contact with a surface. Changes
in perceived roughness resulting from manipulations of surface-texture and
exploratory variables were shown to be mediated by their impact on skin
deformation.

Two important issues were raised by this early empirical and theo-
retical work. The first concerns were whether there are temporal contri-
butions to roughness perception. Closely related to the first topic, the
second issue has to do with the underlying neurophysiological transduc-
tion. With regard to the role of temporal cues, early empirical work with
textures spaced at ∼> 1 mm found little evidence for vibratory coding.
As was mentioned above, speed of exploration, which would affect the vi-
bratory input to the skin, was shown to have little effect on perceived
roughness relative to the effects of interelement spacing [Lederman 74,Le-
derman 83, Meftah et al. 00]. When the vibration-sensitive mechanore-
ceptors in the finger were adapted by pre-exposure to a pulse train, once
again there was little effect on the roughness-magnitude judgments [Led-
erman et al. 82]. While the underlying spatial coding of textures scaled
at > 1 mm interelement spacing is largely uncontested (but see [Cascio
and Sathian 01, Gamzu and Ahissar 01] for some evidence of a temporal
contribution), there has been greater controversy concerning the role of
vibratory coding of very fine textures with the bare skin. Recent work by
Bensmäıa, Hollins and colleagues [Bensmäıa and Hollins 03,Bensmäıa and



�

�

�

�

�

�

�

�

1.1. Surface Roughness: Direct vs. Indirect Exploration 9

Hollins 05,Bensmäıa et al. 05,Hollins et al. 98] supports a duplex model
of roughness perception, in which there is a transition from spatial coding
to vibratory coding once surfaces transition from relatively coarse to the
level of “micro-textures” (i.e., with spatial periods <∼ 200µ). Evidence
for this channel is provided by the finding that preventing the transmission
of vibration impairs perception of fine texture [Hollins and Risner 00], as
does vibrotactile adaptation [Hollins et al. 01,Bensmäıa and Hollins 03].

Corresponding to this distinction between spatial and vibratory bases
for texture perception is a distinction between the operative mechanore-
ceptor populations. Johnson and associates have modeled the roughness
percept as being based on instantaneous spatial variation in a pressure map
on the skin, transduced by slowly adapting mechanoreceptors or SAI units
(for a review, see e.g., [Johnson and Hsiao 94]) and transmitted to higher
cortical sites for integration. The claim is made that this model can ac-
count even for fine textures with groove widths as small as 100µ [Yoshioka
et al. 01]. However, another type of mechanoreceptor, the Pacinian cor-
puscle, has been very strongly implicated in mediating roughness
at a fine scale. Bensmäıa and Hollins [Bensmäıa and Hollins 05] found
that texture discrimination performance and roughness magnitude
ratings were well accounted for by a model based on the intensity
of the vibrations produced in the skin during scanning. Furthermore,
the data suggest that the peripheral neural code for perceived rough-
ness is the total activity evoked in FA II mechanoreceptors, or Pacinian
corpuscles.

Let us now consider what happens when surfaces are felt indirectly
through a rigid link between the surface and the skin. A series of studies
on this topic has been performed by Klatzky, Lederman, and their col-
laborators. A principal motivation for this work was the development of
force-feedback devices that attempt to mimic contact with surfaces, but
that deliver resultant forces to a handle, thimble, or stylus, rather than
a distributed array of forces to the skin. This type of interaction can be
modeled by having a person explore a surface while either holding a rigid
probe or when the exploring finger is covered by a rigid sheath. Because
the explorer’s skin is deformed by the rigid interface—the probe or sheath,
not the surface under exploration—the immediate pressure array on the
skin is uninformative as to the distal object. However, vibratory cues re-
main available and have been shown to mediate a sense of distal surface
roughness.

In psychophysical studies of roughness perception through such link-
ages, Klatzky, Lederman, and colleagues [Klatzky and Lederman 99,Klatzky
et al. 03,Lederman et al. 00] asked subjects to assign numerical magnitude
estimates to the perceived roughness of raised-dot textures. As observed
when people explore with the bare finger, perceived roughness via a probe



�

�

�

�

�

�

�

�

10 1. Perceiving Object Properties through a Rigid Link

varied systematically with the spacing between the raised elements. How-
ever, the functions resulting from exploration with a probe were substan-
tially different from those obtained with the bare or sheath-covered fin-
ger. Whereas exploration with the latter rigid links produced a monotonic
relation between roughness magnitude and interelement spacing over the
range of surfaces tested (interelement spacing up to 3.5 mm), exploration
with a probe produced a function with a clear quadratic trend. Moreover,
the location of the peak of that function increased with the size of the
probe tip.

Based on these data, Klatzky et al. [Klatzky et al. 03] developed a
model based on the static geometry of the probe in relation to the sur-
face. A critical construct of the model was a parameter called the drop
point—the minimal interelement spacing that was large enough to accom-
modate the probe tip. The authors proposed that at spacing values smaller
than the drop point, the probe tip rode along the surface, being buf-
feted by the raised elements (more so, as the spacing increased), which
resulted in a percept of greater roughness. This accounted for the ris-
ing portion of the quadratic function. In contrast, further increases in
spacing beyond the drop point would allow the probe to ride more and
more reliably along the underlying substrate, producing decreases in per-
ceived roughness. This accounted for the falling portion of the quadratic
function.

The model also offered an account of an additional finding from the
probe studies that pertains to the speed of exploration, as controlled by
an experimental apparatus [Lederman et al. 99,Klatzky et al. 03]. Specif-
ically, the peak of the magnitude-estimation function tended to occur at
a higher level of interelement spacing as speed increased. To explain this
trend, Klatzky et al. [Klatzky et al. 03] assumed that when a surface is
explored with a probe, its perceived roughness is directly correlated with
perceived vibratory magnitude. Perceived vibration, in turn, depends on
the objective amplitude and frequency of vibration on the skin, which are
affected by speed. The model could accommodate the observed patterns
with which speed affected the peak value of perceived roughness, by con-
sidering the patterns of these speed/vibration dependencies. Specifically,
for some levels of displacement, perceived vibration shows an inverted-
U-shaped relation to objective frequency [Verillo et al. 69], as well as a
monotonic increase in magnitude with increases in the objective vibratory
amplitude [Franzén 66, Lederman et al. 82, Stevens 57, Sherrick 60,Verillo
et al. 69].

[Lawrence et al. 07] have continued in recent work to study tactile tex-
ture perception via a rigid interface, this time using unidimensional rectan-
gular gratings, rather than two-dimensional raised-dot surfaces. Rectangu-
lar gratings were used in early work by Lederman and Taylor, as described



�

�

�

�

�

�

�

�

1.1. Surface Roughness: Direct vs. Indirect Exploration 11

above. However, the work by Lawrence et al. encompassed a wider range
of interelement spacings than used previously; moreover, it further com-
pared roughness perceived indirectly through a probe to that perceived
directly through the bare skin. At the outset, it is clear that interactions
between a stylus-shaped probe will differ between the rectangular grat-
ings used by Lawrence et al. and the raised-dot surfaces used by Klatzky,
Lederman, et al., in experiments discussed above. Raised dots allow the
probe to drop between the elements that form the texture, once interele-
ment spacing becomes sufficiently wide. The unidimensional grating, in
contrast, makes it inevitable that whatever the spacing value (or “groove
width,” as it is called), when a probe is stroked orthogonal to the grating,
it must strike raised elements. Moreover, given a roughly constant speed
of exploration, the strike point of the probe on a raised grating element
will occur at approximately regular intervals, producing a fundamental fre-
quency. While the frequency will change with interelement spacing, with
the gratings there is no counterpart to the drop point that can be geo-
metrically determined with raised-dot elements, that is, the point permit-
ting the probe to ride along the substrate with fewer and more irregular
perturbations.

Not surprisingly, therefore, Lawrence et al. did not find a quadratic
trend in the function relating judged roughness magnitude to groove width.
Instead, when the surfaces were explored with a probe having a spherical
tip with a diameter of 3.0 mm, the psychophysical roughness function rose
essentially linearly as groove width increased up to approximately 3.3 mm,
after which point it flattened. The function obtained for subjects exploring
with the bare finger was similar, although it leveled off at about 5.3 mm.
[Meftah et al. 00] similarly found that when subjects explored gratings with
the bare finger, perceived roughness magnitude tended to increase, then
flatten somewhat over the larger groove widths; however, their function
linearly increased over a wider range, possibly because the grooves were
deep (i.e., the finger could not bottom out) and because the surfaces were
somewhat compliant.

The difference between the point at which perceived roughness peaks
when using a probe versus the bare finger is consistent with the idea that
the interelement spacing where perceived roughness reaches a maximum is
related to the width of the exploring end-effector. The finger, being wider
than 3 mm (estimated at 9 mm contact by [Klatzky and Lederman 99],
produces roughness functions (i.e., roughness magnitude relative to in-
terelement spacing) that peak later than functions obtained with probes.
Lawrence et al., suggested that beyond the spacing where the function
flattens with grating stimuli, people simply do not discriminate among the
different impact frequencies caused by different groove widths; rather, they
are all perceived equivalently as low-frequency.



�

�

�

�

�

�

�

�

12 1. Perceiving Object Properties through a Rigid Link

1.2 Effects of a Rigid Link on Other Object
Properties

Surface roughness is only one of a number of object properties. Let us now
examine how indirect touch affects the perception of objects and a per-
son’s ability to identify them. A starting point for this work is a general
psychophysical investigation by [Lederman et al. 99], which asked how per-
ceptual discrimination of a wide set of object properties was altered when
the bare finger was covered with a rigid sheath. The sheath eliminated
the array sensing provided by the SA I and SA II mechanoreceptors, but
allowed vibrations to be transmitted to the deeper mechanoreceptors in
the skin, the FA II units, or Pacinian corpuscles. From a broad battery of
tests comparing performance with the bare and sheath-covered finger, the
results were clear:

1. The ability to sense vibrations remained essentially intact when the
sheath was worn.

2. The ability to process roughness, presumably from vibration, declined
somewhat. Performance with roughness discriminations declined only
slightly (4%) when the surfaces were quite distinct, and hence easily
differentiated, but more so (18%) when they were similar. Magnitude
estimates for roughness when the sheath was worn were less sensitive
to stimulus variations by about 30%, relative to the bare finger.

3. When we turn from vibration-mediated properties to perception and
discrimination of overall force, the sheath had a considerably greater
negative impact on performance—force thresholds declined by 74%.
Finally,

4. when pattern perception was required, there was a very substantial
decrement: the two-point threshold declined by over 500%, and the
perceived orientation of a bar statically pressed into the finger was
at chance.

The results of this study, then, suggest that a rigid link from skin to
surface transmits vibration well, force less well, and fine structural detail
of surfaces not at all. However, the subjects in this experiment did not
have the chance to explore the contours of a larger object under their own
control. As people explore the contours of an object while maintaining con-
tact, presumably additional kinesthetic cues (i.e., from muscles, tendons,
and joints) can help to ameliorate the loss of surface detail. A starfish,
for example, will produce a star-shaped trajectory in space, even if the
coarseness of its surface is not available to the hand covered with a sheath
or holding a probe.



�

�

�

�

�

�

�

�

1.3. Object Identification: Direct vs. Indirect Exploration 13

Next, we turn to the complex task of identifying objects, when explora-
tion is mediated by a rigid link from the object to the skin.

1.3 Object Identification: Direct vs. Indirect
Exploration

In vision, objects are largely identified by the shape of the object envelope
as projected to a 2D retina. Visual processing is used to construct the
3D object from the retinal image, particularly using edges. Based on such
information, rapid recognition can be achieved. When mediated by a rigid
link like a sheathed finger or probe held in the hand, touch has access to
the fully 3D shape of an object; however, such access is spatiotemporally
distributed, because the object’s envelope must be explored over time. The
question, then, is: can the object be identified under these circumstances?

This question can be addressed by reducing the cues about an object’s
identity to those available from (a) the efference copy of motor commands
used to maintain contact with the object, and (b) kinesthetic afferent cues
as to the position of the contacting hand over time. In an initial study
[Klatzky et al. 03], the hand explored directly, but cutaneous cues to surface
microstructure were minimized by having the subject wear a thick glove,
which also damped vibration. Moreover, moveable parts of the object
were immobilized to eliminate part-motion cues. To preclude the hand’s
enclosing multiple surface regions, the subjects were required to wear finger
splints that kept the fingers outstretched.

People proved to do surprisingly well at this task. Understandably, they
identified objects more slowly than normal (about 30 s, on average, cf. 2 s
with unconstrained bare-hand exploration); however, they achieved close
to 100% success.

Another study asked whether the same level of success could be ob-
tained when people explored objects when using a finger covered with a
rigid sheath or a hand holding a rigid probe with a spherical tip that es-
sentially reduces contact with the object to a point (Experiment 1 in [Le-
derman and Klatzky 04]). These conditions were compared to exploration
with a single bare finger, which yielded accuracy above 90% at an average
duration of approximately 30 s. Performance fell to 42% with an average
of 83 s of exploration for the sheathed finger, and the point contact pro-
vided by the probe caused a further decrement, with accuracy declining to
approximately 40% and response times increasing to 85 s of exploration,
on average.

A second experiment in the previous study compared probe-based iden-
tification of two types of objects, named at the subordinate level of classi-



�

�

�

�

�

�

�

�

14 1. Perceiving Object Properties through a Rigid Link

fication (more specific than the common or “basic level” name [Rosch 78]).
For one set of objects, geometric properties (shape, size) were particularly
diagnostic (e.g., picture hook), and for the other set, texture was diagnos-
tic (e.g., clay flower pot). The task was a two-alternative forced choice
(true or false: was a named object the presented object?). Accuracy with
the probe was far from perfect (d′ = 1.21 for the probe versus 2.50 for
the bare finger). The difference between the two sets of objects was par-
ticularly large for response time: the probe slowed positive identification
of the geometry-diagnostic objects by about 50% relative to the texture-
diagnostic set. We attribute this result to the extent of exploration required
to verify the object’s identity when geometry is diagnostic; that is, a large
segment of contour must be explored to encode the relevant geometric fea-
ture. In contrast, exploration could be confined to a small area but still
lead to identification of an object by its texture.

The results indicate that there is considerable efficacy in identifying
an object with a rigid link between skin and surface, particularly when
identification corresponds to giving the most common name. When an
object must be specified at a more detailed level, performance declines for
a probe relative to the bare skin; moreover, response times are considerably
slower when shape is diagnostic, and hence exploration must be extensive.

1.4 Intersensory Influences via Indirect Touch
The contributions of touch-produced sounds to roughness perception have
received some attention in the research literature, and they become more
important when exploration involves a rigid link from skin to surface.
The skin, a visco-elastic medium, tends to dampen sounds of exploration,
whereas a rigid probe or sheath contacting a textured surface produces a
strong audible signal. Indeed, the mean perceived roughness magnitudes in
the Lawrence et al. study cited above tended to be greater for exploration
with a probe than with the bare skin, presumably reflecting greater acoustic
amplitude with the rigid contact surface.

In most of the studies presented in this chapter on indirect perception
through a rigid link, touch-produced sounds are blocked by having sub-
jects wear earphones through which broad-spectrum noise is played. This
blocking is done to avoid contaminating tactile judgments with concomi-
tant sound cues. Some research, in contrast, has directly addressed the
contribution of audible vibrations to the perception of material proper-
ties of objects. For example, the “parchment-skin illusion” [Jousmaki and
Hari 98] refers to the finding that recordings of palms rubbing together,
when modulated in amplitude or frequency, can modify the perception of
skin softness (see also [Guest et al. 02]).



�

�

�

�

�

�

�

�

1.4. Intersensory Influences via Indirect Touch 15

In an early study with the bare finger, [Lederman 79] used a magnitude-
estimation procedure to examine the contribution of touch-produced au-
ditory cues to the perceived roughness of metal gratings. Subjects rated
the roughness magnitude of surfaces based on the sounds produced by an-
other person, the tactile cues produced when they explored the surfaces
themselves, or the concomitant tactile and auditory cues produced by their
exploration. The typical power function relating roughness magnitude to
interelement spacing (groove width) was obtained for the auditory-alone
condition, but the power parameter was lower than in the other two con-
ditions, suggesting weaker texture differentiation. Moreover, the bimodal
cues were no more salient than touch cues alone, which suggested that the
auditory cues were largely ignored.

[Lederman et al. 02] replicated Lederman’s 1979 study, with a rigid
probe used in place of the bare finger. Again, auditory cues alone produced
a power function for roughness magnitude in relation to interelement spac-
ing. However, in contrast to Lederman’s earlier work, this study found
that the bimodal condition produced roughness magnitudes greater than
those for audition alone, and less than touch alone. This pattern is con-
sistent with intersensory integration in the form of a weighted sum. The
weightings, as estimated from the response functions, were 62% for touch
versus 38% for audition. Several efforts to replicate this study have failed,
however, so at present the conclusion is limited to the fact that auditory
cues from a probe are sufficient to produce an orderly roughness report.

In subsequent studies [Lederman et al., manuscript,Lederman et al. 03],
an absolute-identification paradigm was used to assess the contribution of
touch-produced sound cues. Over a series of trials, subjects learned to
associate each texture with a common name. The course of learning, as
well as ultimate performance, was compared across audition only, touch
only, and bimodal tactile-auditory conditions.

Absolute identification offers a convergent methodology for evaluating
bimodal texture processing, one that speaks more directly to process than
does magnitude estimation. The task has two fundamental processing com-
ponents: forming a representation of each item in the stimulus set, and
associating unique item representations with unique identifiers. As long
as the set size is small, task performance should be limited not by the
associative aspect of the task, but by the process of forming a stimulus
representation. The goal over a series of trials is to convert a given input
to an internal representation, so that distinct inputs will differentially con-
verge on the possible responses. Absolute identification therefore motivates
bimodal processes that facilitate perceptual differentiation.

It is interesting to consider the absolute-identification task in the con-
text of maximum-likelihood (ML) models of intermodal integration [Ernst
and Banks 02]. An ML integrator weights each input in inverse proportion



�

�

�

�

�

�

�

�

16 1. Perceiving Object Properties through a Rigid Link

Texture Identification Performance (7 Stimuli)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4

Block

P
ro

p
o

rt
io

n
 C

o
rr

e
c

t

Touch

Audition

Touch+Audition

Texture Identification Performance (5 Stimuli)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4

Block

P
ro

p
o

rt
io

n
 C

o
rr

e
c

t

Touch

Audition

Touch+Audition

Figure 1.1. Identification performance (mean proportion correct) as a function
of block number for touch, audition, and touch + audition conditions in two
experiments. The upper panel is taken from [Lederman et al. 03]. c© IEEE
Computer Society.

to its variability, normalized by the total inverse variability across the input
modalities. It produces an intermediate distribution of values that sharp-
ens the distribution for each stimulus relative to the corresponding one for
either of the contributing modalities, and that also shifts its mean towards
an intermediate value. To adapt the ML approach to absolute identifica-



�

�

�

�

�

�

�

�

1.5. Rendered Textures 17

tion, one can assume that the output of the integrator is fed into a decision
process. A simple assumption is that response criteria are set between stim-
ulus pairs along the integrator output, such that the response shifts from
one member of the pair to the other when the criterion is reached. The
discriminability between any pair of stimuli in the input set then reflects
the difference in the integrator signals.

The results of the absolute-identification experiment with probe-
explored textures are presented in Figure 1.1. Successive trials have been
grouped into blocks, within which identification performance (mean pro-
portion correct) is computed. Accuracy is shown as a function of block
number for touch, audition, and touch + audition conditions. Panel A and
Panel B represent two experiments with different numbers of stimuli.

In these experiments, auditory cues alone proved sufficient for learning
to identify surface textures at levels above chance. However, touch cues
alone produced not only greater accuracy (particularly early in learning),
as shown, but higher confidence estimates. The addition of auditory cues to
tactile cues produced no better outcome than touch alone. These results
obtained with a rigid probe, then, are similar to those obtained in the
original study with the bare finger [Lederman 79]. More specifically, both
demonstrate that touch-produced sounds convey textural differences, but
only weakly, relative to touch itself when both modalities are present. In
terms of the ML model, this might occur because the variance for audition
is much greater than that for touch, reducing its weight to a negligible
value.

1.5 Rendered Textures
As was mentioned above, devices used in haptically rendering objects pre-
dominantly provide resultant forces, rather than a distributed array of
forces to the skin. The experimental work with real surfaces explored
through rigid links suggests that this can be an effective means of conveying
surface texture, particularly roughness. Efforts to render surface textures
bear this out, by showing that textural properties can be conveyed by a
variety of devices and algorithms—importantly, within the constraints of
device capabilities [Campion and Hayward 05,Choi and Tan 02,Choi and
Tan 03b].

Early work on texture rendering was conducted by [Minsky 95, Min-
sky and Lederman 96] using a 2-DOF device. The algorithm generated a
tangential force in proportion to the local gradient of the modeled surface
height. Subsequently, others used 3-dimensional algorithms by generating
surfaces from a sinusoid or alternative function [Choi and Tan 02,Choi and
Tan 03b, Colwell et al. 98, Ho et al. 04, Massie 96, Penn et al. 03b, Penn



�

�

�

�

�

�

�

�

18 1. Perceiving Object Properties through a Rigid Link

et al. 03a]. Local interactions were used as the basis for rendered textures
by [Siira and Pai 96], who generated tangential or tangential plus normal
forces by drawing randomly from a Gaussian distribution, then adding the
stochastic values to non-random effects of rigidity and friction. Data ob-
tained by measuring interactions with physical surfaces have also been used
as the basis for rendering algorithms [Jansson 98,Okamura et al. 98,Wall
and Harwin 99].

We have recently suggested an algorithm for rendering textures based
on viscosity [Klatzky and Lederman 06,Lederman et al. 06]. The nature of
the rendering device appears to be of critical importance for this algorithm,
as the magnitude-estimation functions were quite different in form for a
force-feedback device manipulated with the wrist (the WingMan R© mouse,
from Logitech) in comparison to one manipulated with the forearm (the
PHANTOM R©, SenseAble Technologies).

Several projects have attempted to reproduce, with rendered textures,
the quadratic form of the magnitude-estimation function (judged rough-
ness magnitude as a function of interelement spacing) found by Klatzky,
Lederman and associates when subjects explored real, raised-element tex-
tures with a rigid probe (see studies described above). [Otaduy and Lin 04]
reported a simulation that produced qualitative similarities. Quadratic
trends were found in psychophysical experiments by [Meyer-Spradow 05,
Unger et al. 07], using rendered textures and virtual probes with spherical
tips.

In contrast, a number of studies that measured magnitude estimation
in conjunction with rendered textures have produced monotonic decreasing
functions relating roughness to interelement spacing, particularly when the
device simulates a point contact rather than a spherically tipped probe (si-
nusoidal textures [Colwell et al. 98,Kornbrot et al. 07,Penn et al. 03b,Penn
et al. 03a]; and jittered-dot textures [Drewing et al. 04]). The monotonic
trend is not inconsistent with the idea that when subjects explore with a
probe, roughness peaks at approximately the level of interelement spacing
where the probe drops between raised elements, because for a point con-
tact, that spacing level would be infinitely small. That is, a point contact
would drop between elements even at the smallest spacing and would be
perturbed less and less by raised elements as spacing increased, leading to
reduced perceived roughness throughout the stimulus range, as has been
observed with these renderings.

1.6 Implications for Virtual Objects
The goal of rendering object properties with a substantial degree of realism
is a challenging one. The results indicate that force feedback, alone or with



�

�

�

�

�

�

�

�

1.6. Implications for Virtual Objects 19

auditory cues, can be a powerful mechanism for this endeavor. Important
implications for the rendering community are as follows.

First, when people explore with a rigid probe, vibratory coding of rough-
ness appears to be a highly natural and effective mechanism. We consis-
tently find that perceived roughness bears an orderly relation to the un-
derlying geometry of a textured surface. However, it is critically important
to consider the geometry of the surface in relation to the rendered end-
effector in detail, as the effect of a manipulation can depend dramatically
on interactions between these factors. Consider that increasing interele-
ment spacing in some ranges will heighten roughness and in other cases
diminish it, depending on the size of probe contacting the surface.

The work on touch-produced sounds has one clear implication at present,
namely, that auditory cues from exploration with a rigid link can convey
a sense of roughness that varies regularly with the geometry of the under-
lying surface. However, it is as yet unclear whether there will be a payoff
for combining audition and touch, at least in terms of perceived roughness
magnitude and discrimination. It may well be, however, that the addition
of sound has aesthetic contributions of some importance in applications
like e-commerce. We note informally that manufacturers of joysticks for
gaming appear to have adopted this assumption, by providing auditory
contexts for scenarios like helicopters versus tanks. (It appears to us that
often, the auditory cues in gaming devices are more discriminable than the
touch sensations.)

Another consideration concerns the contribution of material properties
to object identification. It has been found that when subjects explored with
a probe, difficult object-identification tasks could be performed better when
objects were diagnosed by texture than when geometry was the critical cue.
The combination of shape with material properties is likely to be a very
powerful cue. Note also that the difficulty of identifying objects by shape
in these tasks may stem in part from the effort to simply keep the probe
in contact with the object. In a force-feedback environment, this problem
could be alleviated by attracting the end-effector to the contours of the
underlying shape.

On the whole, although contact with an object through a rigid inter-
mediary is not equivalent to the force array available to the bare finger,
this mode of interaction appears to effectively mediate object properties
for identification and discrimination. It is suggested that force-feedback
devices, alone or in conjunction with visual and auditory cues, can render
a fairly rich sense of the shape and substance of objects in a distal world
beyond the fingertips.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

2
Multi-Sensory Interactions

C. Spence, F. Pavani, A. Maravita, and
N. P. Holmes

In recent years, cognitive neuroscience researchers have become increasingly
interested in the question of how information from the various sensory ep-
ithelia (including visual, tactile, and proprioceptive cues concerning limb
position) is integrated in the brain in order to enable people to localize
tactile stimuli, as well as to give rise to the “felt” position of our limbs, and
ultimately, the multisensory representation of peripersonal space. Here, we
highlight recent research on this topic that has used the crossmodal congru-
ency task. In its basic form, this task involves participants having to make
speeded elevation discrimination responses to vibrotactile targets presented
to the thumb or index finger, while simultaneously trying to ignore irrele-
vant visual distractors presented from either the same (i.e., congruent) or a
different (i.e., incongruent) elevation. The largest crossmodal congruency
effects (calculated as the difference in performance between incongruent
and congruent trials) are seen when visual and vibrotactile stimuli are pre-
sented from the same region of space, thus providing an index of common
positions across different sensory modalities. Crossmodal congruency ef-
fects have now been demonstrated across a range of different target and
distractor modalities, using both spatial and non-spatial versions of the
congruency task. Cognitive neuroscientists are currently using the task to
investigate a number of questions related to the multisensory representa-
tion of space in normal participants, and to assess putative disturbances
to the multisensory representation of space in brain-damaged patients. In
this review, we highlight the key findings to have emerged from research
that has utilized the crossmodal congruency task over the last decade.

2.1 Introduction to Crossmodal Congruency
Scientists have, for many years, been trying to understand how the brain
derives common representations of external space across different sensory
modalities (such as vision, touch, proprioception, and audition), given that

21



�

�

�

�

�

�

�

�

22 2. Multi-Sensory Interactions

sensory information is coded at the peripheral receptor level in a variety of
different frames of reference (see [Spence and Driver 04]). To date, the most
impressive advances in our understanding in this area have emerged from
single-cell neurophysiology: for example, researchers have demonstrated
the existence of multisensory neurons in several areas of the cat and mon-
key brain, including the putamen, superior colliculus, ventral and dorsal
premotor cortex, and parital areas 7b and the ventral intraparietal sulcus,
that appear to represent visual and tactile stimuli in approximate spatial
register [Colby et al. 93,Graziano and Gross 93,Graziano et al. 94,Graziano
et al. 97,Groh and Sparks 96,Mountcastle et al. 75,Rizzolatti et al. 81,Stein
et al. 75]. Many of the cells in these brain areas that are responsive to tac-
tile stimuli on an animal’s hand and arm also have visual receptive fields
(RFs) for the region of space close to the animal’s arm. More importantly,
the visual RFs of these neurons appear to follow the hand around as the
arm is placed (by the experimenter) in different postures (see [Graziano and
Botvinick 02] for a review). A growing body of cognitive neuroscience re-
search in healthy human participants now supports the existence of similar
multisensory representations of peripersonal space in humans as well [Lloyd
et al. 06, Makin et al. 07, Spence and Driver 04]. Research with various
groups of neuropsychological patients has also started to show the sys-
tematic ways in which these multisensory spatial representations can be
impaired following selective brain damage.

While the involvement of bimodal visuotactile neurons in brain ar-
eas, such as those reported by Graziano and his colleagues [Graziano and
Gross 93, Graziano et al. 94, Graziano et al. 97] has often been put for-
ward as providing a possible explanation for human behavior in a variety
of normal and patient studies (e.g., see [di Pellegrino et al. 97, Kennett
et al. 02, Spence et al. 01a, Spence et al. 01b]), the involvement of these
areas has only recently been demonstrated directly in humans. In partic-
ular, [Lloyd et al. 03] have provided some of the first neuroimaging data
to suggest that the same network of neural structures is involved in the
multisensory representation of limb position in humans as has been re-
ported previously in primates, specifically the VIP-F4 circuit (see [Rizzo-
latti et al. 02]). Meanwhile, more recent studies have highlighted the role
that parietal, occipital, and premotor cortices play in the visual processing
of threatening and rapidly-approaching objects in peripersonal space [Ehrs-
son et al. 07,Lloyd et al. 06,Makin et al. 07].

2.2 The Crossmodal Congruency Task
One experimental paradigm that has been used extensively over the past
decade to investigate the multisensory representation of space in humans



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 23

is the crossmodal congruency task [Spence et al. 98, Spence et al. 04b].
In a prototypical study, participants have to make speeded elevation dis-
crimination responses to a series of target stimuli presented in one sensory
modality (most frequently touch), whilst simultaneously trying to ignore
irrelevant distractors presented in another sensory modality (typically vi-
sion). This visuotactile version of the crossmodal congruency task has
repeatedly been shown to provide a robust experimental index of common
spatial location across different sensory modalities. As a consequence, a
growing number of researchers have now started to use the task in order
to investigate the multisensory representation of visuotactile space in both
normal participants [Maravita et al. 06, Spence et al. 04b] and in brain-
damaged patients [Maravita et al. 05,Spence et al. 01a,Spence et al. 01b].
Researchers have also used the crossmodal congruency task to investi-
gate the consequences of prolonged tool use [Holmes et al. 04a,Maravita
et al. 02b], and the viewing of bodily shadows [Pavani and Castiello 04] on
the boundaries of peripersonal space and the multisensory representation of
the body.

In this review, we first describe the visuotactile crossmodal congruency
effect, before going on to highlight the results of a number of recent studies
that have used this task to investigate the consequences of posture change
on the multisensory representation of space. The subsequent sections of
this review then illustrate how the crossmodal congruency task is currently
being used to address increasingly sophisticated questions regarding the
representation of the body in peripersonal and virtual space.

In the most commonly used variant of the crossmodal congruency task,
participants are instructed to hold two foam blocks, one in either hand (see
Figure 2.1(left) for a schematic illustration of the experimental set-up). A
vibrator and an LED are embedded at the top and bottom of each block.
On each trial, a vibrotactile target and a visual distractor are presented
randomly and independently from one of four possible stimulus locations.
Vibrotactile targets (normally consisting of pulsed vibrations) are presented
to the index finger or thumb of either hand. Visual distractors usually
consist of the pulsed illumination of one of the four LEDs. Participants
have to make speeded elevation discrimination responses (i.e., “above,”
when the target is presented to the index finger; or “below,” when the
target is presented to the thumb) in response to the vibrotactile targets,
while simultaneously trying to ignore any visual distractors that happen
to be presented at around the same time. Note that the onset of the
visual distractors typically occurs around 30 ms before the onset of the
vibrotactile targets [Spence et al. 04b].

Although the visual distractors are just as likely to be presented from
the same elevation as the vibrotactile target, as from a different eleva-
tion, participants are typically much worse (i.e., they are both slower and



�

�

�

�

�

�

�

�

24 2. Multi-Sensory Interactions

Figure 2.1. Schematic view of a participant adopting both an uncrossed- (left)
and crossed-hands (right) posture while performing the crossmodal congruency
task. Two vibrotactile stimulators (small rectangles) and two visual distractor
lights (small circles) were embedded in each of the two foam cubes held by the
participants between their thumbs and index fingers. The participants made
speeded elevation discrimination responses (by raising the toe or heel of their right
foot), in response to vibrotactile targets presented either from the “top” by the
index finger of either hand, or from the “bottom” by either thumb, respectively.
The largest crossmodal congruency effects are elicited by the pair of distractors
placed closest to the location of the vibrotactile target (i.e., on the same foam
cube), no matter whether the hands are held in an uncrossed or crossed posture.

they make more errors) at discriminating the elevation of the vibrotactile
targets when the visual distractors are presented from an incongruent el-
evation (i.e., when the vibrotactile target is presented from the top and
the visual distractor from the bottom, or vice versa) than when they are
presented from the same (congruent) elevation (i.e., when both the target
and vibrator are either presented from the top or from the bottom). The
crossmodal congruency effect is calculated as the difference in performance
between incongruent and congruent distractor trials for a particular pair
of distractor LEDs. Crossmodal congruency effects are typically present in
the reaction time (RT) data and/or in the error data. Researchers there-
fore often combine these two measures into a single performance measure
known as inverse efficiency (IE)—where the inverse efficiency score equals
the mean or median RT for a particular condition, divided by the propor-
tion of correct responses for that condition [Spence et al. 01a,Townsend
and Ashby 83].

While the magnitude of the crossmodal congruency effect tends to de-
cline with practice, significant behavioral effects still occur even after par-



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 25

ticipants have performed many hundreds of trials [Maravita et al. 02b,
Spence et al. 04b]. The very existence of the effect highlights the difficulty
that people have in ignoring what they see, even when they are instructed
to respond only to what they feel: that is, the crossmodal congruency effect
provides one of a growing number of examples of the failure of crossmodal
selective attention (see [Driver and Spence 04] for a review). Smaller, but
nevertheless still significant, crossmodal congruency effects have also been
reported when the role of the two stimulus modalities is reversed; that is,
when participants are instructed to respond to the elevation of the visual
stimuli (targets), while attempting to ignore the elevation of the vibrotactile
stimuli (distractors) instead [Spence and Walton 05,Walton and Spence 04].
This asymmetrical pattern of crossmodal congruency effects may reflect an
underlying difference in the relative salience of the vibrotactile and visual
stimuli used in previous studies (though note that it is difficult, if not
impossible, to match stimulus intensity crossmodally [Spence et al. 01c]).
However, it may also reflect the consequences of an inherent bias in par-
ticipants’ attentional resources toward the visual modality, at least when
people perform spatial tasks [Battaglia et al. 03,Posner et al. 76, Spence
et al. 01c]. Finally, [Merat et al. 99] have shown that vibrotactile distractors
also elicit robust crossmodal congruency effects when participants have to
try to discriminate the elevation of auditory targets as rapidly as possible
(see [Kitagawa and Spence 06] for a review).

2.2.1 The Spatial Modulation of the Crossmodal
Congruency Effect

The research published to date suggests that visuotactile crossmodal con-
gruency effects are largest when the target and distractor stimuli are pre-
sented from the same azimuthal location (i.e., when the distracting lights
are situated by the hand receiving the vibrotactile target), and decline
as the visual distractor and vibrotactile target hand are moved further
and further away from each other. [Spence et al. 04b] reported a num-
ber of experiments in which they investigated the consequences of various
basic postural manipulations on the crossmodal congruency effect. They
showed, for instance, that the magnitude of the crossmodal congruency ef-
fect elicited by a particular pair of visual stimuli tends to decrease as the
hand receiving the vibrotactile target is moved further away from them.
They also showed that when a participant crosses his or her hands over at
the midline (see Figure 2.1(right)), it is the visual distractors next to the
current target hand position that elicit the largest crossmodal congruency
effects; this despite the fact that the afferent signals from the vibrotactile
targets presented to the crossed hand initially project predominantly to the
opposite cerebral hemisphere with respect to the visual distractors.



�

�

�

�

�

�

�

�

26 2. Multi-Sensory Interactions

Figure 2.2. Schematic bird’s-eye view of the four different postures adopted by
participants in Maravita et al.’s [Maravita et al. 06] recent study of the con-
tribution of proprioceptive and tactile cues to perceived limb position during
measurement of the crossmodal congruency effect. On any block of trials, the
participant’s hand, hidden from view by means of an opaque screen, was passively
moved to one of the four positions by the experimenter. The participant fixated
on a central fixation light, which was placed between an upper and a lower vi-
sual distractor light, and responded to either upper or lower vibrotactile targets
delivered to the right hand. The magnitude of the crossmodal congruency effect
(in ms) at the four different positions is shown numerically above each hand po-
sition. Note that the crossmodal congruency effect was much stronger when the
participant’s hand was placed at an eccentricity of 10 degrees from the central
distractors than when placed at an eccentricity of 50 degrees on either side.

More recently, [Maravita et al. 06] have explored the specific contribu-
tion of proprioception to the spatial modulation of the visuotactile cross-
modal congruency effect. The participants in their study had to place their
hands below an opaque screen while judging the elevation of a sequence of
vibrotactile targets presented to their right hand and fixating centrally. The
participant’s hand was passively positioned by the experimenter in one of
four different spatial positions, 10 or 50 degrees to either side of central
fixation, in different blocks of experimental trials. Maravita et al. reported
that much smaller crossmodal congruency effects were elicited by the illu-
mination of one of two visual distractor lights presented directly above or



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 27

below the central fixation light when the participant’s hand was placed at
50 degrees from fixation, as compared to at 10 degrees (see Figure 2.2).
These results therefore show that proprioceptive and tactile cues regarding
the position of one’s limbs in space can by themselves provide sufficient in-
formation for the brain to code a particular light source as being either close
to, or far from, an unseen hand. Meanwhile, Lloyd et al.’s [Lloyd et al. 03]
neuroimaging study shows that the updating of proprioceptive information
concerning limb position critically depends upon activation in parietal cor-
tex. This result may then help to explain why the limb-position-dependent
modulation of crossmodal visuotactile extinction shown in certain parietal
patients appears to depend upon the patients being able to see their own
hand and arm [Làdavas et al. 00].

In a separate line of experimental research, [Kitagawa and Spence 05]
have shown that the introduction of a transparent barrier between a partici-
pant’s own hands (receiving the vibrotactile targets) and the visual distrac-
tors does not have any noticeable effect on the magnitude of the crossmodal
congruency effect (see also [Farnè et al. 03] for similar findings from neu-
ropsychological studies of patients suffering from tactile extinction). These
results therefore suggest that the crossmodal congruency effect is insen-
sitive to the ease with which the participants can reach out to touch (or
grasp) the visual distractors, but rather is modulated just by the physical
distance between the target and distractor stimuli.

The human behavioral findings reported to date from studies using
the visuotactile crossmodal congruency task are consistent with the known
primate neurophysiology [Graziano et al. 97, Graziano 99]. In particu-
lar, they are consistent with previous research showing a hand-position-
dependent modulation of the visual RF of bimodal visuotactile neurons
reported by [Graziano and Gross 93,Graziano et al. 94,Graziano 99]. Just
as highlighted by the monkey data, the spatial modulation of the cross-
modal congruency effect does not appear to depend on vision of the hands,
as significant visuotactile congruency effects are still observed even when
the participants cannot see them [Maravita et al. 06], as well as when par-
ticipants perform the task in complete darkness [Spence et al. 04b].

2.2.2 The Non-Spatial Version of the Crossmodal
Congruency Task

Crossmodal congruency effects (in the elevation discrimination version of
the task) are sensitive to manipulations of a participant’s posture, and
to the spatial separation between visual and tactile stimuli. To a certain
extent, however, this spatial sensitivity seems to be task- and context-
dependent. For instance, [Holmes et al. 06a,Holmes et al. 07] have reported
experiments involving a non-spatial version of the crossmodal congruency



�

�

�

�

�

�

�

�

28 2. Multi-Sensory Interactions

task in which the participants had to discriminate the type (continuous
versus pulsed) rather than the elevation of the vibrotactile target stim-
uli. They showed that the simultaneous presentation of visual distractors
(unpredictably either continuous or pulsed) gave rise to large crossmodal
congruency effects, particularly in the error data (see also [Martino and
Marks 00] for further non-spatial cross-modal interactions between vision
and touch based on the synesthestic crossmodal correspondence between
visual lightness [black versus white] and vibrotactile frequency [low versus
high]). These effects were found to be larger when the visual and tactile
stimuli were presented on the same side of space, regardless of where the
participants placed their hands (i.e., in either an uncrossed- or crossed-
hands posture). Interestingly, however, these spatial effects were only ob-
served in the error data. They were also much smaller than those re-
ported previously in the spatial (i.e., elevation) discrimination version of
the task [Spence et al. 04b]. What’s more, no significant spatial modu-
lation of the crossmodal congruency effect was observed when a smaller
group of participants performed the non-spatial discrimination task dur-
ing an fMRI scan, in which finger responses, rather than foot responses,
were required. It would therefore seem that the strong spatial modula-
tion of crossmodal congruency effects may be dependent upon participants
performing an explicitly spatial judgment [Spence et al. 00], and may per-
haps also be affected by the particular effector used to respond (though
see [Maravita et al. 02c]). It should therefore be borne in mind that the
spatial and non-spatial versions of the crossmodal congruency task may
recruit somewhat different multisensory brain mechanisms.

2.2.3 Stimulus Timing and the Crossmodal
Congruency Effect

[Shore et al. 06] recently conducted a parametric investigation into the
effects of varying the timing of the presentation of the visual distractor rel-
ative to the onset of the vibrotactile target on the visuotactile crossmodal
congruency effect. The visual target and vibrotactile distractor in this
study were randomly presented at one of 10 different stimulus onset asyn-
chronies (SOAs, varying from ±400 ms) on each trial. The results (see Fig-
ure 2.3) highlighted a pronounced temporal modulation of the crossmodal
congruency effect, with the largest interference effects being observed when
the visual distractors preceded the vibrotactile targets by approximately
100 ms (cf. [Spence et al. 04b]-Experiment 1). However, the temporal win-
dow in which significant crossmodal congruency effects were demonstrated
ranged from trials where the vibrotactile targets preceded the visual dis-
tractors by 100–200 ms, to trials where the visual distractors preceded the
vibrotactile targets by 400 ms.



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 29

Figure 2.3. Graph highlighting the magnitude of the crossmodal congruency effect
(inverse efficiency, in ms) observed at each of 10 different SOAs in Shore et
al.’s [Shore et al. 06] recent study, plotted as a function of whether the vibrotactile
target and visual distractor were presented on the same versus different sides of
fixation. Note that the participants in this experiment adopted the uncrossed
hands posture highlighted in Figure 2.1(left).

2.2.4 Crossmodal Exogenous Spatial Attention
and the Crossmodal Congruency Effect

At this point, it is perhaps worth noting the methodological similarity
between the crossmodal congruency task and many previous studies of
crossmodal exogenous spatial attentional cuing (see [Spence et al. 04a], for
a review). Several groups of researchers have, for example, shown that
the presentation of a spatially-nonpredictive visual cue (to either the left
or right hand) facilitates elevation-discrimination responses to vibrotactile
targets presented from the same (as opposed to the opposite) hand for
several hundred milliseconds after the onset of the cue [Chong and Mattin-
gley 00,Kennett et al. 02,Spence et al. 98]. These crossmodal cuing effects
typically evidence themselves in terms of a facilitation of target discrimi-
nation response latencies of around 20–30 ms when the target is presented
from the cued, as opposed to the uncued, side (hand).

Given such findings, it would seem likely that the onset of the visual
distractor shortly before the vibrotactile target in the majority of previ-
ous studies of the crossmodal congruency effect would also have led to a
shift of “tactile” attention to the side (or location) of the visual distrac-
tor [Spence 02, Spence et al. 04a]. It is, however, important to note that



�

�

�

�

�

�

�

�

30 2. Multi-Sensory Interactions

while maximal facilitation would be expected to accrue at the particular
location of the visual stimulus (i.e., distractor), the other location (i.e.,
elevation) at the same azimuthal position as the visual distractor would
also likely have been facilitated to some extent (see Figure 11.5 in [Spence
et al. 04a], on this point). Consequently, a crossmodal shift of exogenous
spatial attention following the presentation of a visual distractor may well
result in a general speeding-up of responses to vibrotactile targets pre-
sented on the same (rather than opposite) side as the visual distractor. It
should, however, be noted that any such general speeding of participants’
responses would not be expected to have much of an effect on the magnitude
of the congruency effect itself, since that is calculated as the difference be-
tween performance on incongruent and congruent distractor trials. What’s
more, it should also be noted that even if crossmodal spatial attentional
cuing effects were to be localized spatially just to the digit placed closest
to the distractor light, they could not account for more than a fraction
of the crossmodal congruency effects that have typically been observed in
previous studies; for, while crossmodal cuing effects frequently result in
response latency effects of 100–200 ms, crossmodal exogenous congruency
effects rarely exceed 20–30 ms in magnitude [Spence et al. 04a]. Thus, at
best, crossmodal exogenous spatial cuing can only account for a relatively
small proportion of the crossmodal congruency effect.

2.2.5 Response Selection Conflict, Spatial Ventriloquism,
and the Crossmodal Congruency Effect

A more likely explanation for the crossmodal congruency effect is in terms
of competition at the level of response selection between the target and
distractor [Marks 04]. According to the response competition account, the
crossmodal congruency effect may reflect the consequences of competition
between the response tendencies elicited by the target and distractor on
incongruent trials. Presumably the presentation of both stimuli will prime
the response(s) associated with the elevation at which they are presented.
Given that the distractor will prime the incorrect response on incongruent
trials, this might be expected to lead to a slowing of responses, attributable
to the time taken by participants to overcome the incongruent (i.e., “inap-
propriate”) response tendency. In fact, the slowest responses in crossmodal
congruency experiments are usually reported on those trials in which the
visual distractor is presented from the same azimuthal position (or side) as
the vibrotactile target, but at an incongruent elevation [Spence et al. 04b].
By contrast, performance on congruent trials might be expected to show
some degree of response facilitation relative to a neutral baseline, since
the target and distractor stimuli would both prime the same “correct” re-
sponse [Marks 04].



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 31

A third explanation for at least a small part of the crossmodal congru-
ency effect is in terms of the “perceptual” integration of the visual and
tactile stimuli. That is, the perceived location of the vibrotactile target
in a prototypical study of the crossmodal congruency effect might be ex-
pected to be ventriloquized spatially toward the location of the incongruent
visual distractor [Bertelson and de Gelder 04]. When the visual distractor
is placed at a different elevation from the vibrotactile target, but still close
to it (i.e., on the same hand), the latter may be mislocalized toward the
former. Such spatial ventriloquism, should it occur, might lead to errors in
participants’ responses, or simply to their finding it harder (and therefore
taking more time) to discriminate the correct elevation of the target on the
incongruent distractor trials.

[Spence et al. 04b] empirically demonstrated a modest contribution
of visuotactile spatial ventriloquism to the crossmodal congruency effect.
They conducted an unspeeded version of the experiment, in which the par-
ticipants were not permitted to respond until at least 750 ms after the onset
of the target and distractor stimuli. The importance of response accuracy
over response speed was also stressed to the participants repeatedly. If
response competition is responsible for the crossmodal congruency effect,
then one might have expected that there should be virtually no residual
crossmodal congruency effect, given that participants in this unspeeded
version of the task presumably had sufficient time in which to resolve any
response conflict. However, the results demonstrated a small but signifi-
cant increase in errors when the visual distractor was presented from an
incongruent elevation on the same side as the target, suggesting some small
role for spatial ventriloquism in the crossmodal congruency effect.

More recently, [Holmes et al. 07] used functional magnetic resonance
imaging (fMRI) in order to investigate the brain areas in which activa-
tion significantly covaried with the magnitude of crossmodal congruency
effects across participants (note that a non-spatial version of the cross-
modal congruency task was used in this study). Further support for the
response competition account of the crossmodal congruency effect would
come from the observation of activity in medial frontal areas, since these
areas are known to be highly sensitive to response selection and the res-
olution of response conflicts [Nachev 06]. By contrast, additional support
for the spatial ventriloquism account of the crossmodal congruency effect
would come from the observation of activity in those brain areas associated
with the (visual) localization of tactile stimuli in higher-order occipital and
parietal areas [Macaluso et al. 04].

In fact, the neuroimaging evidence reported by [Holmes et al. 07] pro-
vided support for both accounts, although distinct mechanisms were im-
plicated for the RT and the error data. That is, crossmodal congruency
effects in both the RT and the error data covaried significantly with ac-



�

�

�

�

�

�

�

�

32 2. Multi-Sensory Interactions

Figure 2.4. Neural activity (fMRI BOLD signal change) significantly covarying
with the magnitude of non-spatial visuotactile crossmodal congruency effects dur-
ing a tool-use task [Holmes et al. 07]. Crossmodal congruency effects (in percent
errors) were calculated for each participant and entered into a whole-brain linear
regression analysis. Five clusters of significant activation were observed: the right
pre-supplementary motor area (pre-SMA) likely reflects the increased response
conflict on incongruent as compared to congruent distractor trials, and was also
activated for a separate analysis of the RT data. Right superior parietal cortex
and midline cerebellum may also reflect aspects of multisensory integration and
response selection. The activation in bilateral occipital cortex may reflect the
effectiveness of, or attention paid toward, the visual stimulus—greater activity in
occipital cortex, including V1 and V2—was associated with greater visuotactile
congruency effects.

tivity in the right pre-supplementary motor area, supporting the response
competition account. Additionally, however, the right medial occipital, the
lateral occipital cortex in both hemispheres, and the right posterior parietal
cortex activation covaried significantly with crossmodal congruency effects
expressed in the error scores only (see Figure 2.4). These latter activations,
which included primary, secondary, and higher-order visual cortex, along
with the superior parietal cortex, suggest that the processing of vibrotactile
stimuli is influenced directly by the level of activation in these areas (see
also [Macaluso et al. 00]). Taken together, the psychophysical and neu-
roimaging evidence published to date supports the contribution of at least
three relatively independent factors to the crossmodal congruency effect:
exogenous spatial attention, response selection conflict, and spatial ven-
triloquism. The fact that three different mechanisms conjointly contribute
to the effect may help to explain why the crossmodal congruency effect is
so much larger than many other behavioral effects used by researchers to
investigate multisensory spatial perception.



�

�

�

�

�

�

�

�

2.2. The Crossmodal Congruency Task 33

2.2.6 Do Top-Down Factors Influence the
Crossmodal Congruency Effect?

To date, only two studies have attempted to investigate whether top-down
factors modulate the crossmodal congruency effect [Shore and Simic 05,
Spence et al. 04b, Experiment 1]. The results of both studies have shown
that this particular form of crossmodal interference seems to be relatively
insensitive to top-down factors, suggesting the automaticity of the neural
processes underlying the effect. For example, Spence et al. investigated
whether shifting the focus of participants’ endogenous spatial attention
would influence the crossmodal congruency effect. They compared the
crossmodal congruency effects obtained in two different blocks of trials:
in one, the target was presented unpredictably on each trial to either the
participant’s left or right hand (divided attention condition); in the other
block, the vibrotactile targets were always presented to one or other of
the participant’s hands for a whole block of trials (focused attention con-
dition). Rather surprisingly, however, the magnitude of the congruency
effect was not affected by this endogenous attentional manipulation, de-
spite there being a small trend for the relative difference in congruency
effects between same-side and opposite-side bimodal trials to be larger for
the focused attention condition (60 ms) than for the neutral/divided at-
tention blocks (45 ms). Please see [Holmes et al. 07] for further discussion
and see Section 2.3 below.

At first glance, Spence et al.’s [Spence et al. 04b] results would ap-
pear to stand in marked contrast to those of a number of other studies of
endogenous spatial attention, in which elevation discrimination responses
for both vibrotactile and visual targets (presented individually, i.e., in the
absence of any distractors) have been shown to be facilitated by the di-
rection of a participant’s endogenous spatial attention to a particular side
or hand [Spence et al. 00,Driver and Spence 04,Chambers et al. 04,Kida
et al. 07,Vibell et al. 07]. One possible account for this null effect of en-
dogenous attention in Spence et al.’s [Spence et al. 04b] study is that while
directing one’s attention to a particular hand can speed response laten-
cies to stimuli presented near (or to) that hand, it may have little effect
on the pattern of crossmodal congruency effects, because performance on
both congruent and incongruent distractor trials will be facilitated to about
the same extent. Such a general speeding of participants’ responses would
not be apparent in the congruency effect, since that reflects a difference
score.

It is, however, perhaps also worth pointing out that the effects of en-
dogenous attentional manipulations typically reside in the costs associated
with the impaired behavioral performance seen on invalid trials (when
compared to performance on neutral trials), rather than in the benefits



�

�

�

�

�

�

�

�

34 2. Multi-Sensory Interactions

associated with valid cuing. Note here then that [Spence et al. 04b] only
compared performance on 100% valid blocks to the performance of partic-
ipants in blocks of trials where the target side was entirely unpredictable
(i.e., neutral blocks). Future research, in which participants’ performance
on trials where their attention was validly directed to the target hand
was compared to their performance in trials where the target was unex-
pectedly presented to the other hand (invalid trials), may well give rise
to significant effects of endogenous spatial attention. Demonstrating a
null effect of endogenous spatial attention under such conditions (when
participants’ performance on validly and invalidly cued trials is compared
directly) would therefore provide a more rigorous demonstration of the in-
sensitivity of the crossmodal congruency effect to this kind of top-down
manipulation.

In an independent series of experiments, [Shore and Simic 05] have
investigated whether the crossmodal congruency effect is sensitive to the
top-down modulations of performance that can sometimes be elicited by
varying the proportion of congruent vs. incongruent trials presented in a
given block of trials [Gratton et al. 92,Posner and Snyder 75]. In their first
experiment, Shore and Simic compared the magnitude of the crossmodal
congruency effect in blocks of trials, where the majority of the trials (75%)
were congruent while the remainder of trials (25%) were incongruent, to
the congruency effects seen in other blocks of trials where the probabilities
of congruent and incongruent trials were reversed (i.e., 25% congruent and
75% incongruent trials). Changing the proportion of congruent to incon-
gruent distractor trials had absolutely no effect on the magnitude of the
visuotactile crossmodal congruency effect.

A similar result was also obtained in a second experiment, in which an
even more extreme manipulation of the stimulus probabilities was intro-
duced (now only 11% congruent trials and 89% incongruent trials were pre-
sented). In fact, the only way in which Shore and Simic were able to show
any effect of varying the proportion of congruent and incongruent trials
on participants’ performance was when the onset of the visual distractors
occurred 100 ms before the onset of the vibrotactile targets (as compared
to the 30 ms visual lead used in their first two experiments). However, even
under these conditions, the effect of changing the proportion of congruent
to incongruent trials only showed up in the error data, but not in the RT
data. (In particular, an increased congruency effect was observed in the
75% congruent block, as compared to the 25% congruent block.) Shore
and Simic’s results therefore provide additional evidence to show that the
crossmodal congruency effect is relatively insensitive to various different
top-down manipulations, thus suggesting instead that it reflects a relatively
automatic (as opposed to controlled) process [Gratton et al. 92,Posner and
Snyder 75].



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 35

2.3 Using the Crossmodal Congruency Task
to Investigate What Constitutes
Peripersonal Space

Having characterized the crossmodal congruency effect and, more specifi-
cally, having demonstrated its reliability and robustness as an indicator of
common location across vision and touch, researchers have gone on to use
the crossmodal congruency task in order to ask a number of more sophisti-
cated questions regarding the multisensory representation of peripersonal
space.

2.3.1 Assessing the Relative Contribution of
Vision and Proprioceptive to Tactile Localization

Over the years, many researchers have shown how influential vision can
be in determining where people feel their limbs to be. In fact, the partial
or complete visual capture of proprioception by fake or alien limbs/digits
has now been reported in many different studies [Tastevin 37,Nielsen 63,
Sullivan 69, Welch 72, Botvinick and Cohen 98, Ehrsson et al. 04, Tsakiris
and Haggard 05,Azañón and Soto-Faraco 07,Costantini and Haggard 07,?].
Visual capture effects have also been demonstrated using prisms [Harris 63,
Hay et al. 65], mirrors [Holmes and Spence 04,Holmes et al. 04b,Holmes
et al. 06b], and even real-time video images [Ijsselsteijn et al. 05,Tsakiris
et al. 06,Pavani and Zampini 07] in order to manipulate the seen position
of a participant’s hand.

[Pavani et al. 00] used the crossmodal congruency task to examine the
relative contributions of visual and proprioceptive cues to the localization
of tactile stimuli in personal/peripersonal space. They used a modified
version of the rubber hand illusion [Botvinick and Cohen 98]. The par-
ticipants in Pavani et al.’s study wore a pair of rubber washing-up gloves
and held two foam cubes on each of which were mounted two vibrators.
The participants could not see their own hands, which were hidden be-
low an opaque screen (see Figure 2.5). The magnitude of the crossmodal
congruency effect elicited by the visual distractors increased when a pair
of rubber arms (actually a pair of stuffed rubber washing-up gloves) were
placed in a plausible posture (on top of the occluding screen in front of
the participants), apparently “holding” the visual distractors (see [Austen
et al. 04] for similar results). In a subsequent experiment, Pavani et al.
went on to show that the magnitude of the crossmodal congruency effect
was unaffected by the presence of the rubber arms if they were placed in
an implausible posture for the participants (i.e., when placed at 90 degrees
with respect to the participant’s own body).



�

�

�

�

�

�

�

�

36 2. Multi-Sensory Interactions

Figure 2.5. Schematic view of the experimental set-up in Pavani et al.’s [Pavani
et al. 00] rubber hand experiment, highlighting the location of the vibrotactile
stimulators (indicated by the four arrows) on the foam cubes held by the partici-
pant below an occluding screen, and the visual distractor lights (four open circles
on the upper cubes) held by the rubber hands that, when present, were aligned
with the participant’s own hands. Note that in some conditions (not shown),
the rubber arms were placed at 90 degrees with respect to the participant’s own
arms (i.e., in a posture that the participant could not possibly adopt).

[Pavani et al. 00] argued that the increased crossmodal congruency ef-
fects reported in the plausible rubber hand condition could be attributed
to the “apparent” perception of the vibrotactile targets as being close to
the distractor lights. In other words, they claimed that tactile (and not
just proprioceptive) stimuli were mislocalized towards the apparent visual
location of the seen limb (really a stuffed rubber washing-up glove; see
also [Walton and Spence 04] ref). In fact, the participants in Pavani et
al.’s study only experienced the rubber hand illusion (as revealed by their
responses to a questionnaire) in those blocks of trials in which the rub-
ber hands were placed in a plausible posture for the participants to have
adopted (see also [Kanayama and Ohira 07]). Furthermore, the magnitude
of this increase in the crossmodal congruency effect in the plausible rub-
ber hands condition was also shown to correlate with subjective reports
concerning the vividness of the rubber hand illusion, as indexed by partic-



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 37

ipant’s agreement with the statements: “‘I felt as if the rubber hands were
my hands,” and “It seemed as if I were feeling the vibration in the location
where I saw the rubber hands.”

Erin Austen and her colleagues at University of British Columbia [Austen
et al. 01] have shown that the fake limbs do not necessarily need to bear
much of a resemblance to the human form in order for their presence on
top of an occluding screen (as used by [Pavani et al. 00]) to modulate
the magnitude of the crossmodal congruency effect. In particular, Austen
et al. showed significantly larger crossmodal congruency effects when the
blocks on which the distractor lights were mounted were held by a pair of
“Frankenstein’s monster-like” green hairy arms than when no arms were
present (see also [Armel and Ramachandran 03,Graziano et al. 00]).

Neurophysiological data on the visual capture of perceived limb position
comes from a study by [Graziano 99] in which a monkey’s own arm was
hidden from view below an occluding screen while a taxidermist’s stuffed
monkey arm was placed above the occluding screen in front of the mon-
key. Bimodal premotor cells with hand-centred visual RFs were identified
with standard techniques. The visual stimulus position that elicited the
maximum response in each neuron was then measured, and this position
was compared between conditions when the monkey’s visible hand was
positioned on the left versus right side (i.e., visual-proprioceptive congru-
ent condition). The resulting “shift index” representing the effect of arm
posture change on the position of the maximum visual response, was also
measured when the monkey could not see its own hand in either posture
(proprioceptive-only condition) and when the posture of the fake hand was
changed while the real arm remained stationary (visual-proprioceptive con-
flict condition). While the sensitivity of 36 bimodal neurons was reduced
when the monkey’s arm was not visible (thus demonstrating the effects of
removing the visual contribution to the representation of hand position),
the visuospatial sensitivity was increased again for 17 neurons in which
the fake arm condition was studied (demonstrating the effects of adding
incongruent but plausible visual information). In a related experiment, the
position of the fake hand was also shown to modulate the tonic proprio-
ceptive firing of arm-position-dependent postural neurons in parietal area
5, thus providing a direct demonstration of the effects of visible fake body
parts on the representation of the animal’s own body position [Graziano
et al. 00].

2.3.2 Viewing One’s Own Limbs in a Mirror

[Maravita et al. 02c] investigated whether the magnitude of the crossmodal
congruency effect could be modulated through a more abstract understand-
ing of the source of the visual stimuli in a scene. In particular, they as-



�

�

�

�

�

�

�

�

38 2. Multi-Sensory Interactions

Figure 2.6. Schematic view of the experimental set-up in Maravita et al.’s [Mar-
avita et al. 02c] experiments of the effects of viewing visual stimuli indirectly
via mirror reflection on the crossmodal congruency effect. The participants held
one foam cube in either hand below an opaque screen. A semi-reflecting mirror
was placed on one side of an open opaque box facing the participant. Depending
on the ambient illumination, participants either saw their own hands below the
occluding screen reflected in the mirror, or else they were able to see through
the mirror to reveal the contents of the box. Lines drawn from the distractor
lights on each sponge held by the observer and crossing the mirror suggest the
position of the virtual image produced on the mirror by such objects, as observed
by the participant. The foam cubes and distractor lights in the Far condition
were placed at the exact same position as the apparent position of these virtual
images in the Mirror condition.

sessed whether a spatial re-coding of distant visual stimuli would make
them equivalent to near stimuli in terms of the crossmodal congruency
effects that they elicited. To this end, participants saw their own limbs re-
flected in a mirror (with the direct view of their own hands being prevented
by means of an opaque screen). Maravita and his colleagues investigated
whether visual stimuli that appeared in the mirror to occupy a position in
far space (i.e., beyond peripersonal space) would be treated as originating
in near peripersonal space if the participants were made aware of the fact
that what they were looking at was a mirror reflection of their own body.

[Maravita et al. 02c] varied the position of the visual distractors, so
as to obtain two stimulation conditions, while participants made speeded
elevation discrimination responses to target vibrations presented to their
hands. In one condition, the visual distractors were placed near the par-
ticipant’s hands, occluded from their direct view by an opaque screen and
observed via their reflection in a mirror placed 90 cm away (Mirror con-
dition). Under these conditions, the retinal projection produced by the
reflection of the visual distractors was equivalent to that of visual stimuli
placed at a distance twice that between the real stimulus and the mirror
(plus the distance between the observer’s eyes and the stimulus itself; see



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 39

Figure 2.6). In a second condition, the visual distractors were located far
away from the participants’ own hands, inside a box, but now the par-
ticipants observed these stimuli by looking through the mirror (actually a
semi-reflecting mirror). Visual distractors in this condition were carefully
positioned so as to produce a retinal projection that was identical to the
virtual mirror image produced by the distractors in the previous Mirror
condition. Now the only clue indicating any difference between the ac-
tual positions of the distractors in the two conditions was the participant’s
knowledge about the experimental setting. Given that the largest cross-
modal congruency effects are typically reported when visual distractors are
situated close to the vibrotactile target stimuli [Maravita et al. 06,Pavani
et al. 00,Spence et al. 04b], a larger crossmodal congruency effect was ex-
pected in the Mirror condition, where the visual distractors were physically
located close to the participant’s own hands, than in the Far condition,
where the visual distractors were placed outside the participant’s periper-
sonal space (and behind a piece of glass). The results confirmed these
predictions, with larger crossmodal congruency effects being reported in
the Mirror condition than in the Far distractor condition. These results
therefore demonstrate that visual stimuli seen distally via a mirror reflec-
tion were correctly coded as originating in near peripersonal space when
they were presented from foam cubes that were held by the participant,
despite the fact that they could not be seen directly (see also [Maravita
et al. 00]).

2.3.3 Tool-Use: Consequences for Peripersonal Space

Thanks to the evolutionary liberation of the hands from any involvement in
locomotion, humans can efficiently use tools in order to extend the range of
their actions [Holmes and Spence 06]. Think, for example, of the croupier’s
rake, the smith’s hammer, or the surgeon’s knife. In fact, tool-use has
become such an integral part of modern life that there are relatively few
activities that are performed without them. This then raises a number of
important questions concerning how the sensory information arriving at
the somatosensory epithelia can be modulated and spatially re-coded by
tool-use. In particular, how is it that visual and somatosensory information
are integrated when people use a tool, and is functional peripersonal space
modified dynamically by active tool-use [Holmes and Spence 06,Maravita
and Iriki 04].

According to the classic neurology literature, the so-called body schema
is constructed from continuous input from somatosensory and propriocep-
tive afference [Head and Holmes 11,Holmes and Spence 06]. This schema
is most often thought of as an on going and constantly updated inter-
nal representation of the shape of the body, and of the position of the



�

�

�

�

�

�

�

�

40 2. Multi-Sensory Interactions

body in space, both in respect to the external world, and in relation
to its own parts [Berlucchi and Aglioti 97, Graziano and Botvinick 02].
Many researchers have argued that tools can be assimilated into the body
schema [Berlucchi and Aglioti 97, Wolpert et al. 98, Yamamoto and Ki-
tazawa 01]. Phantom phenomena, in particular, provide remarkable evi-
dence in support of the plasticity of the image of one’s own body, and its
extension by inanimate objects or tools [Holmes and Spence 06]. Many
amputees feel pain in their missing limb, and over time, their phantom and
its associated pain retract, “telescoping” toward the stump. The wearing
of a prosthetic limb, however, can suddenly relieve pain and restore the
phantom to its previous length, “fleshing out” the artificial limb. Several
accounts from primate studies, as well as from normal participants and
brain-damaged human patient populations, suggest that the manipulation
of tools and other external objects that frequently come into contact with
our bodies (such as rings worn on the hand) can also become incorporated
into the body schema [Aglioti et al. 96,Head and Holmes 11,Iriki et al. 96].

Primate neurophysiology has also suggested that the multisensory in-
tegration of visual and somatosensory inputs can be affected by the use of
tools (see [Ishibashi et al. 04] for a review). For example, [Iriki et al. 96]
reported the emergence of bimodal visuotactile cells in monkeys trained to
use tools when they recorded from cells in the anterior bank of the intra-
parietal sulcus. Many of the cells in this area responded both to tactile
or proprioceptive stimulation of, for example, the fingers, hand, and/or
arm, and to the presentation of visual stimuli (especially the sight of a
food reward) seen to be approaching the hand. Immediately after a short
period of tool-use, the visual RFs of these bimodal cells were reported to
be elongated or expanded along the length of the tool, such that visual
stimuli seen approaching the tip of the tool were now effective at driving
the neurons. Iriki and his colleagues speculated that the use of a tool could
plastically extend the representation of the hand in the body schema, so
that even distant stimuli could activate those multisensory neurons coding
for stimuli presented near the body. This explanation is similar to the idea
of peripersonal space being extended from around the hand to incorporate
all stimuli accessible by the tool, and not just by the hand (for further
discussion of these issues, see [Holmes and Spence 04,Holmes et al. 07]).

[Maravita et al. 02b] demonstrated behaviorally that the modifications
of the body-schema that can be induced by extended tool-use, such as
by the prolonged wielding of golf-club-like sticks, can result in changes in
the pattern of crossmodal congruency effects elicited by visual distractors
placed at the end of the wielded tools. The participants in Maravita et
al.’s studies had to make speeded elevation discrimination responses with
their right foot to vibrotactile targets presented from vibrators attached to
the proximal ends of two tools, one held in either hand. The participants



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 41

rested their index fingers and thumbs on these vibrators in a lower/upper
arrangement, respectively. The upper and lower visual distractors were now
placed at the far end of each tool. On some trials, the participants were
instructed to hold the tools in an uncrossed posture (see Figure 2.7(a)),
while on other trials they had to cross the tools over the midline (see
Figure 2.7(b)). Although there were visual distractors and vibrotactile
stimulators on each side of space in both conditions, the relative spatial
relationship between the pairs of visual distractors and the vibrotactile
targets connected by each tool changed when the tools were crossed over.
While each hand was “connected” by the tool with distractors on the same
side of space in the uncrossed-tools condition, each hand was “connected”
with distractors on the opposite side of space in the crossed-tools condition.

[Maravita et al. 02b] wanted to know whether reaching with the tool
to distractors on the opposite side of space could reduce, or even invert,
the usual pattern of crossmodal congruency effects (whereby visual distrac-
tors on the same side as vibrotactile targets usually produce larger cross-
modal congruency effects than those appearing on the opposite side [Spence
et al. 04b]), such that larger crossmodal congruency effects would be found
for opposite-side than for same-side distractors. A reversal of this kind
would be predicted if one believed that by extending the hand’s action
space via the tool, vibrotactile stimuli at the hand and visual distractors
on the far end of the tool would now share a common multisensory repre-
sentation (or at least have become, in some way, functionally connected)
and possibly show larger crossmodal congruency effects [Spence et al. 04b],
discussed earlier, for related results with crossed hands.

The results confirmed the prediction by showing that the typical pattern
of larger crossmodal congruency effects for same-side distractors demon-
strated in the uncrossed-tools posture was reversed when people used crossed
tools. Interestingly, however, while this pattern of results was found in the
first experiment, where participants actively switched between the two pos-
tures after every four trials, no such reversal of the crossmodal congruency
effect was reported in a second experiment when the participant’s posture
was changed passively by the experimenter after every 48 trials instead.
Under such conditions, the pattern of crossmodal congruency effects re-
mained very similar for the two postures. These results therefore suggest
that the tool-based spatial re-mapping of the crossmodal congruency effect
requires both the frequent and active use of the tools. [Maravita et al. 02b]
also compared the results from the earlier and later parts of each partic-
ipant’s experimental session. Interestingly, the critical spatial reversal of
the crossmodal congruency effect with crossed tools was only found to be
present in the second part of the experiment, and not in the first part,
presumably due to the prolonged practice with the tools participants had
had by the latter part of the experiment.



�

�

�

�

�

�

�

�

42 2. Multi-Sensory Interactions

(a)

(b)

Figure 2.7. Schematic view of the experimental set-up used by [Maravita
et al. 02b] to investigate the possible modification of the body schema elicited
by extended tool use. The position of the vibrotactile stimulators is indicated by
the triangles close to the participant’s hands, while the circles at the distal tip of
the tools represent visual distractors. (a) Shows the uncrossed-tools condition.
(b) Shows the crossed-tools condition.

[Holmes et al. 04a,Holmes et al. 07] have gone on to extend this line of
research using several different versions of the crossmodal congruency task
(requiring both spatial and non-spatial speeded discrimination judgments),
involving several different types of tools, different numbers of tools (two
tools versus just a single tool held in one hand), different tool use tasks
(reaching and pushing distant buttons, perceiving distant vibrations, and
actively crossing the tools), and different tool-use target locations (near
the hand, far from the hand, and at an intermediate distance). These
diverse studies have revealed several important phenomena of relevance
to furthering our understanding of tool use, peripersonal space, and the
body schema: first of all, the effects of tool use on peripersonal space,
as measured by the crossmodal congruency effect, are most clearly and



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 43

Figure 2.8. Spatial and temporal modulation of crossmodal congruency effects
in Holmes et al.’s [Holmes et al. 07] study of tool-use. The upper panel shows
crossmodal congruency effects (inverse efficiency, IE) varying both as a function
of distance from the hands (“near” the hands, in the “middles” of the shafts of
the tools, and at the “far” tips of the tools), and relative sides (visual distrac-
tors on the “same side” as the vibrotactile targets, and distractors and targets
on “different sides”). The lower panel shows IE crossmodal congruency effects
varying as a function of the number of trials since the last tool use movement,
for regular (tool-use every four trials) and random tool use schedules (tool-use
on average every four trials, but randomly determined).

consistently seen at the distant tips of tools, but not, or only weakly, in
the middles of the shafts of tools [Holmes et al. 04a] (see Figure 2.8(top)).
This finding is inconsistent with a literal “extension” of peripersonal space
by tool use (since that would predict a strong spatial modulation of the
congruency effect along the length of the tool) and suggests instead that
the tips of the tools may represent some kind of “fovea” for multisensory
interactions during tool use.

Second, Holmes et al.’s [Holmes et al. 07] research has shown that, in
the non-spatial version of the crossmodal congruency task, the magnitude
of any crossmodal congruency effects on different sides of space depends
not only upon the position of a handheld tool, but also on whether just



�

�

�

�

�

�

�

�

44 2. Multi-Sensory Interactions

a single tool is being used or whether instead two tools are being manip-
ulated simultaneously. Third, the overall magnitude, but not the spatial
distribution, of crossmodal congruency effects, is affected by preparing to
use a tool: that is, [Holmes et al. 07] found that crossmodal congruency
effects were maximal on the trial immediately prior to an expected tool use
movement, and minimal immediately after the movement, but only when
the tool use movement was itself fully predictable (see Figure 2.8(bottom)).
This may be an important new finding in studies of the crossmodal con-
gruency effect—that preparing to move toward a visual goal increases the
magnitude of crossmodal congruency effects (though see [Kitagawa and
Spence 05]). Finally, Holmes et al.’s [Holmes et al. 07] recent fMRI study
of the effects of tool use on the neural processing of simple visual (dis-
tractor) stimuli during a vibrotactile discrimination task revealed that the
dominant frame of reference for multisensory interactions during tool use
is eye-centered rather than hand-centered (see also Figure 2.4).

Holmes et al.’s results suggest that the crossmodal congruency effect
can be modulated by any changes of spatial coding that follow tool-use.
The crossmodal congruency effect elicited by the visual distractors in this
task depend not only upon the physical distance between the target stim-
uli and the distractors, but also upon their “functional” proximity in terms
of action space (for logically related reports in brain-damaged patients,
see [Ackroyd et al. 02,Farnè and Làdavas 00,Maravita et al. 01,Maravita
et al. 02a]). The results of studies using the visuotactile crossmodal con-
gruency task therefore suggest that once a region of space that is distant
from the hand is reached by a tool, it becomes, in some sense, equivalent
to a near, peripersonal source of stimulation. The latest results with the
crossmodal congruency task have therefore generated results that converge
with, but also considerably extend, those from single-cell studies in mon-
keys that have been taught to use tools [Iriki et al. 96].

2.3.4 The Role of Body Shadows in the Binding of
Personal and Extrapersonal Space

Researchers have recently started to investigate another kind of binding
between personal and extrapersonal space, one that can be elicited by the
viewing of one’s own body shadows. When the shadow of our own body is
cast in the environment, we see a projection of ourselves “reaching” toward
distal objects. While such projections may sometimes have little anatom-
ical resemblance to our own bodies, they nevertheless invariably move in
tight spatio-temporal correlation as our own body moves through space.
In this respect, body shadows can evoke both a sense of ownership and a
sense of agency in the mind of the observer [Jeannerod 03]. Body shadows
thus have the potential to influence the internal representation of our own



�

�

�

�

�

�

�

�

2.3. Using the Crossmodal Congruency Task 45

body, as well as playing an important role in self-recognition. Finally, body
shadows offer a potentially more ecologically plausible example than either
rubber hands [Botvinick and Cohen 98,Pavani et al. 00,Tsakiris and Hag-
gard 05] or real-time video images of the hand [Whiteley et al. 04,Ijsselsteijn
et al. 05, Schaefer et al. 06, Tsakiris et al. 06, Pavani and Zampini 07] for
the study of the interplay between peripersonal and extrapersonal space.

[Pavani and Castiello 04] conducted the first research to specifically ad-
dress the possible role of body shadows in modulating the representation
of peripersonal and extrapersonal space. They presented visual distractors
from a location on the body midline that was equidistant (30 cm) from
each of the tactually-stimulated hands, while participants had to decide
as quickly as possible on each trial whether they had received a touch at
the thumb or index finger, regardless of the side that was stimulated (see
Figure 2.9). During the experiment, the shadow of either the tactually-
stimulated hand or the unstimulated hand was cast on the table, by means
of a lateralised light source placed behind the participant. Throughout an
entire block of trials, the shadow of one of the participant’s hands stretched
from their own body to the distal visual distractors, as if to “grasp” them.
This experimental set-up created a situation in which the distracting stim-
uli were equidistant from the participant’s two hands, but in close proximity
to the cast shadow of one or the other of them. Despite the fact that par-

Figure 2.9. Schematic view of the experimental set-up used by [Pavani and Gal-
fano 07] in their study of the incorporation of body shadows into personal space
using the visuotactile crossmodal congruency task. Either the left or right lamp
was illuminated in each block of trials, in order to cast a shadow of one or the
other hand over the LEDs situated at the center of the table. Larger crossmodal
congruency effects were associated with the hand that cast the shadow than with
the other hand.



�

�

�

�

�

�

�

�

46 2. Multi-Sensory Interactions

ticipants were explicitly instructed to ignore both the visual distractor and
the cast shadow on the table top, Pavani and Castiello’s results showed that
crossmodal congruency effects were systematically larger when the tactile
targets were delivered to the hand casting the shadow than when delivered
to the other hand. No such modulation of the crossmodal congruency effect
emerged when the participants wore polygonally shaped gloves that cast an
unnatural hand shadow, or when the participants viewed the static outline
of either the stimulated or unstimulated hand in front of them (though
see [Igarashi et al. 04, Igarashi et al. 07]). Pavani and Castiello went on
to argue that natural body shadows may therefore favor the binding of
personal and extrapersonal space, and possibly also modify the perceived
image of the shape of the body and its extension in space.

The existence of such automatic links between a particular part of the
body and its corresponding cast shadow suggests that body shadows may
act as a powerful visual cue for orienting attention toward the body it-
self. This hypothesis was explicitly tested by [Galfano and Pavani 05] in
a follow-up experiment using a modified version of the classic exogenous
cuing paradigm (e.g., see [Kennett et al. 02]). The participants in this
study were instructed to perform a speeded spatial discrimination task in
response to tactile stimuli delivered to one of their hands, while viewing
the shadow of either their right or left hand cast in front of them, to the
right or left of visual fixation respectively, unpredictably in each trial. De-
spite the fact that the shadows were completely task-irrelevant, and were
presented almost two seconds before the tactile targets, the results never-
theless showed faster and more accurate tactile discrimination responses at
the hand casting the shadow than at the other hand. Just as in Pavani
and Castiello’s [Pavani and Castiello 04] original study, these hand-shadow
effects were rendered less reliable when the hand shadow was replaced by
the cast shadow of an object having a polygonal shape instead.

In two further studies, Pavani and his colleagues [Pavani and Gal-
fano 07,Pavani et al. 08] went on to examine the factors affecting the in-
terplay between personal and extrapersonal space in the presence of body
shadows. In addition to probing personal space using tactile stimuli (at
the hands), they also probed the extrapersonal space occupied by the cast
shadow using visual stimuli near the shadow. The results clearly showed
that even when the modality and location of the target were unpredictable
(i.e., visual targets near the shadow or tactile targets at the hands, inter-
mingled within each block of experimental trials), a hand-shadow appearing
more than two seconds before the target acted selectively as a cue only for
the tactile stimuli. In other words, the cast shadow selectively cued the
portion of space it referred to (i.e., the hand), thus showing that the brain
correctly and fully resolved the shadow correspondence problem [Mamas-
sian 04] during the long interval between the onset of the shadow and the



�

�

�

�

�

�

�

�

2.4. Using the Crossmodal Congruency Task 47

presentation of the target. Importantly, these cuing effects were immedi-
ately evident when the cue stimulus was the actual hand shadow, while
they were found to develop slowly during the block of trials in which the
participants wore polygonally shaped gloves that cast a shadow with un-
natural shape and only preserved the spatio-temporal correlation with the
participant’s hand movements (see [Maravita et al. 02b], described above,
for a somewhat similar learning effect when people use tools).

The result of a second series of experiments by [Pavani et al. 08] showed
that differential cuing effects emerge as a function of the time interval
between the onset of the shadow and the onset of the target. At very short
shadow-target SOAs (of 100 ms), cast shadows favoured responses to visual
targets (i.e., responses in the region of space that the cast shadow physically
occupied). At SOAs of 600 ms, the cast shadows produced inhibition of
return effects for the visual stimuli [Klein 00]. Finally, at SOAs of 1200
and 2400 ms, attentional cuing effects of the shadow emerged selectively for
the tactile targets, with significant validity (or cuing) effects being observed
only for the hand casting the shadow and not for the non-shadow hand. In
other words, the cast shadow acted as a lateralised cue only for the region
of space it referred to, and not for the region of space it occupied.

2.4 Using the Crossmodal Congruency Task
to Investigate the Neural Underpinnings
of Peripersonal Space

The behavioral results from the crossmodal congruency studies reviewed
so far are consistent with the existence in humans of visuotactile repre-
sentations of peripersonal space that are updated as posture changes, and
that can adapt to incorporate into peripersonal space those visual stimuli
that would normally be considered to be in far space instead. However, it
is not yet clear whether the maintenance of an accurate representation of
visuotactile space as posture changes relies on cortical structures (such as
ventral premotor cortex, ventral intraparietal area, and parietal area 7b),
sub-cortical structures (such as the putamen), or both, since bimodal visuo-
tactile neurons with tactile RFs on the hand and visual RFs that follow the
hands as they move have been reported in all of these structures [Graziano
and Gross 93,Graziano et al. 94].

2.4.1 The Representation of Visuotactile Space
in the Split-Brain

[Spence et al. 01a] attempted to address this question by testing a split-
brain patient on the crossmodal congruency task. For split-brain patients,



�

�

�

�

�

�

�

�

48 2. Multi-Sensory Interactions

the left hemisphere controls the right hand and receives direct visual pro-
jections from the right visual field, but (in contrast to normal participants)
receives little or no input from the ipsilateral side. Similarly, the right
hemisphere controls the left hand and receives direct visual projections
from the left visual field. In most situations, neural signals resulting from
the presentation of visual and tactile stimuli in the same spatial location
will project, at least initially, to the same hemisphere (i.e., the right hand
and the right visual field project to the left hemisphere, and the left hand
and left visual field project to the right hemisphere). It is unclear, though,
what happens when a hand is crossed over into the opposite hemifield. For
instance, if the right hand of a split-brain patient is placed in the left visual
field, would visual events in the left field map onto the tactile RFs of the
right hand, as they do in the intact human brain? If this normal remapping
did not occur, then bimodal cells in cortex structures such as the ventral
premotor cortex, parietal area 7b (or both)—which are disconnected in the
split brain—would appear to be crucial for remapping the visual RF onto
the tactile RF when the hand crosses over the midline. Conversely, if this
normal remapping does occur in the split brain, then bimodal cells in sub-
cortical structures such as the putamen or superior colliculus—which are
shared between the disconnected hemispheres—would appear to be impli-
cated instead.

[Spence et al. 01a] compared the performance of a split-brain patient
(J.W.) with that of two healthy age-matched neurologically normal control
participants on the crossmodal congruency task. At the time of testing,
J.W.’s corpus callosum had been completely sectioned for more than 20
years (with the anterior commissure left intact) in order to try to cure his
epilepsy. All three participants made elevation discrimination responses
with their right foot to vibrotactile targets presented to the thumb or in-
dex finger of their right hand, thus ensuring that both their perception
of the vibrotactile targets, and the initiation of their elevation discrimina-
tion responses, were controlled by the same (i.e., left) hemisphere. The
participants held a foam cube in their right hand in one of three different
postures, while their left arm rested passively in their lap. The visual dis-
tractor stimuli were presented from two foam cubes, one situated on either
side of fixation (see Figure 2.10 for a schematic illustration of the postures
adopted by the participants in the different blocks of trials, and the pattern
of crossmodal congruency results obtained).

Visual inspection of Figure 2.10 shows that the magnitude of the cross-
modal congruency effects elicited by the visual distractors on the right cube
was modulated by the relative position of the right hand: more specifically,
the right distractor lights elicited a larger crossmodal congruency effect
when the participant held the cube on which they were mounted in their
right hand, and decreased when the participants grasped a more eccen-



�

�

�

�

�

�

�

�

2.4. Using the Crossmodal Congruency Task 49

Figure 2.10. Schematic view of the foam cubes (represented by open rectangles)
and postures adopted by the normal control participants (top row) and by the
split-brain patient J.W. (bottom row), in Spence et al.’s [Spence et al. 01b] study
showing the direction of fixation (dotted line) and the different posture conditions.
The location of the vibrotactile targets, which were always presented to the right
hand, are indicated by the letter T . Mean crossmodal congruency effects (inverse
efficiency scores, in ms) elicited by visual distractors are shown numerically next
to the cube on which they were situated. (The absence of any values next to
certain cubes shows that no distractor lights were attached to that particular
cube.) Crossmodal congruency effects represent a difference score: performance
on incongruent–distractor trials (i.e., trials on which the vibrotactile target and
visual distractor appeared at different elevations)—performance on congruent–
distractor trials (i.e., trials on which the target and distractor were presented
from the same elevation).

trically positioned cube instead. However, the most interesting result oc-
curred when the participants moved their right hand across the midline into
the left hemifield: for the two control participants, crossmodal congruency
effects were now much larger for distractor lights on the left cube (now
held by the crossed right hand) than for lights on the right cube, again
replicating Spence et al.’s [Spence et al. 04b] findings. By contrast, the
right distractor lights always interfered more than those on the left for the
split-brain patient J.W., no matter whether his right hand was placed in an
uncrossed or a crossed posture. This result therefore suggests a failure to
remap visuotactile space appropriately when the split-brain patient’s right
hand crossed into left hemispace.

Subsequent research confirmed that J.W.’s problem was not simply with
seeing lights presented ipsilateral to the responding hemisphere (i.e., on



�

�

�

�

�

�

�

�

50 2. Multi-Sensory Interactions

the left), but more specifically had to do with a failure to maintain an
accurate representation of visuotactile peripersonal space across the two
hemifields [Spence et al. 01b]. On the basis of these results, Spence and his
colleagues went on to argue that cross-cortical connections are critical for
the maintenance of an up-to-date representation of visuotactile peripersonal
space, at least when the right hand crosses the midline (and presumably
when the left hand is crossed over into the right hemispace as well). Inter-
estingly, preliminary data from [Maravita et al. 08] has also shown a lack
of any spatial modulation of crossmodal congruency effects on the side of
space contralateral to brain damage in a small group of neglect patients.

2.4.2 Disrupting the Representation of Visuotactile Space
with Repetitive Transcranial Magnetic Stimulation

The pattern of results obtained with the split-brain patient J.W. supports
the view that performance on the crossmodal congruency task may index
a relatively high-level (i.e., cortical) representation of visuotactile space.
However, given that J.W. has by now been tested on a near-daily basis
for much of the last 30 years, it is important that converging evidence
be found from other cognitive neuroscience methodologies to back up the
claims made on the basis of this rather unique patient. To this end, Wal-
ton et al. (in preparation) have been investigating whether it is possible to
elicit the abnormal pattern of crossmodal congruency effects demonstrated
by J.W. in a relatively normal population of Oxford undergraduates, by
using repetitive transcranial magnetic stimulation (rTMS) to disrupt ac-
tivity in a region corresponding approximately to the angular gyrus and
the posterior parts of the intraparietal sulcus. The preliminary results of
this research suggest that performance on the crossmodal congruency task
can also be selectively impaired in participants when they adopt a crossed-
hands posture (rather than an uncrossed posture) and rTMS is applied
in the region of the angular gyrus and posterior parts of the intraparietal
sulcus (rather than over primary visual or somatosensory areas, or when
sham rTMS is applied to the back of the neck). The pattern of crossmodal
congruency effects observed while using rTMS therefore provides converg-
ing evidence to support the critical importance of cortical structures (and
presumably also cross-cortical connections) in maintaining an up-to-date
representation of visuotactile peripersonal space.

2.5 Conclusion
It should, by now, hopefully be clear that variations in the magnitude
of the crossmodal congruency effect have provided researchers with both



�

�

�

�

�

�

�

�

2.5. Conclusion 51

a reliable and a robust index of common spatial position across differ-
ent sensory modalities, in particular, vision and touch. Over a number
of such studies, researchers have shown that visual distractors interfere
significantly with speeded elevation discrimination responses to vibrotac-
tile target stimuli presented to the thumb or index finger of either hand,
even when participants are instructed to ignore what they see. The largest
crossmodal congruency effects are observed when vision and touch are pre-
sented from approximately the same spatial location at around the same
time, and decrease as the relative spatiotemporal separation between target
and distractor stimuli increases [Maravita et al. 06,Shore et al. 06,Spence
et al. 04b]. The crossmodal congruency effects elicited by visual distrac-
tors follow the hands when they move through space, even when they cross
the midline in healthy participants, such that it is always distractor lights
near the participant’s current hand position that interfere more than lights
placed elsewhere [Holmes et al. 06a,Spence et al. 01a,Spence et al. 04b].

In the last few years, the crossmodal congruency task has been used
to investigate the flexibility of the representation of the body (or body
schema), as highlighted by the apparent displacement of the limbs seen in
the “rubber hand” illusion [Austen et al. 01,Austen et al. 04,Kanayama
and Ohira 07,Pavani et al. 00,Walton and Spence 04], and the changes in
peripersonal space that can occur following extended use of tools [Holmes
et al. 04a,Holmes et al. 07,Maravita et al. 02b]. These results are consis-
tent with the extant neurophysiology concerning the visuotactile represen-
tation of peripersonal space seen in primates [Graziano 99,Graziano and
Botvinick 02,Iriki et al. 96]. The crossmodal congruency task has also been
used to probe disturbances to the visuotactile representation of space seen
following specific brain damage, such as the sectioning of the corpus callo-
sum in split-brain patients [Spence et al. 01a,Spence et al. 01b], or neglect
of the side of space contralateral to brain damage [Maravita et al. 05].
It seems increasingly likely that our growing understanding of some of
the key factors governing whether or not particular distal events will be
functionally incorporated into the body schema and/or extend or shift the
boundary of peripersonal space may also have a number of important ap-
plications for the future design and implementation of teleoperation and
virtual haptic reality systems (e.g., see [Held and Durlach 93, Ijsselsteijn
et al. 05,Marescaux et al. 01,Sanchez-Vives and Slater 05,Slater et al. 07]).

Taken together, we believe that the results of the crossmodal congru-
ency studies that have been conducted over the last decade highlight the
utility of the paradigm for investigating the relative contributions of vi-
sual, tactile, and proprioceptive inputs to the multisensory representation
of peripersonal space in both normal participants and in various clinical pa-
tient populations. In the years to come, it is to be hoped that researchers
will be able to combine neurophysiological, electrophysiological, neuropsy-



�

�

�

�

�

�

�

�

52 2. Multi-Sensory Interactions

chological, and neuroimaging data with behavioral data from normal par-
ticipants on this task in order to try to bridge the gap between the rich body
of published single-cell neurophysiological data, and the human perceptual
experiences with which we are all familiar [Graziano and Botvinick 02]. We
believe that by adopting this converging methodologies approach, cognitive
neuroscience research will make significant inroads toward resolving the
challenging questions regarding the multisensory representation of space.

Acknowledgments
Our thanks go to Paola Rigo for drawing a number of the figures used in
this article.



�

�

�

�

�

�

�

�

3
Design Issues in Haptic

Devices
H. Iwata

The sense of touch is instrumental for understanding the physical world
surrounding us. The last decade has seen significant advance in the de-
velopment of haptic interface. However, methods for implementation of
haptic interface are still in their early stage. Compared to visual and audi-
tory displays, haptic interfaces have not been widely used in our daily life.
This chapter discuss issues and solutions in the design of haptic devices.

3.1 Towards Full-Body Virtual Touch
The sense of touch is instrumental for understanding the real world. Thus,
the use of force feedback to enhance computer-human interaction has often
been suggested to improve our immersion in the virtual environments. A
haptic interface is a feedback device that generates sensation to the skin
and muscles, including a sense of touch, weight, and rigidity. Compared
to ordinary visual and auditory sensations, haptics is difficult to synthe-
size. Visual and auditory sensations are gathered by specialized organs,
the eyes and ears. On the other hand, a sensation of force can occur
at any part of the human body and is therefore inseparable from actual
physical contact. These characteristics lead to many challenges when de-
veloping a haptic interface. Thus, the discussions in this chapter focus on
the specific part of the body where haptic sensation is dominant in human
activities.

First, finger and hand are indispensable for object manipulation. There
have been many haptic interfaces built for hand-object interaction. Ex-
oskeletons and pen-based haptic interface are popular, but they pose some
problems in natural interaction.

The other important part for haptic sensation is a foot. Walking on foot
is the most intuitive way to move about. It is well known that the sense of
distance or orientation while walking is much better than that while riding

53



�

�

�

�

�

�

�

�

54 3. Design Issues in Haptic Devices

in a vehicle. Several locomotion interfaces have been proposed, but some
devices do not provide natural walking.

This chapter discusses major issues in implementation of effective haptic
interface. Research on haptic interface started around 1986 in the author’s
laborarory. The research activities of the author over a long history suggest
several solutions for many of these issues.

3.2 Sensory Modes and Interface Devices
Sensory modes are classified into seven categories. Figure 3.1 shows these
modes, roles of each sensory mode, and existing interface devices corre-
sponding to each mode. Visual, auditory, olfactory, vestibular, and taste
are gathered by specialized sense organ: eye, ear, nose, semicircular canals,
and tongue, respectively.

Haptics is composed of proprioception and skin sensation. Proprio-
ception is complemented by mechanoreceptors of skeletal articulations and
muscles. There are three types of joint position receptors: free nerve end-
ing, as well as Ruffini and Pacinian corpuscles. Ruffini corpuscles detect
static force. On the other hand, Pacinian corpuscles function to measure
acceleration of the joint angle. Position and motion of the human body is

  

Sensory 

modes 

Roles of sense 

organs 

Existing interface 

devices 

Vision See TV, projector, etc 

Auditory Hear Radio, audio, etc 

Olfactory Smell Early stage of 

research prototype 

 

Vestibular 

 

Acceleration 

 

Motion platform 

Taste Flavor/food 

texture 

Early stage of 

research prototype 

Skin sensation Texture of 

surface 

Communication 

aids for visual 

disabilities 

Proprioception 

 

Rigidity/weight Research prototypes

 

 

Conventional 
media technology 
(audio/visual) 

Haptics-related 
media technology 

Figure 3.1. Sensory modes and interface devices.



�

�

�

�

�

�

�

�

3.3. Locomotion Interfaces 55

perceived by these receptors. Force sensation is derived from mechanore-
ceptors of muscles: muscle spindles and Goldi tendons. These receptors
detect contact forces applied by an obstacle in the environment.

Skin sensation is derived from mechanoreceptors and thermoreceptors
of skin. Sense of touch is evoked by those receptors. Mechanoreceptors of
skin are classified into four types: Merkel disks, Ruffini Capsules, Meiss-
ner Corpuscles, and Pacinian Corpuscles. These receptors detect edge of
object, skin stretch, velocity, and vibration, respectively.

Acceleration generates not only vestibular sensation but also forces to
the whole body. Thus, it is related to proprioception. Vestibular sensation
also contributes to the sense of locomotion. Taste is gathered by chemical
receptors on the tongue. It is composed of food texture or vibration while
biting. Therefore, proprioception, skin sensation, taste, and vestibular
sensation are all related to haptics.

Please refer to Chapter 1 for a more detailed discussion on haptic per-
ception.

3.3 Locomotion Interfaces
In most applications of virtual environments, such as training or visual sim-
ulations, users need a good sensation of locomotion. We have developed
several prototypes of interface devices for walking since 1988. It has of-
ten been suggested that the best locomotion mechanism for virtual worlds
would be walking. The sense of distance or orientation while walking is
much better than that while riding in a vehicle. However, the proprio-
ceptive feedback of walking is not provided in most applications of virtual
environments.

Here we briefly describe a few locomotion interfaces developed at
H. Iwata’s lab. For more general information on locomotion interfaces,
please refer to Chapter 5 in this book.

3.3.1 Virtual Perambulator

A possible method for locomotion in virtual space is a hand controller. In
terms of natural interaction, the exertion of walking is essential to locomo-
tion. There are two objectives for this project. The first was the creation
of a sense of walking while the position of the walker is maintained in the
physical world. The second was to allow for the changing direction of the
walker’s feet.

In order to realize these functions, a user of the Virtual Perambulator
wore a parachute-like harness and omnidirectional roller skates [Iwata 90].
Figure 3.2 shows an overview of the device. The trunk of the walker was



�

�

�

�

�

�

�

�

56 3. Design Issues in Haptic Devices

Figure 3.2. Virtual Perambulator (1989).

fixed to the framework of the system by the harness. An omnidirectional
sliding device is used for changing direction by feet. We developed a special-
ized roller skate equipped with four casters, which enabled two-dimensional
motion. The walker could freely move his/her feet in any direction. Motion
of the feet was measured by an ultrasonic range detector. From the result
of this measurement, an image of the virtual space was displayed in the
head-mounted display corresponding with the motion of the walker. The
direction of locomotion in virtual space was determined according to the
direction of the walker’s step.

We improved the harness and sliding device of the Virtual Perambulator
[Iwata and Fujii 96] and demonstrated it at SIGGRAPH 95.

3.3.2 Torus Treadmill

The Virtual Perambulator achieved the objectives of the first stage; the
user can walk while his/her position is maintained and can freely change
direction. However, one problem remained. Walkers had to slide their feet
by themselves. In other words, the device was passive. Walkers had to get
accustomed to the sliding action. We therefore aimed to develop an active
device which moves corresponding to the motion of the walker.



�

�

�

�

�

�

�

�

3.3. Locomotion Interfaces 57

Figure 3.3. Torus Treadmill (1997).

A key principle of treadmill-based locomotion interface is to make the
floor move in a direction opposite to that of the walker [Christensen et al. 98].
The motion of the floor cancels the displacement of the walker in the real
world. The major problem of a treadmill-based locomotion interface is to
allow the walker to change direction. Omnidirectional motion can be real-
ized by spreading small rollers [Darken et al. 97], but this method suffers
from limited durability and mechanical noise.

The Torus Treadmill, developed in 1997, is an omnidirectional infinite
floor implemented by a group of belts connected to each other [Iwata 99].
Figure 3.3 shows an overall view of the Torus Treadmill. The device em-
ploys twelve treadmills. These treadmills move the walker along an “X”
direction. Twelve treadmills are connected side by side and driven in a
perpendicular direction. This motion moves the walker along a “Y” di-
rection. The combination of these motions enables the walker to perform
omnidirectional walking.

3.3.3 GaitMaster

One of the major research issues in locomotion interface is presentation of
uneven surface. Locomotion interfaces are often applied for simulation of



�

�

�

�

�

�

�

�

58 3. Design Issues in Haptic Devices

Figure 3.4. GaitMaster (1999).

buildings or urban spaces. Those spaces usually include stairs. A walker
should be provided the sense of climbing up or going down those stairs.
The Torus Treadmill achieved natural walking, but it is almost impossible
to present uneven surface by the use of treadmills.

We therefore designed a new locomotion interface that simulates an
omnidirectional uneven surface [Iwata et al. 01a]. The device is named
“GaitMaster.” Figure 3.4 shows a prototype GaitMaster. Core elements
of the device are two 6 DOF motion platforms mounted on a turntable.
A walker stands on the top plate of the motion platform. Each motion
base is controlled to trace the position of the foot. In order to keep the
position maintained, the motion platforms cancel the motion of the feet.
The vertical displacement of the walker is also canceled by up-and-down
motion of the top plate. The turntable is controlled to trace the orientation
of the walker. The motion of the turntable removes interference between
the two motion platforms.

We developed a simplified mechanism for the GateMaster, which en-
ables the device portable. We applied it to gait rehabilitation [Yano et al. 03].

3.3.4 CirculaFloor

From the results of our research into locomotion interface, we determined
that an infinite surface is an ideal device for creating a sense of walking. In



�

�

�

�

�

�

�

�

3.3. Locomotion Interfaces 59

Figure 3.5. CirculaFloor.

2004 we proposed a new locomotion interface named “CirculaFloor” [Iwata
et al. 04]. The device employs a group of omnidirectional movable tiles to
realize the locomotion interface. Each tile is equipped with a holonomic
mechanism that achieves omnidirectional motion. Infinite surface is simu-
lated by circulation of the movable tiles.

The major innovation of this work is a new method for creation of an
infinite floor. The easiest way to realize an infinite floor is the use of a
treadmill. However, a treadmill has difficulty in realizing omnidirectional
walking. A motion footpad for each foot is an alternative. It has the ability
to simulate omnidirectional walking, as well as walking on uneven surface.
The major limitation of this method is that high accuracy is required for
the footpad to trace the walker. Actually, the walker has to be careful
about mistracing of the footpad.

The CirculaFloor is a new method that takes advantage both from
treadmill and footpad. It creates omnidirectional infinite surface by the use
of a group of movable tiles. Combination of the floors provides sufficient
area for walking thus precision tracing of the foot position is not required.

The motion of the feet is measured by position sensors. The tiles move
opposite to the measured direction of the walker, so that the motion of the
step is canceled. The position of the walker is fixed in the real world by this
computer-controlled motion of the floors. The circulation of the tiles has
the ability to cancel the displacement of the walker in an arbitrary direction.
Thus, the walker can freely change direction while walking. Figure 3.5
shows an overall view of the prototype CirculaFloor.



�

�

�

�

�

�

�

�

60 3. Design Issues in Haptic Devices

Locomotion interfaces often require bulky hardware, because they have
to carry the whole body of the user. Also, the hardware is not easy to
reconfigure to improve its performance or add new functions. Considering
these issues, the CirculaFloor has scalable hardware. It is easy to install,
and its performance can be improved by upgrading actuators of each floor.
Moreover, it has the potential to create uneven surface by mounting an
up-and-down mechanism on each tile.

3.4 Desktop Displays
This section describes devices whose actuators are built in a desktop casing,
and the user perceives virtual haptic feedback through various types of light
end-effectors.

3.4.1 Desktop Force Display with Exoskeleton

The first step was the use of an exoskeleton. An exoskeleton is a set of ac-
tuators attached to a hand or a body. In the field of robotics research, ex-
oskeletons have often been used as master-manipulators for tele-operations.
However, most master-manipulators entail a large amount of hardware and
therefore have a high cost, which restricts their use. More compact hard-
ware design is needed for common use in human-computer interactions.

Figure 3.6. Desktop force display (1989).



�

�

�

�

�

�

�

�

3.4. Desktop Displays 61

We therefore proposed the concept of the desktop force display, and the
first prototype was developed in 1989. The device is a compact exoskele-
ton for desktop use [Iwata 90]. Figure 3.6 shows an overall view of the
desktop force display. The core element of the device is a 6-DOF parallel
manipulator, in which three sets of pantograph link mechanisms are em-
ployed. Three actuators are set coaxially with the first joint of the thumb,
the forefinger, and the middle finger of the operator.

The concept of the desktop force display leads to the basic configuration
of commonly available haptic interfaces, including PHANTOM [Massie and
Salisbury 94].

3.4.2 Pen-Based Force Display

Users of exoskeletons feel troubled when they put on or take off these
devices. This disadvantage obstructs practical use of force displays. The
author proposed a concept of a tool-handling-type haptic interface, which
does not use a glove-like device.

The pen-based force display is a typical example of a tool-handling-type
haptic interface [Iwata 93]. Users are familiar with a pen in their everyday
life. Most of the human intellectual works are done with a pen. People
use spatulas or rakes for modeling solid objects. These devices have stick-
shaped grips similar to a pen. In this aspect, the pen-based force display is
easily applied to design of 3D shapes. Medical applications, such as surgical
simulators, can be developed using a pen-based force display.

Figure 3.7. Pen-based force display (1993).



�

�

�

�

�

�

�

�

62 3. Design Issues in Haptic Devices

In 1993, we developed a six-degree-of-freedom haptic interface which has
pen-shaped grip. The human hand has an ability of six-degree-of-freedom
motion in 3D space. In case a 6 degree-of-freedom master manipulator is
built using serial joints, each joint must support the weight of the upper
joints. This characteristic leads to large hardware of the manipulator.
We use a parallel mechanism in order to reduce the size and weight of
the manipulator. The pen-based force display employs two three-degree-
of-freedom manipulators. Both ends of the pen are connected to these
manipulators. The total degrees of freedom of the force display are six.
Force and torque are applied at the pen. An overall view of the force
display is shown in Figure 3.7. Each 3 DOF manipulator is composed of
a pantograph link. By this mechanism, the pen is free from the weight of
the actuators. The inertia of the motion parts of the linkages is so small
that compensation is not needed. The rotational angle around the axis of
the pen is determined by the distance between the end points of the two
pantographs. A screw motion mechanism is installed in the pen, which
converts the length of the pen into rotational motion.

3.4.3 Haptic Master

The Desktop Force Display was converted to a tool-handling-type haptic
interface. We removed the exoskeleton for the fingers and put a ball-shaped
grip. The device was called “HapticMaster” and was commercialized by
Nissho Electronics Co. It was demonstrated at SIGGRAPH 94 [Iwata 94]

Figure 3.8. Haptic Master (1994).



�

�

�

�

�

�

�

�

3.5. Flexible Surface Displays 63

as the first haptic interface in the world that was shown openly to public.
Figure 3.8 shows an early version of the HapticMaster. The HapticMaster
is a high-performance force feedback device for desktop use. This device
employs a parallel mechanism in which a top triangular platform and a
base triangular platform are connected by three sets of pantographs. The
top end of the pantograph is connected with a vertex of the top platform
by a spherical joint. This compact hardware has the ability to carry a large
payload. Each pantograph has three DC motors. The total number of mo-
tors is nine, which is redundant for a 6-DOF manipulator. The redundant
actuators are used for elimination of singular points. Parallel mechanisms
often include singular points in working space.

3.5 Flexible Surface Displays
The author demonstrated the haptic interfaces to a number of people and
found that some of them were unable to fully experience virtual objects
through the medium of synthesized haptic sensation. There seem to be
two reasons for this phenomenon. First, these haptic interfaces only allow
the users to touch the virtual object at a single point, or at a group of
points. These contact points are not spatially continuous, due to the hard-
ware configuration of the haptic interfaces. The user feels a reaction force
thorough a grip or thimble. Exoskeletons provide more contact points, but
these are achieved by using Velcro bands attached to specific parts of the
user’s fingers, which are not continuous. Therefore, these devices do not
recreate a natural interaction when compared to manual manipulation in
the real world.

The second reason why they fail to perceive the sensation is related
to a combination of the visual and haptic displays. A visual image is
usually combined with a haptic interface by using a conventional CRT
or projection screen. Thus, the user receives visual and haptic sensation
through different displays and therefore has to integrate the visual and
haptic images in his/her brain. Some users, especially elderly people, have
difficulty in this integration process.

Considering these problems, a new configuration of visual/haptic dis-
play was designed [Iwata et al. 01b]. The device is composed of a flexible
screen, an array of actuators, and a projector. The flexible screen is de-
formed by the actuators in order to simulate the shape of virtual objects.
An image of the virtual objects is projected onto the surface of the flexible
screen. Deformation of the screen converts the 2D image from the projec-
tor into a solid image. This configuration enables users to touch the image
directly using any part of their hands. The actuators are equipped with
force sensors to measure the force applied by the user. The hardness of



�

�

�

�

�

�

�

�

64 3. Design Issues in Haptic Devices

the virtual object is determined by the relationship between the measured
force and its position on the screen. If the virtual object is soft, a large
deformation is caused by a small applied force.

3.5.1 FEELEX 1

The FEELEX 1, developed in 1997, was designed to enable double-handed
interaction using the whole of the palms. The screen is connected to a linear
actuator array that deforms its shape. Each linear actuator is composed of
a screw mechanism driven by a DC motor. The screw mechanism converts
the rotation of an axis of the motor to the linear motion of a rod. The
motor must generate both motion, and a reaction force on the screen. The
diameter of the smallest motor that can drive the screen is 4 cm. We set
a 6 × 6 linear actuator array under the screen. The deformable screen is
made of a rubber plate and a white nylon cloth. Figure 3.9 shows an overall
view of the device.

3.5.2 FEELEX 2

The FEELEX 2 is designed to improve the resolution of the haptic surface.
A piston-crank mechanism is employed for the linear actuator that realizes
8 mm resolution (Figure 3.10). The piston-crank mechanism can easily

Figure 3.9. FEELEX 1 (1998). Figure 3.10. FEELEX 2 (2001).



�

�

�

�

�

�

�

�

3.5. Flexible Surface Displays 65

achieve offset position. A servomotor from a radio-controlled car is selected
as the actuator. The rotation of the axis of the servomotor is converted to
the linear motion of the rod by a crankshaft and a linkage.

3.5.3 Volflex

A major limitation of the FEELEX is that the linear actuator array can
only present the top surface of a virtual object. It cannot present the
side or bottom. Thus, the user cannot grasp the object. We therefore
developed a new haptic interface named “Volflex.” Figure 3.11 shows an
overall view of the device. It is composed of a group of computer-controlled
air balloons. The balloons fill the interaction surface. They are arranged
in a body-centered cubic lattice. A tube is connected to each balloon. The
volume of each balloon is controlled by an air cylinder. The tubes are
connected to each other by springs. This mechanical flexibility provides an
arbitrary shape of the interaction surface. Each air cylinder is equipped
with a pressure sensor that detects force applied by the user. According to
the pressure data, the device is programmed to perform like clay. Unlike
real clay, the Volflex allows the user to “undo” operations.

Virtual clay is one of the ultimate goals of interactive techniques for 3D
graphics. The Volflex provides an effective interface device for manipulation

Figure 3.11. Volflex.



�

�

�

�

�

�

�

�

66 3. Design Issues in Haptic Devices

of virtual clay by using a lattice of air balloons. Many 2D paint tools have
been popular, and a digital picture is easy to draw. The Volflex is a new
digital tool for making 3D shapes. It has potential to revolutionize methods
for industrial design. Designers use their palm or the joints of their fingers
to deform a clay model when carrying out rough design tasks. The Volflex
provides the ability to support such natural manipulation.

The Volflex is not only a tool for 3D shape design, but also for inter-
active artwork. Physical property of the virtual object can be designed by
programming controllers of the balloons. Images can be projected on the
surface. The combination of haptic/visual display provides a new platform
for interactive sculpture.

3.6 Summary
Visual and auditory displays have a long history of over 100 years. These
displays are widely used in everyday life. On the other hand, most haptic
interfaces are still used mostly in laboratories. Relatively little application
of haptic interfaces is used for information media.

The history of media technology may provide a hint for this problem.
It is well known that the father of paper media is Gutenberg. However,
he was not an inventor of the printing machine. Many people developed
it before Gutenberg. The reason why he remained prominent in history
is due to his content and fonts. Similar development may be said about
haptic interfaces. “A killer app” of haptic technology may be what will
lead to the widely successful adoption of haptic interfaces in everyday life.



�

�

�

�

�

�

�

�

4
Rendering for Multifinger

Haptic Devices
B. Hannaford and R. Leuschke

In order to support haptic perception with the whole hand, extensive tech-
nology still needs to be developed. Mechanical challenges include high
density of degrees of freedom, weight, representation of contact with multi-
ple finger surfaces and palm surfaces, and computational challenges related
to the above mechanical properties. This chapter will describe an approach
to broadening computer-based haptic interaction beyond the single finger-
tip or probe-tool styles supported by most devices today. We are still far
from having the technology to support full-hand haptics.

4.1 Literature Review
Many engineers have tackled the challenge of multi-finger haptic devices
(see [Burdea 96] for a comprehensive 1996 review). These devices tend to
be mechanically very complex, as structure, sensing, and actuation need to
be provided for a large number of coupled degrees of freedom (DOF) in a
small space. The following review is not meant to be comprehensive, but
instead to convey the common and necessary mechanical tradeoffs.

The Sarcos Dexterous Arm [Jacobsen et al. 91] provided force sensing
and hydraulic drive to the thumb and one finger in a 3-DOF configuration
optimized for grasping and tool use. The University of Tokyo Sensing
Glove II [Hashimoto et al. 94] was a tendon-drive exoskeleton, with 20
DOF, aimed at manipulation of virtual objects. The “Tactuator” [Tan and
Rabinowitz 96] was a very high bandwidth device designed and used for
psychophysical threshold measurements on a single DOF to each of three
fingers. With disk drive flat coil actuators, the Tactuator achieved band
widths of over 200 Hz and up to 25 mm displacement. The motion axes
drove the thumb, index finger, and middle finger in a relaxed cup-shaped
posture. The Rutgers Master [Burdea 96] used four custom pneumatic
pistons on gimbal mounts to generate internal forces between the palm and

67



�

�

�

�

�

�

�

�

68 4. Rendering for Multifinger Haptic Devices

the tips of the thumb and three fingers. The Cyberglove/Cyberforce system
[Turner et al. 98] was a multi-finger glove and wrist gimbal mounted in a
haptic device. The finger actuators were removed to the ground (for mass
and volume reduction) by tendon drives. Kron and Schmidt [Kron and
Schmidt 03] designed compact fingertip tactile actuators to overcome some
of the bandwidth limitations of the Cyberglove’s tendon drives. Gosselin
et al. [Gosselin et al. 05] developed a two-finger spatial device worn on the
wrist, which had three actuated degrees of freedom. Gillespie [Gillespie and
Rosenberg 94] studied a piano keyboard haptic device capable of simulating
the dynamics of linkages (such as piano mechanisms). High bandwidth and
multi-finger display were achieved in one degree of freedom per finger. The
human hand gives us at least 26 DOF (including the wrist) inside a very
compact space (estimate: 17.2 ml per DOF). This complexity makes it
inevitable that many compromises are made by engineers of haptic devices.
All of the above devices, and indeed our own device, trade away many
desirable properties. High bandwidth (e.g., [Tan and Rabinowitz 96]) can
be achieved with only three degrees of freedom. High degrees of freedom
(e.g [Turner et al. 98]) can be achieved with high friction tendon drives
which limit force feedback fidelity.

4.2 Multifinger Haptic Perception
Here we discuss relevant work on finger haptic perception, but please refer
to Chapter 1 for a more comprehensive discussion on haptic perception.

4.2.1 Psychophysics

Physiological responses can be detected from stimuli as high as 10 kHz,
and these perceptions have been linked to specific neural discharges and
receptor types [Srinivasan and LaMotte 87, LaMotte et al. 98]. Tan and
Rabinowitz’s device [Tan and Rabinowitz 96] confirmed earlier measure-
ments of a declining vibrotactile threshold up to 200 Hz. Other researchers
have quantified the spatial acuity of human tactile perception with the bare
finger [Moy et al. 00] as well as perception of textures via a rigid probe [Le-
derman and Klatzky 98] [Weisenberger et al. 00]. A study of Braille percep-
tion contributed adaptive thresholding algorithms to the study of tactile
perception [Stevens et al. 96]. In terms of amplitude, Jones [Jones 98]
measured a 6% ability (Weber fraction ∆F/F ) to haptically discriminate
forces applied to the extended finger. Allin et al. [Allin et al. 02] got a just
noticeable difference (JND) of 9.9% in a similar experiment.

To our knowledge, the only similar work with multiple fingers has used
vibrotactile stimulation. Yuan et al. [Yuan et al. 05] studied the ability to



�

�

�

�

�

�

�

�

4.2. Multifinger Haptic Perception 69

Figure 4.1. Multifinger haptic device completed by the authors. Each finger is a
2-DOF planar mechanism, computer optimized to cover the workspace of human
fingers. The base contains all electronics and interfaces to the computer through
a single USB 2.0 cable.

detect onset time differences between the thumb and index finger. They
found a threshold of 34 ms below which onset order could not be distin-
guished. Craig [Craig 68] measured about a 2-dB drop in threshold when
100 Hz vibrotactile stimuli were applied to two fingertips simultaneously.
Presumably, sensory input from the two fingers sum at higher neural levels
to overcome a perceptual threshold. This spatial summation disappeared
when the frequency of vibration was 9 Hz. When fingers contacted a vibrat-
ing cylinder, a similar result was obtained in [Brisben et al. 99]. However,
Refshauge et al. [Refshauge et al. 03] found that tonic stimulation of adja-
cent fingers did not reduce thresholds for detection of passive movements.
Physiological mechanisms for aspects of these sensations are explored by
Collins et al. [Collins et al. 00].

West and Cutkosky [West and Cutkosky 97] compared the bare finger,
hand-held stylus, and stylus/haptic device in terms of users’ ability to
detect sinusoidal gratings in 1D and count the number of cycles present.
They found that detection performance with the haptic device was inferior
to the bare finger or stylus and depended on the stiffness parameter of the
virtual surface model.



�

�

�

�

�

�

�

�

70 4. Rendering for Multifinger Haptic Devices

Venema and Hannaford [Venema and Hannaford 00] compared haptic
feature detection performance with a single finger of the haptic device de-
scribed in this chapter and found optimal values of stiffness and damping
gains. The variable of interest in this experiment was the magnitude of C1
discontinuity between two line segments.

4.2.2 Exploratory Procedures

The psychological literature on human haptic exploration is dominated by
Lederman and Klatzky’s highly influential research [Klatzky et al. 85,Le-
derman and Klatzky 87, Lederman and Klatzky 90]. Their work defined
stereotyped hand motions—exploratory procedures (EPs)—which are char-
acteristic of human haptic exploration. They placed objects into the hands
of blindfolded subjects and videotaped their hand motions. Their initial
experiments [Lederman and Klatzky 87] showed that the EPs used by sub-
jects could be predicted based on the object property (texture, mass, tem-
perature, etc.) that the subjects needed to discriminate. They also showed
that the EPs chosen by subjects were the ones best able to discriminate
that property.

Lederman and Klatzky’s eight EPs (Figure 4.2) and the property for
which they are optimal are:

1. Lateral Motion (texture);

2. Pressure (hardness);

3. Static Contact (temperature);

4. Unsupported Holding (weight);

5. Enclosure (global shape, volume);

6. Contour Following (exact shape, volume);

7. Part Motion Test (part motion);

8. Function Testing (specific function).

Figure 4.2. Illustration from Lederman and Klatzky [Lederman and Klatzky 87]
showing four of the eight exploratory procedures (EPs).



�

�

�

�

�

�

�

�

4.3. Design of a Multifinger Haptic Device 71

Each of these EPs is a bi-manual task involving contact with all interior
surfaces of the hand, motion of the wrist and all the degrees of freedom of
the hand, tactile and temperature sensors in the skin (e.g., EPs 1 and 3),
and kinesthetic sensors in the arm (EP 4). A haptic device capable of
supporting all of these EPs would clearly be beyond today’s state of the
art. However, the significance of these results for the design of haptic
interface appears to be very great, since it may allow us to derive device
requirements from the sensory tasks.

4.3 Design of a Multifinger Haptic Device

(a)

(b)

Figure 4.3. (a) Computer-synthesized device workspace and (b) completed mul-
tifinger haptic device.



�

�

�

�

�

�

�

�

72 4. Rendering for Multifinger Haptic Devices

to
rq

ue
 fa

ct
or

 [N
m

m
/A

]

90

150

125

100

75

50

25

0
75604530150

experimental
polynomial fit

θj [
o]

Figure 4.4. Torque factor over the actuator range.

4.3.1 Hardware

We recently completed a 4-finger, 8-DOF haptic device [Leuschke et al. 05],
the multifinger haptic device (MFHD). We support four fingers in their
flexion-extension planes by making four copies of our 1997 single-finger de-
vice [Venema and Hannaford 00,Venema et al. 02] (Figure 4.1) and setting
them next to each other.

Mechanism. The device supports planar motion of the four fingertips.
Each finger contains two custom wound flat-coil actuators driven by perma-
nent magnets of Nyodimium-Iron-Boron and having 90◦ of motion range.
The actuators have a near constant torque factor (see Figure 4.4). The
torque is ripple free and varies just 7% across the motion range.

Thermal modeling enables peak torques of up to 0.6 Nm—equivalent to
about 6N fingertip force. The thermal limit of the actuator is given by the
maximum operating temperature of the coil at 130◦C. Figure 4.5 shows a
near linear relationship between input power and link temperature in the
operating range. Small differences in temperature depending on thermo-
couple location can be observed. The maximum steady state power was
determined to be 20.5 W, and thermal resistance RT =5.2◦/W. Conserva-
tively, we rate the thermal resistance of the coil as 7.5◦/W. A time constant
of 160 s was determined for the actuator. The thermal model can be used
for open loop tracking of device temperature to ensure operation within
thermal limits.

Embedded Sensors. In the new device, miniature interferometric optical
encoders from Micro-E Inc. were integrated inside to allow the fingers close



�

�

�

�

�

�

�

�

4.3. Design of a Multifinger Haptic Device 73

power |W|
25

140

120

100

80

60

40

20

0
20151050

thermocouple #1
thermocouple #2
thermocouple #3
thermal limit

te
m

pe
ra

tu
re

 |o
C

|

Figure 4.5. Link temperatures for constant power input, steady state response
(three sensor locations).

proximity and to increase position sensing resolution. Table 4.1 lists some
of the device characteristics.

Power electronics and I/O. All power electronic and input-output hard-
ware is housed in the base of the device. I/O between the CPU and sen-
sors/actuators is accomplished by a custom built USB 2.0 board [Lum
et al. 06]. The board contains 8 channels of 24-bit quadrature encoder
counters and 8 channels of 16-bit D-to-A converters. The associated driver
software for RTAI Linux can read all eight sensors and write to all eight
actuator outputs in 125 µsec.

FHD v2004

Actuator torque, steady state 164 Nmm

Max current steady state 1.4 A

Torque output resolution 0.036 Nmm

Encoder cpr 1, 048, 576

Joint position resolution 6.0 µrad

Fingertip position
Resolution ≈0.6 µm

Kinematic isotropy ≥ 0.75

Table 4.1. FHD specifications.



�

�

�

�

�

�

�

�

74 4. Rendering for Multifinger Haptic Devices

4.3.2 Software Architecture

Our haptic rendering algorithm (below) has been implemented in a real-
time multiprocessing environment based on Linux with the RTAI real-time
extensions. Separate threads are established for haptics and graphics com-
putations which contain identical copies of the polygonal surface model.
The two threads can be on the same or different processors.

RTAI set-up. RTAI is a set of Linux extensions that allows code to be ex-
ecuted satisfying hard realtime requirements. In order to achieve this, the
real-time task has to be compiled and executed as a kernel module. A sched-
uler separate from the standard Linux scheduler ensures that our haptics
code is executed every millisecond. Our haptic rendering real-time module
reads data from the USB I/O board, performs computations, communi-
cates with the graphics process, and writes data back to the I/O board.
To ensure real-time performance, all computations have to complete in less
than a millisecond.

Application architecture. Our system’s real-time haptics computation con-
sists of the hardware I/O code, forward and inverse kinematics, gravity
compensation, and a communication interface to non-realtime components
of the software.

The graphics thread is a user space process that can be run on the
same or different processor as the real-time haptics module. This module
presents a user interface that allows loading of different models and visu-
alization of the haptic interaction. Since this thread runs in user space
and possibly over a network, updates of the graphics are not deterministic.
Refresh rates of around 30 Hz are generally sufficient for graphics and have
been achieved for complex models with reasonable hardware requirements
(see below). The GUI is implemented with the QT library. The model is
visually rendered using OpenGL using a QGLWidget.

Models can be loaded from files in two different formats. For general
purpose polygon models, we have chosen the PLY data format. The format
is easy to use and flexible enough to define additional attributes for models,
should they be needed. Bitmap images can be converted to PLY polygon
surfaces with a separate filter we have developed. We also included an
input filter to directly read MRI and CT scan data in Analyze and Genesis
Signa formats. Support is being added for medical images in the other
formats as well.

Haptics and graphics threads need to communicate model and state
data. RTAI provides a number of mechanisms for this purpose. Here we
have implemented communication through FIFOs. When a new model is
loaded through the user interface, the haptics thread terminates haptic
interaction calculations for the old model. The new model is then sent to



�

�

�

�

�

�

�

�

4.4. Multifinger Rendering Method 75

the haptics thread via FIFO. The data written into the FIFO corresponds
closely to the PLY format. Once the model is completely transmitted, the
triangle cache (see below) is pre-computed, and then the haptics thread
starts real-time haptic interaction.

It is usually desirable to visualize the surface contact point as the user
moves it around with the haptic device. In our implementation, state data
is sent from the haptics thread to the graphics thread through another
FIFO. Currently, our models are static, and no model data is updated dur-
ing haptic interaction. Device positions are transmitted to the graphics
module to visualize the haptic interaction points. The graphics thread also
contains code to simulate the haptics computations, so that geometric con-
structions in the algorithm and the resulting force vector can be visualized
in real time, if desired.

4.4 Multifinger Rendering Method
We have developed a new variation on haptic rendering methods, which is
suited to efficient rendering for multi-finger exploration of surfaces. The
interaction between each finger and other objects is modeled as a single
point contact, therefore it falls in the category of 3-DOF rendering. We
refer the reader to Chapter 15 for more information on 3-DOF rendering,
and to Chapter 10 for the specifics on collision detection.

We use polygons like [Ho et al. 99,Zilles and Salisbury 95,Ruspini and
Khatib 01,Gregory et al. 00b], but we incorporate a low-dimensional spatial
quantization and caching mechanism to reduce the complexity of the all
important collision detection process to constant time.

Our interpretation of the rendering problem is initially based on:

1. Haptic exploration of non-deformable surfaces with one or more fin-
gers.

2. Approximating fingertip contact with a single-point contact.

3. The kinematic characteristics of our 4-finger haptic device in which
the fingers’ motion is constrained to their flexion-extension planes.

4. That the surface is shallow compared to the height of the finger mo-
tion planes.

5. That the surface representation is a collection of triangles (without
gaps).

We will explain below how the algorithm we have developed allows some
of these restrictions to be relaxed.



�

�

�

�

�

�

�

�

76 4. Rendering for Multifinger Haptic Devices

• Surface contact maps are a one- or two-dimensional manifold and an
associated normal vector, which may be a function of the position
on the manifold. A surface contact map is a simplified representa-
tion of the contact surface. We assume initially that the surface is
single-valued when represented on the manifold and that there is an
efficient method to project points in space onto the manifold. In the
simplest cases, the map is located “inside” or “below” the surface to
be rendered. The map’s dimensions should match that of the surface
or the workspace of the haptic device, whichever is smaller. Obvious
candidates for maps include planes, spheres, and lines.

Assume a surface model consisting of n triangles. Generally, exact
edge matching of triangles is desirable for haptic rendering, so that
point contact models do not “fall through.” However, the proposed
algorithm is not particularly sensitive to slight numerical errors in
triangle adjacency. Once we have selected a map, placed it in relation
to the surface, and defined its dimensional extent and area, A, we
quantize it into M cells. Creation of the map is complete when we
pre-compute a list of all triangles in the surface which are “above”
each cell. By above, we mean that at least some part of the triangle
projects into the cell.

For example, to render a human head, you would select a spherical
map inside the head. To render a flute, a cylindrical map would be
selected and placed down the length of the flute’s body. The map’s
surface is quantized, and a cache of triangle pointers is created for
each patch in the map.

• Cache size grows in the following manner, depending on how big the
cache bins are compared to the triangles. If the cache bin size is
s = A/M , and the average triangle size is t, then the size of the cache
grows as follows:

s << t O(M) (4.1)
s >> t Constant. (4.2)

If the number of cache cells, M , is large, the number of covering
triangles per patch is smaller and the collision detection faster. In-
terestingly, for small M (equivalent to Equation (4.2)), the size of the
cache does not grow with M . As long as the bins are large compared
to the triangle size, the number of triangles appearing in more than
one patch should be small. We expect that most implementations
would be tuned to match Equation (4.2).

The cache of each patch is represented as a collection of pointers to a
fixed list of triangles, so the penalty for triangles appearing in more



�

�

�

�

�

�

�

�

4.4. Multifinger Rendering Method 77

than one cache is small (pointers take less memory, approximately
logn per pointer). In planned work, we will numerically characterize
this tradeoff in terms of memory size, rendering speed, and human
haptic fidelity.

All rendering methods must somehow store the surface model. The
only extra storage that is required by the proposed method is the
polygon cache, which consists only of pointers to the list of polygons.
More precisely, the cache storage grows according to M logn.

• Most often, the rendering process proceeds by detecting contact (the
collision detection problem) and then computing force, based on inter-
penetration. The point representing the user (typically the fingertip)
can be referred to as the haptic interaction point (HIP) following the
nomenclature of Ho et al. [Ho et al. 99]. (See Chapter 15 for more
information.) If the HIP is inside the object, the algorithm must also
find a point on the surface from which interpenetration is computed
(often but not always the closest point on the surface). This second
point is designated the intermediate haptic interaction point (IHIP).
Once the HIP and IHIP are identified, force is often rendered by a
virtual spring between the points according to

∆x = (xIHIP − xHIP ), (4.3)

f = k∆x. (4.4)

Optionally, a damping term can be added:

f = k∆x+ bẋ. (4.5)

Recently, Frisoli et al. [Frisoli et al. 06] have added a tangential fric-
tion component to this method.

• Rendering for the MFHD requires that we consider each finger inde-
pendently, but they interact by point contact with the same model.
The problem reduces to finding possible collisions between the HIP
(constrained to move in a vertical plane intersecting the surface) and
a surface described by a collection of triangles. Immediately, we can
simplify the problem by considering only triangles which intersect the
plane of the finger—more generally, only triangles which project onto
the map. Once penetration of the HIP into a triangle is detected, we
compute force by computing the distance to the surface or edge of
the nearest triangle (see below).

For our device, a natural map is a line (at the bottom of the finger
motion plane) and a list of triangles which lie above that line. We



�

�

�

�

�

�

�

�

78 4. Rendering for Multifinger Haptic Devices

Figure 4.6. 1-D schematic representation of the collision detection and haptic
rendering algorithm.

speed up the search for collisions by dividing the line into bins and
pre-computing a list of all triangles which lie above each bin. Thus,
if we quantize the HIP’s projection onto the line into a bin number,
we get a short list of polygons which much be checked for collisions.

• Collision detection in constant time is accomplished as follows once
a map and its associated cache are constructed:

1. Project the HIP onto the map.

2. Quantize the projection of the HIP into a bin number.

3. Define the vertical (i.e., map normal) line from the map projec-
tion of the HIP.

4. Search all triangles in the current bin for the one which intersects
the vertical line. If the HIP is below the point where the vertical
intersects the triangle, call this triangle the “contact triangle.”

This process takes a fixed amount of time regardless of how many
triangles are in the surface. The time depends on the number of
triangles per bin. A schematic representation of the algorithm in one
dimension is given in Figure 4.6.

• Contact force rendering if performed as follows. When a contact
triangle is detected, render contact force as follows:

1. Project the HIP onto the plane of the contact triangle to get the
IHIP.



�

�

�

�

�

�

�

�

4.4. Multifinger Rendering Method 79

2. If the IHIP is inside the contact triangle, compute the penetra-
tion vector between the HIP and the IHIP.

3. If the IHIP is outside the triangle,

(a) Find the intersection between the vertical and the plane of
the contact triangle.

(b) Determine the closest feature (edge or vertex) of the contact
triangle to this intersection.

(c) Move the IHIP to the projection of the IHIP onto the closest
feature.

4. Compute force by using equation (4.4) or (4.5).

We have implemented an OpenGL-based visual counterpart to the
haptic rendering algorithm, which works as a second thread or on a
second processor. The graphics component contains its own copy of
the model and also can simulate and graphically render the haptic
rendering algorithm.

4.4.1 Demonstrations and Screenshots

Several demonstration applications have been developed for algorithm test-
ing (Figure 4.7). The software can read in models of any resolution and
convert them to a selected resolution for display. Cache size and location
and the coarseness of triangle cache bins are fully configurable via a config
file. Users can rotate the images and light source to view above and below
the surface. For the sinc function (Figure 4.7(a)), surface and force vectors
appear to be always produced in the right place, as expected from a physics
model in which the IHIP slides smoothly along the surface without friction.
The MRI scan slice (Figure 4.7(b), MRI Image courtesy of Ceon Ramon)
was first converted to a height field by a simple mapping of brightness to
height. Although this is not meant to represent the actual geometry of
the brain, it can be hand tuned to contain structure visually suggestive of
the brain’s convolutions. Finally, shortly after the software was developed,
NASA returned images of Comet Temple-1 from the DeepImpact project
(http://deepimpact.jpl.nasa.gov). This image was converted to renderable
form (Figure 4.7(c)) by the same method as used in the MRI image, just af-
ter it was released by NASA, illustrating the potential for haptic technology
to connect visually disabled users to exciting new sources of information.
We will incorporate better algorithms for deriving shape-from-shading in
the future. The relevant geometric parameters for these rendering exam-
ples are given in Table 4.2. Note that the number of cache bins refers to a
1-D cache (for one finger only), so that not all the triangles are linked into
the cache.



�

�

�

�

�

�

�

�

80 4. Rendering for Multifinger Haptic Devices

(a)

(b)

(c)

Figure 4.7. Example applications of the rendering algorithm. (a) The sinc(r)
function with coarse triangle resolution. (b) Surface based on MRI slice. (c)
Surface based on image of Comet Temple-1 five minutes prior to impact.

Triangles # Cache bins

sinc Function 512 20

MRI Scan 31,752 80

Comet 32,768 25

Table 4.2. Geometric rendering parameters for the three examples in Figure 4.7.



�

�

�

�

�

�

�

�

4.5. Future Work 81

n Graphics (sec−1) Haptics (sec−1)

100 978 188000
1000 939 180000
104 325 165000
105 34 151000

Table 4.3. Performance of a prototype implementation of the proposed
algorithm.

4.4.2 Performance

Tests were carried out on PC with a 2.0 GHz AMD X2 3800+ processor
and Nvidia 7600 GS graphics card running Fedora Core 5 Linux. Nvidia
graphics drivers were installed for direct rendering of Open GL graphics.
The model for this test was a surface consisting of triangles approximating
a sinc(r) function. The resolution of the approximation was adjusted to
obtain model sizes of 102 through 105 triangles. For benchmarking the
graphics performance, the model was continuously rotated on the screen
and the frame rate recorded. Haptic performance was measured in a user
space process without any significant other computations running at the
same time.

The performance achieved is given in Table 4.3. The haptics update
shows essentially constant rendering time, as predicted.

4.5 Future Work
We have described a new multifinger device and a new rendering method
which uses some manual input to significantly speed up the rendering pro-
cess (chiefly the collision detection step) without large demands on memory.
At this point, we envision that the designer of a haptic simulation would
interactively place one or more maps inside or below the surface to be ex-
plored. In many cases, this task is trivial or can be done based only on the
constraints of the haptic device. For example, in our multifinger device,
the line at the bottom of the workspace should suffice for any surface.

A remaining issue is what to do about multi-valued surfaces. If the
map is placed properly “inside” or “below” the surface, then there will
always be an odd number of intersections (≥ 1) of the map normal with
the surface. In the cases of n > 1, history can be used to determine which
is the contacted triangle (as in earlier methods).

Two basic strategies will be employed to expand to bi-manual tasks.
First, we will add a non-haptic control to the other hand. This technique
could be used typically by the non-dominant hand, for example, to slide



�

�

�

�

�

�

�

�

82 4. Rendering for Multifinger Haptic Devices

the surface left-right under the fingers in the multifinger device. Although
left-right force components will not be felt, we might be able to measure
improved surface recognition performance. The second strategy will be to
combine our device with a stylus haptic device such as the Phantom Omni
(of which we have several). This approach can be used as above, but with
force feedback applied to the other hand, or to simulate a combination of
tool use and multifinger touch.



�

�

�

�

�

�

�

�

5
Locomotion Interfaces and

Rendering
J. Hollerbach

The aim of locomotion interfaces is to provide realistic walking and running
in virtual environments. The design of locomotion interfaces is difficult
because of the varied terrain that is to be rendered, and because of the
athleticism and diversity of human motions. The familiar cardio devices in
a fitness center can be viewed as locomotion interfaces, such as treadmills,
stair steppers, and elliptical trainers. These cardio devices can be hooked
up to virtual environment displays to provide basic locomotion interfaces.
When attempting to implement different locomotion tasks, such as slope
walking, navigating uneven terrain, turning, and speed changes, the limita-
tions of ordinary cardio devices become apparent. A number of locomotion
interface designs can be understood as the redesign of treadmills and stair
steppers to provide added flexibility. The result can be a large, expensive,
or complicated device that may also give safety concerns. To date, none of
the proposed designs can render the full diversity of human locomotory ac-
tions. One is then left to consider tradeoffs as to what aspects of locomotion
are the most important, what can be implemented the most conveniently,
and what designs are the most cost effective and likely to proliferate. The
answer to these concerns is not apparent yet, and researchers continue to
investigate alternative designs.

5.1 Locomotion Interface Designs
There are two main types of designs: those incorporating a treadmill and
those providing for programmable foot platforms. Other designs than these
have been proposed but have not matured to the same extent.

5.1.1 Treadmill Style Locomotion Interfaces

Treadmills offer considerable advantages, including being commodity de-
vices, accomodating easy transition between slow and fast motion, and

83



�

�

�

�

�

�

�

�

84 5. Locomotion Interfaces and Rendering

(a) (b)

Figure 5.1. (a) The ATR ATLAS. (b) The ATR Ground Surface Simulator. (Pho-
tos courtesy of H. Noma.)

allowing different body postures (crawling, sidling, etc.) given that the
belt surface is large enough. Treadmills typically have a tilting mechanism,
so that frontal slopes are easily displayed. A few tilt sideways as well, al-
lowing side slope walking. Turning can be an issue on linear treadmills, but
there are two-dimensional treadmill designs that allow the user to easily
change direction. Although the belt is typically flat, so that only smooth
slopes can be displayed, there have been proposals for deformable belts
that can display step-like terrain. Features of some of the main designs are
discussed below.

The ATR ATLAS (Figure 5.1(a)) places a small linear treadmill (145 mm
by 55 mm) on an active spherical joint that can roll, pitch, and yaw [Noma
and Miyasato 98]. Besides the normal pitching motion for frontal slope,
the treadmill can also roll to display side slopes. The yaw motion swivels
the treadmill like a turntable for turning control. Turning is achieved by
swiveling the treadmill in the direction that the user is stepping. The re-
sponsiveness of the system is quite good, so that the user feels free to change
direction at will. The platform cannot rotate continuously and so must be
reindexed to center beyond a certain angle. Although a head-mounted dis-
play can be employed for the visual display, the small belt surface makes
blind walking unsafe. A back projection visual display was attached to the
front of the treadmill, so that it moves along with the treadmill. Due to
the cascaded electric motor drives and their gearing for the spherical joint,
there is a significant amount of backlash and flexibility of the platform in
response to user steps.



�

�

�

�

�

�

�

�

5.1. Locomotion Interface Designs 85

Figure 5.2. The Omni-Directional Treadmill. (From http://www.vsdevices.com.)

The ATR Ground Surface Simulator displays uneven step-like terrain
(Figure 5.1(b)) by deformation of the flexible treadmill belt by six verti-
cally actuated stages underneath [Noma and Miyasato 98]. A slope of 5
degrees can be presented. An active tensioning system adjusts for the belt
deformation by the stages.

The Omni-Directional Treadmill [Darken et al. 97] provides a two-
dimensional treadmill surface designed to facilitate turning (Figure 5.2).
A two-orthogonal belt arrangement creates the two-dimensional surface. A
top belt is comprised of rollers whose axes are parallel to the direction of
rotation of that belt. These rollers are rotated underneath by another belt
orthogonal to the first. Both a head-mounted display and a CAVE-like
display have been employed for the visuals.

The Torus Treadmill is a two-dimensional treadmill design (see Fig-
ure 3.3 in Chapter 3) that employs twelve small treadmills connected side-
by-side to form a large belt to allow arbitrary planar motion [Iwata and
Yoshida 99]. In the initial implementation of the Torus Treadmill concept,
the speed and area limitations limit walking to a slow speed, with rela-
tively short steps. The belt speeds of the individual treadmills were not
sensed and controlled, so that the belts moved at different speeds and made
walking difficult.

The Sarcos Treadport (Figure 5.3) contains a large linear treadmill (6-
by-10 feet) and a fast tilt mechanism [Hollerbach et al. 00]. The visual
display is a 3-wall CAVE-like back projection system. An active mechanical
tether attaches to a user at the back of a body harness to measure user
position and orientation, and to exert a force in the forward horizontal



�

�

�

�

�

�

�

�

86 5. Locomotion Interfaces and Rendering

Figure 5.3. The second-generation Sarcos Treadport.

direction. Because of the belt size, a variety of body postures can be
supported, including crouching and crawling. The relatively large belt also
allows the user to concentrate on the visual display, without worrying about
stepping off the belt. An important factor is adequate torque capability of
the belt drive motor, so that friction forces arising from impact of the belt
by the foot do not significanlty slow down the belt.

5.1.2 Programmable Foot Platforms

A generalization of a stair stepper exercise machine is individually pro-
grammable foot platforms, where each platform can be positioned in three
dimensions. Their strength is the ability to present uneven stair-like ter-
rain. Each foot platform is essentially a robot manipulator, whose end
effector is a foot surface. The robot manipulators are necessarily power-
ful to support the forces of walking, and this introduces safety concerns.
Walking speeds are limited to be slow to moderate, not just because of
the limited speeds of the foot platforms, but because of limited structural
rigidity which would make control of fast walking unstable. Turning is an
issue because the robot manipulators cannot cross and interfere with each
other.

The Sarcos Biport (Figure 5.4) employs hydraulically actuated three-
degree-of-freedom serial-link arms on which the user stands [Hollerbach 02].
The user’s feet are attached to the platforms with releasable bindings.
Force sensors are located near the attachment points, and are employed in
force control strategies and steering control. When the user lifts a foot, the
attached arm must follow with zero force to avoid dragging the foot. When



�

�

�

�

�

�

�

�

5.2. Locomotion Rendering 87

Figure 5.4. The Sarcos Biport.

the user steps to contact a surface, the arm must be servoed to present a
rigid surface.

The GaitMaster (see Figure 3.4 in Chapter 3) comprises two three-
degree-of-freedom parallel drive platforms [Iwata 00]. Unlike the Sarcos
Biport, the user’s feet are not attached to the foot platforms, but position
sensing of the feet is used to position the foot platforms underneath. To
avoid the platforms crossing during turning, they do not move sideways
but are mounted on a turntable. Like the ATR Atlas, a side step by the
user results in the platforms being swiveled towards the intended direction
of walking.

5.2 Locomotion Rendering
Various issues in rendering aspects of locomotion are now summarized.
Certain issues are more particular to treadmills than to programmable
foot platforms, and vice versa.

5.2.1 Speed Control

A big difference between exercise treadmills and locomotion interface tread-
mills is that belt speed has to be instantly responsive to the intended
motions of the user. The user’s motion has been sensed either by mea-
suring the foot position optically [Noma and Miyasato 98], magnetically,
or mechanically [Iwata and Yoshida 99], or by measuring body position
mechanically [Hollerbach et al. 00,Darken et al. 97]. For foot position sens-
ing, the stance time has been used to predict walking speed [Noma and
Miyasato 98], since the faster the walking, the less is the stance time.



�

�

�

�

�

�

�

�

88 5. Locomotion Interfaces and Rendering

In both the Omni-Directional Treadmill and the Sarcos Treadport, body
position is measured by a six-axis mechanical tether attached to a harness
worn by the user. The belt velocity is made proportional to how far for-
ward from center a user moves. Walking backwards is also possible. For
the Sarcos Treadport, natural forward motion speeds are supported: ac-
celerations of 1 g and peak velocities of 12 mph. If the user is stationary,
small motions should not cause the belt to move; otherwise it would be
impossible to stand still.

5.2.2 Centering

The user has to be kept safely within the workspace of the locomotion
interface. For the Sarcos Treadport, where velocity is controlled by user
position, there is the risk of the user reaching the front of the treadmill
during fast acceleration and velocity. An integral control term is added
that gradually recenters the user, to prevent the user getting too close to
the front edge [Christensen et al. 00]. A similar method is employed in the
Sarcos Biport to attract the user back towards the center of the device.
There are hard limit stops on the Treadport’s tether to prevent excursion
beyond the front edge. A software linear spring is also simulated by the
active mechanical tether to provide a kinesthetic cue to the user about the
amount of forward deviation from center.

The other danger is the user falling off the sides. Even with back-
projected displays, users might become engrossed and lose track of their
positions on the belt. Hardware springs are provided on a base rotary joint
and an attachment-end rotary joint on the mechanical tether of the Sarcos
Treadport to provide kinesthetic cues about the amount of sideways devi-
ation. In the Omni-Directional Treadmill, centering forces are provided by
an actuated mechanical position tracker on the overhead boom attached
to a harness worn by the user. However, [Darken et al. 97] reports that
a mismatch between a user’s walking direction and the centering motion
of the belt could occur, which causes the user to stumble. The mismatch
presumably arises due to system lags and bandwidth limitations that per-
mit the user to move off center. This kind of mismatch would seem to be
a potential problem for any two-dimensional motion stage.

5.2.3 Collision Forces

To simulate collisions with objects, the active tether of the Sarcos Treadport
provides a spring-like penalty force while the treadmill is stopped. This
penalty force is similar to viscoelastic opposing forces applied by haptic
interfaces when a user attempts to push into a hard surface.



�

�

�

�

�

�

�

�

5.2. Locomotion Rendering 89

5.2.4 Inertial Forces

Because the user running on a treadmill is stationary with respect to the
ground, the user does not accelerate his or her body (except for the swinging
of arms and legs). Consequently, a Newton’s force f = ma, where m is
the user’s mass and a is the acceleration, is missing. This makes treadmill
running energetically much easier than running on the ground, on the order
of 35%. In [Christensen et al. 00], the active tether of the Sarcos Treadport
was employed to provide this simulated inertial force.

User studies showed a preference for such an inertial force display over
conditions of no tether force or of a spring-like tether force. Actually,
because of the responsiveness of the belt to user-intended motion, it is
practically impossible to locomote on the Treadport without inertial force
feedback. The sensation is very much like having the rug pulled out from
underneath one’s feet. The reason this kind of instability, such as one on
exercise treadmills, has not been noticed before, is the lack of responsiveness
to user-intended motion.

5.2.5 Slope Display

Instead of treadmill tilt, slope can also be displayed by applying horizontal
forces to the torso. During slope walking , a gravity force f = mg sin θ acts
on the body, which has been synthetically applied by the Treadport’s tether
to simulate slope walking on a level belt surface. The simulation of slope by
torso forces has been shown to be biomechanically and energetically similar
to real slope walking [Hollerbach et al. 01,Parker et al. 05]. Real tilt can be
combined with torso forces to simulate higher slopes than would otherwise
be possible by tilt alone, and to simulate fast slope changes. Side slopes
can be simulated as well by side pull [Hollerbach et al. 03].

One issue is the harness design, which provides good mechanical cou-
pling of the tether forces to the body. Initial harness designs for the Tread-
port employed just one point of force application to the small of the back.
More recent harness designs have used telescoping mechanisms to distribute
forces in a controlled manner between hips and shoulders, and to adjust
to complicated motions of the back without the slipping that results from
using straps alone [Checcacci et al. 03,Grow and Hollerbach 06].

5.2.6 Vertical Support

Vertical forces applied to the torso have a number of potential uses. For
rehabilitation purposes, partial weight support will help patients to re-
gain walking after stroke or other health problems. Reduced gravity en-
vironments such as walking on Mars can be simulated; even though the



�

�

�

�

�

�

�

�

90 5. Locomotion Interfaces and Rendering

Figure 5.5. Body weight support harness integrated with the mechanism-based
harness.

weight of the limbs is not supported, the vertical support is apparently ad-
equate [Chang et al. 00]. When simulating steep slopes by torso forces, it is
necessary to pull up on the body so that the net sum of forces acting on the
body is equal to the user’s weight. The design of a harness to support body
weight comfortably over an extended period of time has been achieved by
incorporating a rehabilitation harness [Grow and Hollerbach 06]; see Fig-
ure 5.5.

5.2.7 Turning

Because the Treadport uses a linear treadmill, the issue of how to control
turning arises. In an initial implementation, body pose measurements from
the mechanical tether were employed to control the rate of turning. Two
control regimes are used: for stationary users, the amount of twist about
the vertical axis controls the rate of turning; and for rapidly walking or
running users, the amount by which the user is displaced sideways from the
treadmill center controls the rate of turning. For intermediate locomotion
speeds, the two control regimes are blended. The use of rate control requires
reindexing: the user has to move back to a center position to stop turning,
then move the other direction from center to turn the other way.

The large treadmill size allows an alternate proportional control strat-
egy to be implemented, based on gaze direction, measured by sensing the
orientation of the head. When we change directions, the torso turns along
with the head towards the new direction. By using a torso trigger to
avoid turning when merely looking around, a more natural turning action



�

�

�

�

�

�

�

�

5.3. Discussion 91

is achieved which has been shown to facilitate obstacle avoidance when
walking in a cluttered corridor [Vijayakar and Hollerbach 02]. The ability
of stepping sideways for a step, before having to reindex, is important for
this strategy to work.

5.3 Discussion
Application contexts that drive device design are largely missing: there are
hardly any fielded systems, and research only takes place in a few labora-
tories. In contrast, haptic interfaces have proliferated widely and for which
many uses have been developed. Certainly, a number of applications of
locomotion interfaces have been proposed, including mission rehearsal and
training, walk-through architectural designs, exercise and recreation, reha-
bilitation, education, and psychological research. Of necessity, locomotion
interfaces have to be much larger and more powerful than haptic interfaces,
and so they are unlikely to proliferate the way desktop systems have.

Nevertheless, the experience of walking through virtual environments
is sufficiently compelling to warrant the continued development of locomo-
tion interfaces. The energy expenditure in walking through virtual environ-
ments is realistic, and when coupled with a good visual display, can seem
quite immersive. Because we know our stride length, locomotion interacts
with vision to calibrate distances in a virtual world, which otherwise are
seriously underestimated by vision alone [Rieser et al. 95,Mohler et al. 07].
We also care more about other sensory modalities when walking, such as
ambient sounds, wind, and olfaction, which are not usually concerns for
haptic interfaces. In terms of one’s experience in a virtual environment, lo-
comotion interfaces can seem much more engaging and realistic than haptic
interfaces.

Acknowledgment

This research was supported by NSF grant IIS-0428856.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

6
Variable Friction Haptic

Displays
L. Winfield and J. E. Colgate

In this chapter we discuss haptic displays that can, under computer control,
change their feel from slippery to sticky. These devices, most of which em-
ploy ultrasonic vibrations to modulate apparent coefficient of friction, build
on a long tradition of displaying haptic information through the control of
lateral or shear forces. For instance, one of the earliest studies in the field
of haptics was Minsky’s [Minsky 95] sandpaper system. Minsky used varia-
tions in lateral forces through a joystick to create the sensation of a bumpy
surface. The newer displays discussed here are similar, but can be touched
by the fingertips directly (thus, they might be considered tactile displays).
In addition, they control only frictional resistance to fingertip motion but
do not have the ability to apply active forces to the fingertips. Nonethe-
less, spatial and temporal modulation of friction enables these displays to
emulate a wide variety of textures.

The chapter is arranged as follows. We begin with two brief reviews:
one of human perception of lateral forces, the other of friction reduction
theory. We then review variable friction devices, focusing especially on the
T-PaD developed by the authors. We go on to present two studies, the first
quantifying friction reduction, and the second characterizing the range of
perceptions that can be produced with friction modulation. We conclude
with a discussion of future prospects and research challenges.

This work is based on “T-PaD: Tactile Pattern Display Through Vari-
able Friction Reduction,” by Winfield, Colgate, Peshkin and Glassmire,
which appeared in the Proceedings of the 2007 World Haptics Conference
in Tsukuba, Japan. c©2007 IEEE.

6.1 Human Perception of Friction
This section reviews human perception of lateral forces, but please refer to
Chapter 1 for a more comprehensive discussion on human tactile percep-
tion.

93



�

�

�

�

�

�

�

�

94 6. Variable Friction Haptic Displays

Minsky’s work using lateral force fields (LFFs) to display virtual tex-
tures is considered to be one of the founding works in haptics [Minsky 95].
The idea that textures and surface features could be represented by lateral
force fields sprouted from the observation that sideways spring forces can
feel like downward/gravitational forces. Consequently, a spring potential
field can feel like a valley, where zero potential rests at the bottom of the
valley. Minsky used this observation to develop a lateral force gradient
algorithm for textures. Using this algorithm, Minsky developed LFFs to
display virtual gratings, virtual two-dimensional grids, and a series of ran-
dom (Perlin) textures. LFFs displayed through haptic manipulanda have
also been shown to be sufficient in displaying larger scale surface features
such as bumps and holes. [Robles-De-La-Torres and Hayward 01,Robles-
De-La-Torres and Hayward 00]. Despite the loss of all proprioceptive and
kinesthetic geometric cues, Robles-De-La-Torres and Hayward found sub-
jects were able to identify virtual bumps and holes, given the appropriate
lateral force fields. When subjects were given the physical displacement of
a bump but played the LFF of a hole, the subjects ignored the geometric
cues and identified the object as a hole. The same neglecting of geometric
cues was found for physical holes masked with virtual bump forces.

These studies indicate that lateral force fields through haptic manip-
ulanda are successful in portraying virtual textures. However, one of the
main goals in haptics is to make the virtual environment feel as real as
possible. When exploring our world we do not often do so using a stylus,
but instead we feel surface features and textures using our fingertips. An
ideal haptic field display should allow us to do the same: feel virtual tex-
tures with our fingers, and not through a manipulandum. Variable friction
haptic displays are an effort to use LFFs at the fingerpad in the creation
of virtual textures and surface features.

In the remainder of this section we review a number of studies that
underscore the importance of fingerpad shear forces in texture perception.
These studies, however, do not directly indicate whether shear force modu-
lation at the fingertip alone would be sufficient to display texture. To begin,
we look at a study comparing the perceived intensities of normal and tan-
gential displacements. Biggs [Biggs and Srinivasan 02] had subjects try to
match the “intensities” of normal and tangential displacements of stimuli
at the fingerpad. The subjects were given a reference stimulus (the flat end
of a cylinder) displaced 1.5 mm against the fingerpad. Then, an adjustable
stimulus was presented. This stimulus was a displacement in the tangential
plane. Subjects could adjust the displacement of the adjustable stimulus
with a knob until its intensity matched that of the reference stimulus. Biggs
found that the subjects matched intensities of tangential displacements that
were 0.6 times smaller than the reference normal displacements. The force
on the fingerpad was calculated on measured mechanical impedances of the



�

�

�

�

�

�

�

�

6.1. Human Perception of Friction 95

Figure 6.1. Lateral force field for a virtual bump and hole. (This figure is taken
from [Robles-De-La-Torre 02], c©2002 IEEE.)

fingerpad in both the tangential and normal directions. the forces ion the
finger were approximately four times larger for tangential stimuli than for
the reference normal stimuli. This is because the fingerpad hasa over five
times higher impedance for tangential displacements than for normal dis-
placements [Diller 01]. Hayward [Hayward and Cruz-Hernandez 00] finds
that humans are sensitive to lateral displacements of only ±50 µm.

Because friction is dissipative, a variable friction display cannot actively
move the user’s finger. It can only resist lateral forces applied to the fin-
ger. Therefore, active exploration by the user is required. It was found by
Robles-De-La-Torres [Robles-De-La-Torre 02] that active touch is neces-
sary to remove ambiguity while interacting with lateral force fields (LFFs).
When subjects were played virtual LFFs for bumps and holes under pas-
sive touch conditions (stationary finger feeling a moving virtual surface),
the virtual bumps and holes were indiscernible from each other. Ambi-
guity also appeared under differential touch where the finger was actively
exploring the LFF while the LFF was in motion. Subject performance in
classifying virtual bumps or holes was greatly improved with active touch of
a stationary LFF. Therefore, it is a very important feature of VFHDs that
the pattern of friction remain stationary in space during active exploration
in order to depict virtual textures effectively. Interesting sensations are
still felt when the friction is modulated temporally; however, perception of
surface textures is not as clear.

Pasquero and Hayward’s [Pasquero and Hayward 03] STReSS tactile
display relies on lateral skin stretching patterns to display haptic effects.
Levesque and Hayward [Levesque and Hayward 03] observed fingerpad



�

�

�

�

�

�

�

�

96 6. Variable Friction Haptic Displays

deformations during exploration of flat surfaces and geometrical features
and found significant skin deformation. Unique deformation patterns were
found for moving over a bump and hole. It is hoped that playing back
these patterns with a lateral skin stretching device will result in the feeling
of moving over an actual bump or hole.

Lederman and Klatzky [Lederman and Klatzky 97] studied the impor-
tance of spatially distributed fingertip forces during several sensing tasks.
Subjects performed each task with and without a fiberglass sheath cov-
ering their finger to mask spatial distribution cues. They found subjects
were better at determining differences in surface roughness without the
sheath. However, when wearing the sheath “subjects were still able to use
the temporal cues to differentiate on the basis of perceived roughness quite
well.”

Salada et al [Salada et al. 05] describe an experiment in which subjects
were asked to use their finger to track features across a rotating drum under
three conditions. The subjects explored the surface with a bare finger, with
a fixed mechanical filter between the drum and the finger to eliminate shear
forces, and with a mechanical filter free to float. The subject performance
dropped significantly when the shear forces were masked with the fixed
mechanical filter.

Taken together, these studies underscore the importance of fingerpad
shear forces in texture perception, but do not indicate whether shear force
modulation alone would be sufficient to display texture.

6.2 Friction Reduction Theory
Ultrasonic vibration is the primary method for controlling friction in most
variable friction haptic displays. However, alternate methods have been
shown to work. Yamamoto et al. use electrostatics [Yamamoto et al. 03]
to control the friction force on a slider under the fingertip. Their device
consists of stator electrodes and an aluminum coated thin film slider. The
feeling of surface roughness is created by applying voltage patterns to the
stator electrodes, which generate various friction distributions on the slider.

The principal theory behind friction reduction in friction haptic dis-
plays is the presence of a squeeze film. The squeeze film theory, believed to
be the cause of friction reduction for the T-PaD and several other friction
varying devices, is described in detail. The air squeeze film effect is a conse-
quence of the relationship between air’s compressibility and viscous effects.
Salbu [Salbu 64] studied the presence of an air squeeze film between “paral-
lel, coaxial, flat disks with relative motion imposed between the surfaces.”
Given a high enough frequency of relative motion and a small gap distance
(relative to the size of the plate), viscous forces in the air between the



�

�

�

�

�

�

�

�

6.2. Friction Reduction Theory 97

Figure 6.2. Simplified model of air between two parallel plates with sinusoidal
motion imposed on the bottom plate. Here, C is the compliance of the trapped
air; R is the viscous resistance of the air escaping. The force on the fixed upper
plate is equal to the pressure of the trapped air multiplied by the area of the
plate.

plates will restrict air flow out of the plates, while compressibility effects
will result in an average pressure between the plates above atmospheric.
Salbu modeled this effect using a normalized general Reynolds equation,
the governing equation for isothermal flow in thin gas films.

The squeeze number, σ, used by Salbu and shown in Equation (6.1)
contains information on the relationship between the viscous and com-
pressibility effects of the air:

σ =
12µωR2

o

pah2
o

, (6.1)

where Ro is the disk radius, pa is the atmospheric pressure, ho is the mean
clearance between disks, ω is the frequency of motion, and µ is the air
viscosity.

When examining a simplified model of this system, shown in Figure 6.2,
the squeeze number is equivalent to the non-dimensionalRC time constant.
The values for R, the viscous resistance of the air escaping, and C, the com-
pliance of the trapped air, are estimated from equations of Poiseuille chan-
nel flow (Equations (6.2)–(6.8)) and a linearization of Boyle’s law (Equa-
tions (6.9)–(6.16)).

Figure 6.3. Poiseuille channel flow.



�

�

�

�

�

�

�

�

98 6. Variable Friction Haptic Displays

For Poiseuille channel flow, depicted in Figure 6.3, we begin with the
Navier-Stokes Equation (6.2) for incompressible, fully developed, steady
flow, and neglect any gravitational effects, where µ is the viscosity of air,
vx is the velocity in the x direction, and ∆P is the pressure drop across
the channel. The variables lx, ho, and lz are the length, height, and width
of the channel as shown in Figure 6.3. According to the equation,

µ
∂2vx

∂y2
+

∆P
lx

= 0. (6.2)

Integrating twice and imposing no slip boundary conditions at y = −ho/2
and y = ho/2, the velocity becomes:

vx(y) = − 1
2µ

∆P
lx

[(
ho

2

)2

− y2.

]
(6.3)

The viscous resistance, R, is equal to the change in pressure, ∆P , over
the volumetric flow rate, Q.

Q =

lz∫
0

dz

ho
2∫

−ho
2

dy · vx(y), (6.4)

Q =
lzh

3
o

12µ
∆P
lx

, (6.5)

Q =
1
R

∆P, (6.6)

R =
12µlx
lzh3

o

. (6.7)

An approximation of the viscous resistance for radial flow between two
disks is obtained by replacing lx with Ro, the radius of the disk, and lz
with πRo, (see Figure 6.4). We imagine most of the significant radial flow

Figure 6.4. Radial flow between two disks.



�

�

�

�

�

�

�

�

6.2. Friction Reduction Theory 99

occurs near the edges of the disk and zero flow in the center of the disk by
symmetry:

R =
12µ
πh3

o

. (6.8)

To determine an estimation of the compliance, C, of the trapped air due
to compressibility, we begin with Boyle’s Law (Equation (6.9)), where Ro

is the disk radius, pa is the atmospheric pressure, ho is the mean clearance
between disks, and δ is the amplitude of oscillation:

PV = C, (6.9)

paho = P (ho − δ), (6.10)

P =
paho

ho − δ
. (6.11)

We then linearize the pressure, P , with respect to the displacement, δ:

dP =
paho

(ho − δ)2
dδ, (6.12)

∆P =
pa

ho
∆δ. (6.13)

The capacitance, C, is equal to the change in volume, ∆V , over the
change in pressure, ∆P :

∆P =
1
C

∆V, (6.14)

∆P =
pa

ho · πR2
o

∆V, (6.15)

C =
hoπR

2
o

pa
. (6.16)

The non-dimensional RC time constant for this simplified model shown
in Equation (6.17) is therefore equivalent to the squeeze number, σ (Equa-
tion (6.1)). The value of the squeeze number determines the system be-
havior. A large squeeze number (σ > 10) represents an air film which acts
very much like a nonlinear spring obeying Boyle’s law. This is because the
high viscous forces (large R) prevent the air from escaping out of the edges.
A system with a small squeeze number will result in the energy (air) being
dissipated and no apparent spring-like force:

RC =
12µR2

o

h2
opa

ω = σ. (6.17)



�

�

�

�

�

�

�

�

100 6. Variable Friction Haptic Displays

The dynamics of a human finger are much different than that of a fixed
rigid plate. However, it has been observed that a reduction of friction will
also occur between a human finger and a vibrating plate [Watanabe and
Fukui 95,Winfield et al. 07]. Although no evidence has been found to prove
the existence of a squeeze film under the fingerpad, the extreme reduction
of friction suggests its presence is likely.

It has also been observed [Watanabe and Fukui 95,Winfield et al. 07]
that the amount of friction reduction is variable with the amplitude of os-
cillation. No clear theory has been advanced to explain this phenomenon.
Wantanabe offers an explanation of load sharing between contact force
and squeeze force, claiming the squeeze force is a function of the amplitude
of oscillation. However, this does not explain how the fingerpad under-
goes physical contact and is simultaneously supported by the squeeze film.
Minkes [Minikes and Bucher 03] found the pressure profile of a squeeze
film to resemble a parabolic shape. The maximum air pressure would be
found towards the center of the plate, while the air at the edge of the plate
would be at atmospheric pressure. The authors hypothesize that the area
of this profile increases with increased amplitude, decreasing the area of
contact between the finger and the plate and therefore decreasing the total
distributed friction force on the finger.

An alternative explanation doesn’t require the presence of a squeeze
film at all, but relies on periodic contact. It stands to reason that (in
the absence of a squeeze film) a vibrating surface will contact the finger
near the peaks of its excursion and lose contact near the troughs. When
the surface is moving upward against the finger, it will apply an upward
normal force. The size of this normal force presumably depends on the
amplitude of oscillation, but at the same time, its average must exactly
equal the downward force that the finger is applying on the surface. We
conclude that as the vibration amplitude increases, the period of contact
decreases.

We can create a crude model of this effect that predicts variable fric-
tion (see Figure 6.5). We begin by assuming that whenever the surface is
in contact with the finger, the skin is effectively “stuck.” We are, in effect,
assuming that the normal force increases rapidly to a value much larger
than any lateral forces being applied by the finger. This does not stop any
lateral motion of the finger, however, but creates a stretching between the
moving bone and the stuck skin. Stretching stores energy in the elastic
tissue of the finger pad. Our next assumption is that when the vibrating
surface breaks contact, the skin and tissue “spring back,” dissipating all
the energy that had been stored in stretching. Examining an impedance
model of the finger, the distributed force, P , on the finger is equal to the
characteristic impedance of the finger, Z, multiplied by the finger veloc-
ity, Vo. Although the impedance model assumes persistent excitation of



�

�

�

�

�

�

�

�

6.2. Friction Reduction Theory 101

Figure 6.5. Model of finger during periodic contact. The finger bone moves at
constant velocity Vo(t). The skin represented by a spring and damper is subjected
to stick/slip, modeled with a switch.

a continuous medium, we will incorporate a duty cycle due to periodic
contact:

P = Z ∗ Vo. (6.18)

In the following equations, P̄ is the average distributed normal force
exerted on the finger, ω is the frequency of motion, A is the amplitude of
motion, and α

2π is the fraction of the total time which is spent in contact
(see Figure 6.6).

The finger is in contact with the surface between π
2 −α and π

2 of the 2π
period. It is assumed that after the surface has reached maximum deflection
during contact, the fingerpad does not continue to follow the surface down-
ward. However, we assume the fingerpad does come to rest in its original
position before the next contact period. The average distributed normal
force exerted on the finger is equivalent to the characteristic impedance
multiplied by the integral of the velocity from π

2 − α to π
2 , divided by the

total 2π period:

P̄ =
1
2π

π
2∫

π
2 −α

Aω cos(ωt)d(ωt), (6.19)

P̄ =
ZAω

2π

[
sin
(π

2

)
− sin

(π
2
− α

)]
, (6.20)

P̄ =
ZAω

2π
[1 − cos (α)] . (6.21)

While exploring the vibrating surface, the finger does not experience a
net acceleration and can be assumed to maintain a constant normal force.
Hence, P̄ is constant. This leads to the conclusion that as the amplitude
A increases, 1 − cos(α) must decrease.



�

�

�

�

�

�

�

�

102 6. Variable Friction Haptic Displays

Figure 6.6. (a) Position and velocity of the vibrating surface, (b) Velocity of the
fingerpad. The finger comes in contact with the surface between π

2
− α and π

2
of

the period.

During regular surface exploration, it can be assumed the normal force
applied by the finger will not exceed 10 N. Assuming the area of the fin-
gerpad is greater than 0.01 m2, an upper bound on the average distributed
normal force is placed at 1000 N

m2 . By approximating the characteristic
impedance of the fingerpad with that of water 1.5∗10−6 Ns

m3 and setting the
frequency of motion, ω, equal to 2π ∗ 40000 rad

s , the relationship between
the period of contact α and the amplitude of oscillation can be found. This
relationship is shown in Figure 6.7.

For values of α less than 1, cos(α) is approximately equal to 1 − α2

2 .
Substituting for cos(α):

P̄ ≈ ZAω

2π
α2

2
, (6.22)

α =

√
4πP̄
ZAω

. (6.23)



�

�

�

�

�

�

�

�

6.2. Friction Reduction Theory 103

Figure 6.7. Period of contact, α vs. Amplitude of oscillation, A. Highlighted
region shows area for which Equations (6.22),(6.23) and (6.29) are valid

In Equations (6.24) through (6.29) below, we develop an expression for
the effective damping due to periodic contact. The following equations
maintain the assumption that the energy stored during the skin stretching
phase is completely dissipated during the spring back phase. To begin,
we consider the energy stored during the stretching phase, where x is the
displacement and k is the stiffness of the skin.

Estored =
1
2
kx2, (6.24)

Estored =
1
2
k

(
α

2π
2π
ω

· Vo

)2

, (6.25)

Estored =
1
2
k
α2

ω2
V 2

o . (6.26)

Now considering the power dissipated, Pdissipated, we determine the ef-
fective damping due to periodic contact.

Pdissipated =
Estored

2π
ω

= beffective · V 2
o , (6.27)

beffective = k

(
α2

4πω

)
. (6.28)



�

�

�

�

�

�

�

�

104 6. Variable Friction Haptic Displays

Substituting for α:

beffective = k
P̄

ZAω2
. (6.29)

It can be seen from Equation (6.29) that the effective damping is inversely
proportional to the amplitude of oscillation. This is consistent with the
data from Section 6.4 shown in Figure 6.23.

6.3 Variable Friction Devices
In this section, we review previous work on VFHDs. The haptic fields
displays rely on the presence of a squeeze film, as discussed in the previous
section. Two families of displays have been studied: ultrasonic vibrating
plate displays, usually operating in the range from 20 to 90 kHz; and surface
acoustic wave displays, operating in the MHz range.

6.3.1 Ultrasonic Plate Vibration

The first ultrasonic vibrating plate haptic display for controlling surface
roughness was developed by Wantanabe [Watanabe and Fukui 95]. His
device comprises two Langevin-type vibrators mounted beneath and on
either end of a rectangular plate (display surface). The Langevin-type
vibrators create waves in the rectangular plate. Two vibrators are required
for progressive waves, while only one is needed for a standing wave. All
experiments were performed with the standing wave (see Figure 6.8). The
amplitude of vibration of the display surface was measured with a laser
Doppler vibrometer. The device operates at resonance at 75 kHz and has
an average vibration amplitude of 2 µm.

Through experiments with this device, Wantanabe found the squeeze
film effect occurred in the ultrasonic range only. Subjects reported a “feel-

Figure 6.8. Standing wave vibration. (This figure was taken from [Watanabe and
Fukui 95] c©1995 IEEE.)



�

�

�

�

�

�

�

�

6.3. Variable Friction Devices 105

Figure 6.9. Nara’s Tactile Display Construction. (This figure was taken from
[Nara et al. 98] c©1998 IEEE.)

ing of air smoothness” when exploring the display surface. Wantanabe
tested the device with #800, #1000, #1200, and #1500 grit abrasive pa-
per on the display surface. He found that subjects reported increased
smoothness on the surface with increased vibration amplitude. The rougher
surfaces required a larger vibration amplitude to create the smooth feel-
ing. He also found that turning the vibrations on for very short periods
of time (10 ms) resulted in the feeling of increased resistance or a surface
protrusion.

Nara et al. created a similar device with voice coil actuators and a sili-
con rubber beam (see Figure 6.9). [Nara et al. 98] Nara et al. first explored
traveling elastic “lamb” waves in the beam: two superimposed sinusoidal
waves. However, they found a more controllable method by replacing the
beam with a tapered plate (see Figure 6.10) [Nara et al. 98]. When im-
posing simple harmonic (SH) waves on the plate, Nara et al. observed a
turning point at which the amplitude of the waves was drastically attenu-
ated. Modulation of the frequency of the SH waves moves the location of
this turning point. Because the amplitude of vibration drops at the turning
point, the squeeze film disappears, and to an exploring human finger there
is a sensation of transitioning from slippery to sticky.

Figure 6.10. Tapered Plate. (This figure was taken from [Nara et al. 98] c©1998
IEEE.)



�

�

�

�

�

�

�

�

106 6. Variable Friction Haptic Displays

Figure 6.11. TWUM test device. (This figure was taken from [Beit et al. 06],
c©2006 IEEE.)

Biet developed a VFHD using the stator of a Traveling Wave Ultrasonic
Motor (TWUM) [Beit et al. 06]. The TWUM shown in Figure 6.11 operates
by using a two-phase alternative supply actuator to create a traveling wave
in the stator, which controls the movement of the rotor. The TWUM
operates at a resonance of 40 kHz. To create a VFHD, Biet removed the
rotor and used the stator as the display surface, which the finger contacts.
While exploring the surface, the lateral stretching force is imposed on the
finger. This force is hypothesized to be a function of the viscous friction
and the difference in velocities of the traveling wave and the finger. A
linear position sensor was used to measure the velocity of the finger, in
order to tune the velocity of the traveling wave. Due to the traveling wave,
points along the surface of the display experience elliptical displacements
(see Figure 6.12). This displacement causes the generation of a squeeze
film, which reduces the friction between the finger and the surface of the
stator. To modulate the lateral force on the finger, Biet modulates the wave
amplitude. Both the velocity of the traveling wave and friction reduction
are functions of wave amplitude.

Figure 6.12. A traveling wave under the finger. (This figure was taken from [Beit
et al. 06], c©2006 IEEE.)



�

�

�

�

�

�

�

�

6.3. Variable Friction Devices 107

Figure 6.13. Glassmire’s variable friction display. (This figure was taken from
[Glassmire 06].)

Figure 6.14. Langevin-type piezoelectric actuator. The masses on the end (A) are
forced together with the set screw (C), which serves to clamp the four piezoelectric
crystals (B). (This figure was taken from [Glassmire 06].)

Glassmire created a variable friction haptic display with six individu-
ally actuated tiles, rather than creating waves across a continuous medium
[Glassmire 06]. Glassmire’s VFHD has a 1.5 by 2.25 inch tactile workspace
composed of six Langevin piezoelectric actuators in a 2 by 3 grid. Atop
each Langevin actuator is a 0.73 inch square, flat, perforated aluminum
tile (see Figures 6.13 and 6.14). The device is operated at a resonance of
50 kHz. To create illusions of texture on the display surface, Glassmire
modulated the amplitude of the vibrations, and thereby the degree of fric-
tion reduction, as a function of finger position. The finger position was
read by a pantograph mechanism [Campion et al. 05].

6.3.2 Surface Acoustic Waves

Tactile displays utilizing surface acoustic waves (SAWs) comprise the sec-
ond family of VFHDs. [Nara et al. 00,Nara et al. 00,Takasaki et al. 01] These
tactile displays create SAWs on the surface of a piezoelectric substrate. In-
terdigital Transducers (IDTs) on the substrate convert electrical signals to
surface acoustic waves (see Figure 6.15). The IDTs are arranged to form
two opposing progressive waves, which result in one standing Rayliegh
wave. The device operates at 15 MHz and has a power consumption of
several watts. The amplitude of vibration on the surface is only 10 nm.



�

�

�

�

�

�

�

�

108 6. Variable Friction Haptic Displays

Figure 6.15. Basic structure of SAW tactile display using standing Rayliegh wave.
(This figure was taken from [Takasaki et al. 01], c©2001 IEEE.)

Vibrations of this amplitude and frequency cannot setup a squeeze film
under a compliant finger, but can reduce friction under a slider consisting
of steel balls glued to a latex film.

The same two mechanisms that were discussed earlier—periodic contact
and a squeeze film—have been postulated to explain the friction reduction.
However, the theory of a squeeze film in this case is not well supported. The
characteristic length of this system (10nm) is smaller than the mean free
path of air molecules at atmospheric pressure(67 nm), which prevents the
use of a continuum model of air such as that used in describing a squeeze
film.

The reduction of friction with the SAW device is transferred to the
finger on the slider. By implementing bursts of SAWs, this device produces
a stick/slip tactile sensation.

6.3.3 T-PaD

Concept The T-PaD variable friction device is in the family of displays
using ultrasonic vibrating plates for friction control. [Winfield et al. 07]
This device was inspired by the air-bearing design proposed by Weisendan-
ger [Weisendanger 01]. His design utilized piezoelectric bending elements
to create the necessary motion for a squeeze film effect. A piezoelectric
bending element is constructed of two layers: a piezo-ceramic layer glued
to a passive support layer. When voltage is applied across the piezo layer,
it attempts to expand or contract, but due to its bond with the passive
support layer, cannot. The resulting stresses cause bending.

Design freedoms for a bending disk element include the disk radius,
piezo-ceramic disk thickness, support layer material, and support layer
thickness. For a given disk diameter, Figure 6.16 shows the relationship be-
tween relative amplitude of bending and the ratios of thickness and elastic



�

�

�

�

�

�

�

�

6.3. Variable Friction Devices 109

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Thickness Ratio of Support and Piezo Layer

edutilp
m

A evitale
R

Steel

Glass

Brass

Figure 6.16. Relative amplitude of piezo-bending element static deflection. Shown
for steel, glass and brass support layers. Dotted crosshair shows relative am-
plitude of Weisendanger’s bending element prototype, dashed crosshair shows
relative amplitude of the T-PaD–bending element.

modulus between the support layer and the piezo-ceramic disk [Weisendan-
ger 01]. Figure 6.17 shows an approximation of how the resonant frequency,
ω, of the system is affected through changes in system parameters [Weisen-
danger 01]. Experimental values for resonant frequencies were found to be
a few kHz higher than those calculated.

Figure 6.17. Resonant frequency of piezo-bending element. Shown for steel, glass
and brass support layers. Dotted crosshair shows expected resonant frequency
of Weisendanger’s bending element prototype, dashed crosshair shows expected
resonant frequency of the T-PaD–bending element. Note that experimental res-
onant frequencies were found to be higher than those expected



�

�

�

�

�

�

�

�

110 6. Variable Friction Haptic Displays

Figure 6.18. Piezo-bending element and mount.

Figure 6.19. 01 Vibration mode of bending element.

Design considerations. In designing the T-PaD, we felt it was imperative
to fulfill the four following criteria: Slim Design, High Surface Friction,
and Inaudible and Controllable Friction. Since this device only reduces
friction, it is desirable to start with a surface of relatively high friction.
It is also important for all parts of the device to resonate outside of the
audible range. Finally, a mapping between the excitation voltage and the
level of friction reduction (oscillation amplitude) must be determined for
successful friction control.

Bending element construction. The T-PaD modeled in Figure 6.18 com-
prises a 25 mm diameter, 1 mm thick piezo ceramic disk epoxied to a glass
disk of equal diameter and 1.59 mm thickness. The disks are epoxied to a
mounting ring, which ensures vibration in the 01 mode (see Figure 6.19).
The piezo-ceramic disk used is identical to those used by Weisendanger.
However, the steel support layer is replaced with a thicker glass layer. A
thicker glass is beneficial in several ways. A glass interface has a higher co-
efficient of friction than steel, allowing for a broader range of shear forces.
The thicker support layer of glass increases the resonant frequency, en-
suring operation out of the audible range, while not sacrificing amplitude.
This is illustrated in Figures 6.16 and 6.17. The bending element has a
total height of only 2.59 mm and the mounting rings can have a height of
less than 5 mm (the realized prototype used a mounting ring with height
of approximately 20 mm due to ease of manufacturing).

Driving electronics. The device is driven at resonance, approximately
33 kHz, with an amplitude ranging from 0 to 40 Volts peak-to-peak. A
33 kHz, 10 volt peak-to-peak signal is produced by a signal generator and
scaled to a computer-controlled amplitude using an analog multiplier chip



�

�

�

�

�

�

�

�

6.4. Friction Reduction Measurements 111

(AD633AN). The signal is amplified and then stepped up by a 70 V line
transformer. In our implementation, a computer-generated output level of
5 volts DC, corresponding to a 33 KHz signal amplitude at the piezo of
40 V peak-to-peak, resulted in approximately a ten-fold reduction of the
coefficient of friction. The amplitude of the 33 kHz signal can be modu-
lated either temporally or with respect to finger position to produce tactile
sensations.

Finger position sensing. Linear sensor array (LSA) and infrared LED array
pairs were used to measure finger position and velocity in two dimensions.
The LSA comprises 768 photodiodes, which generate photocurrent when
exposed to a light source. Circuitry within the LSA integrates the pho-
tocurrent at each photodiode and outputs a voltage for each photodiode
proportional to the the light intensity on the photodiode during integra-
tion. The photodiodes are most sensitive to infrared light. Therefore, an
array of infrared LEDs are placed on the side of the T-PaD opposite the
LSA. When a finger explores the surface of the T-PaD, its shadow is cast
on the LSA and its position can be interpreted from the output of the LSA.

6.4 Friction Reduction Measurements
As discussed in the previous section the T-PaD is capable of producing
a continuously variable range of friction levels, not just on and off levels.
[Winfield et al. 07]. Although this effect is quite salient to users of the
haptic display, a variable friction experiment was performed to quantify it
and develop a mapping from excitation voltage to the coefficient of friction
on the display surface. The coefficient of friction between a human finger
and the display surface was measured during different levels of excitation
voltage, corresponding to different amplitudes of surface deflection. An
increased excitation voltage corresponds to an increase in the amplitude of
motion of the piezo, which is shown to lead to a decrease in friction.

6.4.1 Experimental Setup

The coefficient of friction between the finger and the display surface was
calculated using the formula for Coulomb friction. The values of normal
and friction (tangential) forces were measured using two one-axis load cells
configured as shown in 6.20. The T-PaD was fixed to the top of a 250 gram
load cell for measuring the normal forces. The T-PaD and load cell were
fixed to an L bracket, which was attached to a precision crossed-roller slide
assembly. The slide assembly had negligible friction effects. A 50-gram
load cell used for measuring the tangential (friction) force was mounted



�

�

�

�

�

�

�

�

112 6. Variable Friction Haptic Displays

Load cell for 
normal force

Load cell for
tangential force

Linear slide

Figure 6.20. Variable friction experimental set-up.

Figure 6.21. Pantograph for finger position data.

to the vertical side of the L bracket and was preloaded with an upright
cantilever beam. The cantilever beam was also used for overload protection.
A pantograph mechanism [Campion et al. 05] was used to measure finger
position and velocity. The pantograph shown in Figure 6.21 was strapped
to the finger using Velcro (Velcro strap not shown).

6.4.2 Data Collection

A total of 18 data collection trials were performed. During each trial the
experimenter moved her finger back and forth on the disk, attempting to
maintain a constant normal force and velocity. Throughout each trial the
excitation voltage at the piezo was stepped through a range of zero to ap-
proximately 40 volts peak-to-peak. This was done by choosing six equally
spaced computer-controlled scaling factors each of which correspond to a
voltage excitation level between 0 and 40 volts. The six scaling factors were
presented in pseudo-random order (no repeats) during each trial, spend-



�

�

�

�

�

�

�

�

6.4. Friction Reduction Measurements 113

Figure 6.22. Data collection thresholds (high friction data); force data was ex-
tracted if finger velocity is above 0.8 in/sec and friction force was above 0.025 N.

ing approximately seven seconds at each level. The experimenter moved
her finger back and forth approximately seven times at each level. Due
to the dynamics of the piezo, the excitation voltage at the piezo varied
slightly during finger contact. Therefore, the peak voltage at the piezo
was recorded throughout the trial. The normal forces, friction forces, and
the finger position data were also recorded throughout the trial, with a
sampling rate of 2000 Hz. The velocity of the finger was derived through
differentiation of the position. The tangential load cell is unilateral and
measures only positive (left-to-right) forces; negative forces were recorded
as zero. Because data was collected continually throughout each trial, the
relevant normal and friction force data needed to be deciphered. Relevant
data was extracted by placing thresholds (Figure 6.22) on both finger veloc-
ity and friction force. Data points were neglected if the finger velocity was
less than 20.3 mm/s (0.8 in/s). This threshold ensured that we were mea-
suring kinematic, rather than static, friction and also helped to eliminate
velocity readings from compliance in the pantograph-to-finger connection
or twisting of the finger. A threshold was also placed on the friction force,
restricting its value to be above 0.025 N to neglect any data points that may
be considered noise. After the thresholds were placed, the mean coefficient
of friction for each scaling factor was calculated by dividing friction force
by normal force and averaging those values. The mean excitation voltage
was also calculated for each scaling factor. Approximately 2000 data points
per trial for each scaling factor were used.



�

�

�

�

�

�

�

�

114 6. Variable Friction Haptic Displays

Figure 6.23. Coefficient of friction with increased voltage excitation, correspond-
ing to increased amplitude of disk motion. Error ellipses show one standard
deviation in friction coefficients (y-axis) and one standard deviation in peak-to-
peak excitation voltage (x-axis).

6.4.3 Results

The mean value of the coefficient of friction for all 18 trials is shown in
Figure 6.23 for each scaling factor. A statistical t-test proves each of the
mean values (other than the first two and the last two) to be statistically
different. This implies the effect does not begin until some point between
8 volts peak-to-peak and 16 volts peak-to-peak of the piezo.

6.4.4 T-PaD Response

Quantitative data during finger exploration of virtual texture sensations
is shown in Figure 6.24 and Figure 6.25. The top and middle plots of
both figures show the friction and normal forces, and the coefficient of
friction across the haptic display. The bottom plot in both figures shows
the computer-controlled scaling factor scheme used to create the sensation.
Figure 6.25 depicts a step change in voltage gain (scaling factor), which is
perceived as an instantaneous change from sticky to smooth. The response
time for the device to change the shear force / coefficient of friction shown in
both the top and middle plots of Figure 6.25 is only about 4 ms. Figure 6.24
highlights the spatial response of the T-PaD. The spatial sine wave pattern
of the coefficient of friction commanded is produced across the surface of
the T-PaD.



�

�

�

�

�

�

�

�

6.5. Friction Patterns to Mimic Textures 115

4

2

0

0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.2 0 0.2 0.4 0.6 0.8 1 1.2

Friction Force

Normal Force
0.2

0.1

0

0

0.2

0.4

0.6

Figure 6.24. “Smooth bumps” texture sensation generated by a sine wave pattern
of friction coefficients across the plate.

Figure 6.25. Friction response to a step increase in voltage. The oscillating
transient following the step change is a result of the force sensor’s dynamics.

6.5 Friction Patterns to Mimic Textures

By controlling the surface friction, we can therefore control the shear forces
on the finger interacting with the display. Knowing the location of the finger



�

�

�

�

�

�

�

�

116 6. Variable Friction Haptic Displays

Figure 6.26. Visual friction pattern. Shading in this figure cannot be seen by the
user, but has been added to illustrate the friction levels. Darker colors correspond
to higher coefficients of friction.

Figure 6.27. Visual friction pattern. Shading in this figure cannot be seen by the
user, but has been added to illustrate the friction levels. Darker colors correspond
to higher coefficients of friction.

on the display allows for the creation of shear force patterns on the display
(see Figures 6.26 and 6.27), i.e., the coefficient of friction on the surface
is a function of the finger location. These patterns result in compelling
illusions of texture on the surface.

Each of the patterns shown in Figure 6.28, as well as variations on
the patterns, have been implemented on the T-PaD. Some observations
are in order. First, although the entire fingerpad is feeling one level of
friction, at a time it feels as though multiple features are beneath the
fingerpad while it is exploring the surface. Users most often characterize the
tactile sensations as smooth, bumpy, slippery, rough, gritty, sharp-edged
and sticky. These descriptions correspond to the following friction patterns.
Slippery tactile sensations occur under a constant friction reduction across



�

�

�

�

�

�

�

�

6.6. Multidimensional Scaling 117

Smooth bumps
2D

Smooth bumps
1D

File grating Low profile
edge

Rough Rough spot Sticky Circle

Figure 6.28. Surface plots of friction coefficient patterns.

the surface. Smooth tactile sensations are the result of continuous changes
in friction along the surface. Bumps are implemented with a sinusoidal
pattern of friction coefficients. The smooth bumps patterns in Figure 6.28,
as their name suggests, are examples of both smooth and bumpy sensations.
Discontinuous patterns in friction, such as the low profile edge and the file
grating in Figure 6.28, are perceived as feeling sharp-edged. High spatial
frequency patterns, with periods less than about 0.07 inches, are felt as
rough or gritty sensations. Gritty most commonly refers to high-spatial-
frequency discontinuous patterns (e.g., square wave).

Combining these tactile sensations with visual feedback delivers remark-
able realism. When feeling the velocity-dependent pattern labeled “fish-
scales,” a slippery sensation when moving to the left and a sharp-edged
sensation when moving to the right, and viewing a picture of a fish the
tactile sensation becomes quite convincing. Friction patterns representing
surface features such as the sticky circle or rough spot in Figure 6.28 are
also enhanced with visual feedback.

It should be noted that temporal modulation of the coefficient of friction
was also explored and found to produce more of a vibratory sensation,
rather than a texture.

6.6 Multidimensional Scaling
In order to design a diverse library of virtual textures, it is advantageous
to first identify the parameters which have the greatest impact on texture
perception. A virtual texture on a VFHD is created by generating a two-
dimensional pattern of varying coefficients of friction on the surface of the
device. Several parameters define this pattern, including the spatial fre-
quency, waveform, amplitude, and velocity dependence. Changes in any
or all of these parameters create new virtual textures. The relationship



�

�

�

�

�

�

�

�

118 6. Variable Friction Haptic Displays

between how users perceive virtual textures and the individual parameters
defining the textures can be difficult to decipher.

Multidimensional scaling (MDS) is a useful technique for visualizing
similarities and/or dissimilarities between stimuli. An MDS analysis cre-
ates an n-dimensional map of individual stimuli. The distance between
any two stimuli on the map is related to how dissimilar the two stimuli
are judged to be. The MDS algorithm is input a dissimilarity matrix with
m*(m-1)/2 individual dissimilarity scores between m stimuli. MDS uses an
optimization algorithm to transform the dissimilarity scores δij into dis-
tances dij between the stimuli i an j on the n-dimensional map [Young 85].
The number of dimensions of the map is chosen by the researcher to best
suit the data. A large number of dimensions will have less error between the
map distances dij and the dissimilarity scores δij ; however, the map may
be difficult to interpret. Conversely, a smaller number of dimensions will
have greater error between map distances, but will enable the researcher
to more clearly draw primary conclusions [Pasquero et al. 06]. Once a di-
mension is selected, it is up to the researcher to infer the meaning of the
axes from how the stimuli are grouped. The axes most often represent the
most salient parameters of the stimuli. Many statistical software packages
include tools for creating MDS maps.

One of the first MDS analyses performed in the field of haptics was
by Yoshida [Yoshida 68]. Yoshida used an MDS analysis to determine
the distinguishing characteristics between the perceptions of several tactile
surfaces. In-depth studies of the validity of the MDS technique have been
performed by Pasquero et al. [Pasquero et al. 06], who believe that MDS
is a “valuable tool to evaluate the expressive capability of haptic devices.”
Pasquero et al. offer suggestions on performing and interpreting MDS anal-
yses. They also offer ways of inspecting data subsets to extract previously
unapparent but relevant data.

Judging the difference between two stimuli is most commonly performed
in one of two ways: the pair-wise comparison method or the cluster-sorting
method [Ward 77]. In the case of judging several virtual texture stimuli,
the cluster-sorting method is preferred. The pair-wise comparison method
requires each stimulus to be compared with every other stimulus and their
dissimilarity to be numerically ranked. This method can be lengthy and
may cause subjects to forget their methods of ranking [Pasquero et al. 06].

The cluster-sorting method described by Ward [Ward 77] requires sub-
jects to perform several trials in which they sort similar stimuli into clus-
ters. All stimuli are placed. The number of clusters is changed with each
trial. The dissimilarity score between any two stimuli is based on their
appearance in the same cluster over the several trials. Two stimuli never
placed in the same trial will be ranked the most dissimilar, while two al-
ways placed together will be ranked the least dissimilar. Ward’s method



�

�

�

�

�

�

�

�

6.6. Multidimensional Scaling 119

consisted of five trials, where 8 subjects sorted 20 stimuli (photographs).
During the first trial the subjects were able to choose the number of clus-
ters. In subsequent trials, subjects sorted into 3, 6, 9, 12, and 15 clusters
in pseudorandom order, excluding the number of clusters nearest to that
chosen during the first trial. The dissimilarity scores δij are calculated by
first creating a similarity matrix S and then inverting the entries of the
matrix, such that the numerical value representing the least similar stimuli
now represents the most dissimilar stimuli, and visa versa. The similarity
matrix is a square matrix with the 20 stimuli representing the rows and
columns. The dissimilarity scores are computed as follows:

S =
8∑

Subjects=1

5∑
Trials=1

[(# of clusters in trial) · (Aijts)], (6.30)

where Aijts = 1 if stimuli i and j are in the same cluster for trial t and
subject s, Aijts = 0 if stimuli i and j are not in the same cluster for trial t
and subject s,

δij = 1000 − 1000
max(S)

Sij . (6.31)

6.6.1 Variable Friction Haptic Display MDS

A preliminary study using the MDS technique was performed on a one-
dimensional version of Glassmire’s Langevin VFHD [Glassmire 06]. A li-
brary of nineteen virtual textures was created, and a total of eight subjects
(graduate students familiar with haptics) were asked to explore the haptic
display for each of the different virtual textures. To collect similarity rank-
ings for the virtual textures, the subjects performed two sorting trials. As
noted, this was a preliminary study; a more formal study would require a
larger number of sorting trials. In each trial the subject sorted the stimuli
into clusters of similar stimuli. The subject was asked to characterize each
cluster with descriptive words. During the first trial, the subject chose the
number of clusters to sort the stimuli, either 4 or 8. The unused number
of clusters was then implemented in the second trial. Once all the subjects
completed both trials, the dissimilarity matrix shown in Figure 6.29 was
constructed.

Using Matlab’s cmdscale function, the MDS map shown in Figure 6.30
was created. The MDS plot shows a few trends, the most salient of which
is the trend of low to high spatial frequencies as you move across the plot
from left to right; this is highlighted with the purple ellipses. It can be
inferred from this data that spatial frequency of the friction variation is
very noticeable to human subjects. It can also be noted that velocity-
dependent patterns (i.e., fish scales in which the direction of finger velocity



�

�

�

�

�

�

�

�

120 6. Variable Friction Haptic Displays

Figure 6.29. Dissimilarity matrix.

Figure 6.30. MDS for virtual textures. Spatial frequency is most salient parame-
ter. Added spatial noise masks other spatial frequencies. The velocity-dependent
patterns and localized patterns are distinguishable from other patterns.

dictates the friction pattern felt by the subject) and localized friction pat-
terns are both distinguishable from continuous and discontinuous periodic
spatial friction patterns. There is no apparent difference on the map be-
tween full and half amplitude signals. However, subjects did note that
the full amplitude signals delivered a slightly stronger sensation. Subjects
most often characterized the sensations with words analogous to one of the



�

�

�

�

�

�

�

�

6.7. Summary 121

following categories: smooth/slippery, bumpy/notched, viscous/rubbery,
rough/gritty.

It should be noted that in many cases not all the parameters may be
known or initially considered and may actually be discovered during inspec-
tion of the MDS map. Often it is very difficult to create stimuli that only
differ by certain selected parameters. To help reveal hidden parameters, it
is useful to have subjects give verbal descriptions of the clusters.

This preliminary study delivered key information regarding the creation
of virtual textures with a variable friction display. For instance, spatial
frequency was found to be a most salient parameter; therefore several dif-
ferent virtual textures can be made from the same initial waveform just by
varying the spatial frequency. It can also be seen that patterns should be
implemented at full amplitude. The half amplitude patterns created only
a weaker version of the same virtual texture.

A more formal study should be performed with the T-PaD to gain
further knowledge on the capabilities of this device. This would include a
larger library of virtual textures, perhaps from models of actual textures,
an increased number of sorting trials, and an analysis into maps, with a
greater number of dimensions.

6.7 Summary
In this chapter we have discussed the many studies which serve as motiva-
tion for variable friction haptic displays, the theories behind variable fric-
tion, the several current embodiments, and the capabilities of such devices
in producing virtual textures. Minsky’s sandpaper system opened the door
to creating virtual textures with lateral force fields. Several other studies,
including [Biggs and Srinivasan 02] and [Hayward and Cruz-Hernandez 00]
have shown the sensitivity of the fingerpad to shear forces, suggesting that
lateral force fields at the fingerpad would easily be detected.

The majority of variable friction haptic displays rely on the ability to
reduce surface friction levels to create lateral force fields. The leading
theory of friction reduction is the presence of a squeeze film. Squeeze
films appear between two surfaces with relative motion imposed between
the surfaces. In the case of most VFHDs, the non-vibrating surface is
either the finger or a slider mechanism on which the finger rests. During
motion, viscous forces trap air under the finger and the air then compresses,
resulting in an average pressure under the finger above atmospheric. The
phenomenon of variable friction reduction has no clear explanation, but is
believed to be due to changes in the total area of the squeeze film under
the fingerpad. In this chapter we show, however, that periodic contact is
a viable alternative model. Ultimately, high quality measurements of the



�

�

�

�

�

�

�

�

122 6. Variable Friction Haptic Displays

surface-fingertip interface will be needed to clearly elucidate the variable
friction behavior.

Highlighting the T-PaD, we showed this display is capable of reducing
its surface friction almost ten-fold. The T-PaD uses position sensing to cre-
ate lateral force fields on the display, which results in compelling illusions
of texture. Variable friction haptic displays are a valuable haptic technol-
ogy capable of displaying a multitude of tactile sensations. Future work
in this field involves developing a firm understanding of the friction reduc-
tion mechanism in ultrasonic vibrating VFHDs and designing low-power,
application-centered prototypes.



�

�

�

�

�

�

�

�

7
Stability of Haptic Displays

D. W. Weir and J. E. Colgate

This chapter reviews the issue of instability in haptic devices, as well as
the related concept of Z-width. Methods for improving haptic display per-
formance (expanding the Z-width) are also discussed.

7.1 Definitions
Haptic displays can be considered to be devices which generate mechanical
impedances. Impedance here is defined as a dynamic relationship between
velocity and force. The behavior of the haptic display depends on the
virtual environment being rendered. For instance, if the desired behavior
is that of a point mass, the haptic display must exert forces proportional
to acceleration. Similarly, if the desired behavior is that of a spring, the
haptic display must exert forces proportional to displacement [Colgate and
Brown 94].

Passivity has proved to be a useful tool for studying both the stability
and performance of haptic displays. A one-port system is passive if the
integral of the power extracted over time does not exceed the initial energy
stored in the system. For a translational mechanical system, power is the
product of force (f) and velocity (ẋ), with the sign convention that power
is positive when energy flows into the system. Typically, the initial energy
is defined to be zero, resulting in the following inequality:∫ t

0

f(τ)ẋ(τ)dτ ≥ 0, ∀t ≥ 0. (7.1)

A passive system, coupled with any other passive system, is necessarily
stable. Ordinary physical objects, such as springs, masses, and dampers,
are passive, and common experience suggests that humans remain stable
when interacting with passive systems. Therefore, the human user is typi-
cally considered a passive impedance, particularly at high frequencies above
the bandwidth of voluntary motion. If a haptic display rendering an ar-
bitrary virtual environment can be guaranteed passive, then the complete

123



�

�

�

�

�

�

�

�

124 7. Stability of Haptic Displays

system will be stable when the display is coupled with the human operator.
This property frees the designer from having to analyze the interaction of
the haptic display and virtual environment with the human operator under
all possible configurations.

In the real world, objects interact according to a set of physical laws
that govern their behavior. In the virtual world, this interaction is only
approximated. Even though the approximate behavior may be very close
to the real behavior, the implications of these errors can be profound. In-
stability and limit cycle oscillations are two common ways in which haptic
interactions deviate from their physical counterparts, both of which result
from non-passivity. Small amplitude limit cycle oscillations can be partic-
ularly problematic even if they do not escalate to gross instability because
human tactile perception is extremely sensitive to vibrations in the 100 Hz
to 1 kHz range [Bolanowski et al. 88]. Maintaining passivity is one way,
albeit sometimes restrictive, of ensuring that virtual objects behave in a
stable manner when interacting.

Everyday interaction with common objects involves experiencing a wide
range of impedances. Moving in free space implies almost zero resistance
to motion, while interacting with tables, walls, and other massive objects
provides almost complete resistance to motion. The challenge is to design
a haptic interface that can display as wide a range of dynamic impedances
as possible.

The dynamic range of impedances that can be rendered by a haptic
display while maintaining passivity is termed its Z-width. Since a dis-
play with larger Z-width will usually render “better”-feeling virtual envi-
ronments, Z-width may be viewed as a measure of quality for the haptic
display.

As a final note, we should mention that haptic displays are often re-
ferred to as “impedance type” or “admittance type.” Impedance displays
measure the endpoint motion and output a force or torque in response.
Admittance displays measure the applied force or torque and output a
motion. Both systems respond according to the (imperfectly) simulated
physics of the virtual environment being rendered. This chapter will ad-
dress both impedance and admittance displays, but will focus primarily
on impedance causality displays. Note, however, that for either type, the
notions of passivity and Z-width are equally valid.

7.2 Designing for Passivity
Expanding the impedance range of a haptic display as a method for im-
proving performance begins with passivity. Maintaining passivity places
severe restrictions on virtual environment stiffness and damping; therefore,



�

�

�

�

�

�

�

�

7.3. Passive Rendering of a Virtual Wall 125

a number of techniques have been developed to facilitate haptic rendering
of high impedance environments.

Due to the nature of impedance causality haptic displays, the lower
bound on impedance is generally limited by the quality of force sensing and
feedback, and the mechanical design. Often, impedance causality displays
feature low inertia designs enabling low impedance renderings. The upper
bound on passive impedance can be limited by sensor quantization, sampled
data effects, time delay, and noise [Colgate and Schenkel 97]. Thus, most
research efforts have focused on increasing the maximum impedance that
can be displayed as a way of increasing the Z-width of haptic displays.

A number of methods exist to increase the maximum passive impedance
of a haptic interface. These fall into a number of broad categories: con-
trollers, physical mechanisms, and electrical mechanisms. The category of
controllers includes virtual couplings and passivity observers. Virtual cou-
plings act as mediators between the haptic display and the virtual environ-
ment. Passivity observers and passivity controllers function by adjusting
the energy present in the system to maintain passivity. Mechanical meth-
ods are generally the most direct, whereby physical dissipation is added to
the mechanism to expand the passive impedance range of a haptic display
by counteracting the effects of energy leaks. Electrical methods are a blend
of physical methods implemented electrically and controller approaches im-
plemented using analog electronics.

In a slightly different category are psychophysical techniques that act
to alter the user’s perception of the impedance range of the haptic display.
These include methods such as rate hardness and event-based rendering.

7.3 Passive Rendering of a Virtual Wall

7.3.1 A Simple Passivity Result

Haptic displays are sampled-data systems, i.e., they combine a continuous-
time mechanical system with a discrete-time controller. The effects of sam-
pling, even assuming ideal sensors and actuators in the continuous-time
plant, cause a haptic display to lose passivity.

[Colgate and Schenkel 97] derive an analytical passivity criterion for a
simple 1-degree-of-freedom haptic interface, as shown in Figure 7.1. The
discrete-time controller models a virtual wall, including a unilateral con-
straint operator and includes analog-to-digital (A/D) and digital-to-analog
(D/A) converters in the feedback loop. A block diagram for this sampled-
data system is shown in Figure 7.2. The unilateral constraint is chosen as
a fundamental building block for virtual environments, because it models
a simple form of contact and collision between two objects.



�

�

�

�

�

�

�

�

126 7. Stability of Haptic Displays

A/DD/A

Clock

actuator displacement
transducer

x,v

program

Figure 7.1. A simple 1-DOF haptic display [Colgate and Schenkel 97].

1
ms + b

1 - e -Ts
s

zero order hold

H(z)

operator

1
s

-

-

T

v

x

u

f

unilateral constraint

xs

+

Figure 7.2. Block diagram of a haptic display and operator-sampled-data system
[Colgate and Schenkel 97].

A necessary and sufficient condition for passivity of the sampled data
system in Figure 7.1 is

b >
T

2
1

1 − cos(ωT )
�{(1 − e−jωT )H(ejωT )} for 0 ≤ ω ≤ ωN , (7.2)

where b is the physical damping present in the mechanism, T is the sampling
rate, H(z) is a pulse transfer function representing the virtual environment,
and ωN = π

T is the Nyquist frequency [Colgate and Schenkel 97].



�

�

�

�

�

�

�

�

7.3. Passive Rendering of a Virtual Wall 127

The result can be simplified to an analytical expression relating the
sampling rate, virtual stiffness, virtual damping, and dissipation within
the haptic display. [Colgate and Schenkel 97] analyze a wall consisting of
a virtual spring and damper in mechanical parallel, together with a uni-
lateral constraint operator. A velocity estimate is obtained from backward
difference differentiation of the position sensor data. This results in the
following transfer function within the wall:

H(z) = K +B
z − 1
Tz

, (7.3)

where K > 0 is the virtual stiffness and B is the virtual damping coefficient
(B is allowed to be positive or negative). Equation (7.2) combined with
Equation (7.3) simplifies to the following passivity condition: [Colgate and
Schenkel 97]

b >
KT

2
+ |B|. (7.4)

The physical damping present in the mechanism must be sufficient to
dissipate the excess energy created by errors introduced by sampling in the
discrete-time controller, commonly referred to as “energy leaks.”

7.3.2 Importance of Damping

The physical damping present in the haptic display is critically impor-
tant, due to its role in counteracting the energy generation from errors
introduced by sensing and discrete-time control. [Colgate et al. 93b] ex-
pand on the passivity bound of Equation (7.4) and provide simulation data
showing how maximizing sensor resolution and minimizing sampling rate
improves performance. Colgate and co-authors also introduce the concept
of adding physical damping to the system in order to increase the limits of
virtual stiffness and virtual damping that can be passively achieved [Col-
gate et al. 93b,Colgate and Schenkel 97,Colgate and Brown 94].

The implications of Equation (7.4) are somewhat counterintuitive: to
increase the maximum impedance of a haptic display, increase the vis-
cous damping in the mechanism in order to maintain passivity. The ad-
dition of physical damping can dramatically increase the maximum pas-
sive impedance a device can render. When low impedances are rendered,
virtual damping in the discrete-time controller can be negative, masking
the increased physical damping in the device. However, simulated or vir-
tual damping cannot substitute for real, physical dissipation in the mech-
anism [Colgate and Brown 94]. Physical damping can be added to the
haptic interface through a variety of techniques that will be discussed in
Section 7.6.



�

�

�

�

�

�

�

�

128 7. Stability of Haptic Displays

First detected extra-wall position which
toggles off control law

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
-2

-1.5

-1

-0.5

0

0.5

1

Time

fk = 1 * yk

Manipulandum displacement y(t)

∆tb
∆ta

D
is

pl
ac

em
en

t a
nd

 F
or

ce

Commanded force fk(t)

Figure 7.3. The effect of sampling: actual position, sampled position, commanded
force [Gillespie and Cutkosky 96].

7.3.3 Virtual Wall as a Benchmark

The virtual wall is the standard haptic task. Since most interaction with
virtual environments can be simplified to interaction with a virtual wall
of varying stiffness and damping, the virtual wall is commonly used as a
performance benchmark for haptic interfaces. For example, see [Colgate
and Brown 94,Gillespie and Cutkosky 96, Zilles and Salisbury 95,Adams
and Hannaford 99,Abbott and Okamura 05].

Due to the nature of sampling, simulating the behavior of a stiff virtual
wall is a difficult task. To characterize the general problem, consider the
following example. As a general rule, there is always some penetration of
the position of the haptic display into the virtual wall. As a consequence,
at the next sampling interval, the discrete controller detects the wall pene-
tration, and the virtual environment computes large output forces normal
to the wall surface. This large force has a tendency to rapidly push the
haptic display outside of the virtual wall into free space. This situation
now reverses, where at some future sampling interval, the position of the
haptic display is outside the virtual wall, so the forces return to zero. This
sequence is depicted in Figure 7.3. Oscillations arise when this cycle of
free space and wall penetration is repeated. Sampling prevents detecting



�

�

�

�

�

�

�

�

7.3. Passive Rendering of a Virtual Wall 129

0
10

0
20

0
30

0
40

0
50

0
60

0

-0.5 0

V
ir

tu
al

 S
ti

ff
ne

ss
 (

N
m

/r
ad

)

0.5 1 1.5 2

Physical damper engaged (1 KHz)
Physical damper engaged (100 Hz)

Virtual Damping (Nm-sec/rad)

No physical damping (1 KHz)
No physical damping (100 Hz)

Figure 7.4. Typical Z-width plot illustrating maximum passive impedance range
[Colgate and Brown 94]. ( c© 1994 IEEE)

the exact time when the haptic display contacts the surface of the virtual
wall, and position sensing resolution has the effect of quantizing penetra-
tion distance into the virtual wall, both of which are destabilizing effects.
These errors can lead to energy generation and active, non-passive behav-
ior. These effects will be further addressed in in the next section.

The virtual wall is also traditionally used to characterize the impedance
range, or Z-width of haptic interfaces. Z-width is often displayed using
virtual stiffness-virtual damping plots, showing that the maximum passive
impedance boundary as the stiffness and damping vary, typically under a
variety of conditions, as shown in Figure 7.4.

However this method does not show how the Z-width varies according
to frequency. It also does not show the minimum stable impedance that can
be rendered. The importance of this is illustrated in the following example.
If a single haptic display has maximum and minimum impedances of Zmin

and Zmax, respectively, then two of them in mechanical parallel will have a
maximum impedance of 2Zmax, increasing the boundary on the K-B plot.
The minimum impedance is also increased to 2Zmin, so the system Z-width
has not changed, but this is not apparent on the K-B plot. This lack
of minimum impedance information makes it difficult to compare various
haptic interfaces.

For these reasons, a more useful figure of merit and way of displaying
Z-width information may be a set of curves, showing the extremes of both
impedance and admittance as a function of frequency, while maintaining
passivity.



�

�

�

�

�

�

�

�

130 7. Stability of Haptic Displays

Figure 7.5. Mapping between actual position and quantized position, with sensor
resolution ∆ [Abbott and Okamura 05]. ( c© 2005 IEEE)

7.4 Extensions to the Passivity Framework

7.4.1 Quantization and Time Delay

The most common position-sensing technique for haptic displays is the
use of optical encoders. One consequence of optical encoders is that po-
sition information is quantized based on the encoder resolution. Other
position-sensing techniques are also frequently quantized, such as analog
potentiometers that are sampled by a finite resolution analog-to-digital
converter. Such a position signal would also be subject to electrical noise,
but that will be not be addressed here. The distinction between sampling
and sensor quantization should be emphasized. Sampling introduces un-
certainty with respect to when events occur and what happens between
sampling intervals. Sensor quantization causes a loss of information due
to sensing only discrete changes in the value of a signal, as indicated in
Figure 7.5. The actual position can lie anywhere between two quantized
position measurements. Sensor quantization is independent of the sampling
frequency.

In [Abbott and Okamura 05], position quantization and Coulomb-plus-
viscous friction in the haptic device are explicitly modeled, as shown in
Figures 7.3, 7.5, and 7.6. Analyzing the worst-case scenarios of compressing
and extending a virtual spring, representing the virtual wall with a haptic
display, results in this passivity condition:

K ≤ min
(

2b
T
,
2fc

∆

)
, (7.5)



�

�

�

�

�

�

�

�

7.4. Extensions to the Passivity Framework 131

Figure 7.6. Model of haptic device rendering a virtual wall used by [Abbott and
Okamura 05]. ( c© 2005 IEEE)

where b is the viscous damping in the mechanism, T is the sampling time,
∆ is the position quantization interval, and fc is the Coulomb friction. The
haptic display is assumed to consist of a mass plus friction, and the virtual
wall consists of a unilateral constraint. The first part of the inequality,
2b
T , is the same as Equation (7.4) when the virtual damping is equal to
zero. The stiffness is limited by the physical damping in the system, which
must be sufficient to dissipate at least as much energy as the energy leaks
introduced by sampling. The second term of the inequality, 2fc

∆ , relates the
Coulomb friction in the device to the encoder resolution. It should be noted
that normally one of the terms is the dominating effect and provides the
limiting factor for passive virtual stiffness. In the experimental verification
of this passivity condition presented by [Abbott and Okamura 05], the
maximum virtual stiffness limited by damping and sampling rate, 2b

T , is
almost two orders of magnitude smaller than the Coulomb friction limited
virtual stiffness, 2fc

∆ .
Consider the following simplified conceptual derivation of the passivity

criterion in Equation (7.5) to provide an intuitive understanding of the
passivity limit of virtual stiffness. Imagine compressing an ideal spring
with constitutive law F = kx. The energy stored in the ideal spring after
compressing a distance ∆x = xk+1−xk = vT during one sampling period is

E =
1
2
k∆x2. (7.6)



�

�

�

�

�

�

�

�

132 7. Stability of Haptic Displays

F

xx
t

x
t+1

Energy Leak

Flat Line Due

to Sampling

Slope = k

Figure 7.7. Detail of energy leak due to sampling.

Due to sampling, the force of the virtual spring remains constant be-
tween sampling intervals, as shown in Figure 7.7. Equation (7.7) is the re-
sulting energy leak due to sampling, while at the same time, Equation (7.8)
is the energy dissipated by viscous damping (assuming constant intersam-
ple velocity). In order to maintain passivity, the energy dissipated must
be greater than the energy introduced by the energy leak (Equation (7.9));
therefore, it is possible to calculate the maximum passive virtual stiffness,
given the sampling rate and the physical dissipation (damping) in the me-
chanical system (Equation (7.11)):

Eleak =
1
2
K(vT )2 (7.7)

Edissip = bv2T (7.8)
Eleak ≤ Edissip (7.9)

1
2
Kv2T 2 ≤ Tbv2 (7.10)

K ≤ 2b
T

(7.11)

A similar derivation can be made for the virtual stiffness limit due to
friction and quantization interval. Continuing with the conceptual example
of rendering an ideal spring, the position of the haptic display can change
to a distance equal to the quantization interval, ∆, without being sensed.
This would introduce an energy leak equal to the compression of the ideal
spring by a distance ∆ (see Equation (7.12)). The friction in the mechanism
must dissipate at least as much energy as that introduced by the energy
leak, which is the work done by the friction force (Equation (7.13)). This
inequality leads to a maximum passive virtual stiffness, given the position
sensing quantization and the friction in the mechanism (Equation (7.16)):



�

�

�

�

�

�

�

�

7.4. Extensions to the Passivity Framework 133

σ

β

1
2

1
2

ξ̇max+1
2

A Globally

Stable (Passive)

B Limit

Cycles

C Globally

Unstable

D Loc.

Unstable

E Locally

Stable

−ξ̇max

Figure 7.8. Dimensionless stability plane with characteristic regions for zero delay
where β := b

KT
and σ := c

K∆
and ξ̇(τ ) = ẋT

∆
[Diolaiti et al. 06]. ( c© 2006 IEEE)

Eleak =
1
2
K∆2, (7.12)

Edissip = fc∆, (7.13)
Eleak ≤ Edissip, (7.14)

1
2
K∆2 ≤ fc(

∆
T

)T, (7.15)

K ≤ 2fc

∆
. (7.16)

Equation (7.5) can be nondimensionalized by dividing by 2K. The two
resulting terms, β and σ, are used as axes to define a nondimensional plane
depicting stability regions according to behavior, shown in Figure 7.8. This
is a graphical way of depicting Equation (7.5). [Diolaiti et al. 06] analyze a
similar system with the added inclusion of time delay and introduce a new
nondimensionalized velocity parameter, ξ̇:

β :=
b

KT
, (7.17)

σ :=
fc

K∆
, (7.18)



�

�

�

�

�

�

�

�

134 7. Stability of Haptic Displays

position ξ :=
x

∆
, (7.19)

time τ :=
t

T
, (7.20)

velocity ξ̇(τ) =
ẋT

∆
. (7.21)

One advantage of this plot is the identification of varying types of in-
stability between regions of the plane. The variable ξ̇ defines a new type of
behavior: it is the maximum allowed velocity of the haptic display, faster
than which the small effect of Coulombic friction and virtual environment
parameters can cause instability. The stability boundaries at β = σ = 1

2
correspond to the effective dissipation limits for ensuring passivity, with β
representing the effective limit for viscous dissipation and σ corresponding
to the effective limit for Coulombic dissipation.

Quantization also limits performance through velocity estimation. Con-
sider, for example, a slowly changing position signal with a very fast sam-
pling rate. The finite difference method for estimating velocity is

v̂k =
yk − yk−1

T
. (7.22)

If at sample times tk−2 and tk−1 the position information remains constant,
v̂k−1 = 0. However, if at sample time tk the position increases by one
quanta, δ, then the resulting velocity suddenly jumps to a very large value,
v̂k = δ

T . This rapidly varying velocity estimate can lead to instability.
One common method to reduce this effect is to low-pass filter the resulting
velocity signal, thereby smoothing out the jumps. With increasing sample
rate, filtering becomes more imperative to obtain velocity signals. This
presents a trade-off, however, as increased filtering leads to increased time
delay and phase distortion, which can cause instability. The precision of
the velocity estimate improves with decreased sample rate, as illustrated in
Figure 7.9. However the reliability of the signal decreases due to the longer
time delay. This has the effect of averaging the velocity over a longer
period of time, or over a number of samples, as shown in Figure 7.9 and
Equation (7.23):

v̂k =
1
n

n−1∑
j=0

v̂k−j =
yk − yk−n

nT
. (7.23)

Fixed filters, such as a Butterworth filter, compute velocity from a
weighted sum of the raw velocity signal, v̂

′
j , and past filtered velocity esti-

mates, v̂j .

v̂k =
n∑

j=0

bj v̂
′
k−j +

n∑
j=1

aj v̂k−j , (7.24)



�

�

�

�

�

�

�

�

7.4. Extensions to the Passivity Framework 135

Figure 7.9. Effect of window length on the variance of velocity [Janabi-Sharifi
et al. 00]. ( c© 2000 IEEE)

where aj and bj are the filter coefficients, and n is the order of the filter. As
n increases, the filter becomes more like an ideal low-pass filter; however,
the delay and phase distortion are also increased. An additional subtlety
is that the signal is filtered along with the noise, so that heavy filtering
leads to poor transient response. To address this, [Janabi-Sharifi et al. 00]
introduce a velocity filtering technique that relies on a first-order adap-
tive window length. The basic concept is that, when position signals are
changing slowly, the window should be long to provide a precise estimate of
the velocity. However, when the position is rapidly changing, the window
length should be short to improve velocity reliability and prevent introduc-
tion of excessive delay. The window criterion exists to determine whether
the slope of a straight line reliably approximates the derivative of the signal
between two samples, xk and xk−n. If the noise, d, in the position signal
can be assumed to be uniformly distributed, such that d = ‖ek‖∞ ∀k, then
mathematically, the adaptive window problem becomes finding a solution
for the largest possible window length n that satisfies the following:

|yk−i − Lyk−i
| ≤ d, ∀i ∈ {1, 2, . . . , n}, (7.25)

where Lyk−i
= an + bn(k − i)T, given that, (7.26)

an =
kyk−n + (n− k)yk

n
, and (7.27)

v̂k = bn =

n
n∑

i=0

yk−i − 2
n∑

i=0

iyk−i

Tn(n+ 1)(n+ 2)/6
. (7.28)

The solution for the window length, n, is found iteratively where the win-
dow grows from n = 1 until the window no longer fits the enclosed data;
then the previous n is used to compute the velocity estimate. The variable
bn is the slope of a line that is a least-square approximation that minimizes
the error in the velocity signal [Janabi-Sharifi et al. 00].

7.4.2 Nonlinearities

Nonlinearities are an important consideration for haptic displays in virtual
environments. Essentially, almost all useful virtual environments are non-
linear in that impedances change dramatically upon contact with objects



�

�

�

�

�

�

�

�

136 7. Stability of Haptic Displays

in the virtual environment. [Miller et al. 00] analyze the passivity of nonlin-
ear delayed and non-delayed virtual environments. The authors establish
a passivity criterion relating the haptic display and human operator, the
virtual coupling, and the virtual environment for both delayed and non-
delayed environments. Virtual couplings will be introduced in more detail
in Section 7.5.1.

Again, the physical dissipation in the mechanism is a critical parameter.
In addition to the passivity criterion, a key result is a limit to an environ-
ment parameter, α, measuring the lack of passivity exhibited by the virtual
environment. It can be expressed as a function of inertia, damping and stiff-
ness parameters. The variable α is related to the physical dissipation in
the system, δ, and is modulated by the impedance of the virtual coupling
γ, if present [Miller et al. 00]:

α < δ, (7.29)

α <
δγ

δ + γ
. (7.30)

Many common haptic devices also have nonlinear kinematics. Through
an analysis of system dynamics, [Miller et al. 04] show how the nonlinear
transformation from joint space to task space for a haptic display also
affects passivity. This result can be summarized by the following inequality:

δm ≥ JT δJ, (7.31)

where δm represents the joint space dissipation, J is the haptic interface
Jacobian, and δ is the task space dissipation required for passive rendering
of the desired virtual environment.

7.5 Control Methods

7.5.1 Virtual Coupling

Virtual coupling is one of the basic techniques for rendering virtual environ-
ments in haptics, introduced by [Colgate et al. 95] and amplified by [Miller
et al. 00,Adams and Hannaford 98] and others. The virtual coupling con-
nects the haptic display and the virtual environment and consists of a
virtual spring in virtual damper in mechanical parallel, as shown in Fig-
ure 7.10.

The virtual coupling is advantageous because it simplifies the problem
of ensuring stability. Using a virtual coupling to establish stability of the
haptic display, which is a sampled-data system, it is only necessary to
satisfy the following two conditions:



�

�

�

�

�

�

�

�

7.5. Control Methods 137

haptic display 

operator 

"Virtual Coupling" 

Passive 
Tool Simulatio n 

K 

B 

Figure 7.10. The virtual coupling [Colgate et al. 95]. ( c© 1995 IEEE)

1. Select the virtual coupling parameters, such that a virtual wall with
these parameters would be passive.

2. Make the virtual environment discrete-time passive.

Condition 2 is simpler to achieve than analyzing the complete sampled-
data system to ensure passivity. Separating the discrete-time passivity of
the virtual environmentfrom the rest of the system frees the designer from
concerns regarding the interaction between the virtual environment and
the haptic display and human operator. The virtual coupling, however,
has the effect of reducing the maximum environment impedance to match
the passivity limits of the haptic display, which are generally lower than
the impedances of the virtual environment.

Virtual environments rendering mass require the use of discrete time
integrators which typically are not passive, making condition 2 difficult to
meet. [Brown and Colgate 98] analyzed various discrete time integration
techniques in the context of establishing the lower bound of virtual mass
that can be rendered while maintaining passivity. The value of minimum
mass required for passive rendering depends on the form of integrator used.

The work of [Miller et al. 00] generalized these results by explicitly
modeling the non-passivity of the human and haptic interface, as well as the
virtual environment (Figure 7.11). As shown in Equation (7.30), the virtual
coupling increases the allowed lack of passivity in the virtual environment
while still maintaining overall system passivity.

[Adams and Hannaford 98] introduced the use of a virtual coupling
network to analyze and guarantee system stability. Using this technique,
elements of the haptic display are typically modeled as a series of inter-
connected, two-port elements in a network, shown in Figure 7.12. The



�

�

�

�

�

�

�

�

138 7. Stability of Haptic Displays

Figure 7.11. The haptic display system with a virtual coupling [Miller et al. 00].
( c© 2000 IEEE)

Fh

+

haptic
interface

+

vh

-

haptic 
di spla y Fd

vd

-1
virtual

coupling Fe

− ve

-

− vd

human
operator

virtual
environ-

ment

Figure 7.12. The virtual coupling as a two-port element in a network [Adams and
Hannaford 98]. ( c© 1998 IEEE)

virtual coupling introduced by [Colgate et al. 95] and the coupling behav-
ior of the god-object introduced by [Zilles and Salisbury 95] are subsets
of this more general two-port coupling network approach. Coupling net-
work results are shown for both admittance and impedance architectures.
This technique was then applied to a 2-degree-of-freedom haptic display
in both impedance and admittance configurations, showing passivity re-
sults derived experimentally and theoretically for both conditions [Adams
et al. 98].

7.5.2 Passivity Observers and Controllers

[Gillespie and Cutkosky 96] introduced a technique for stabilizing virtual
walls by compensating for the energy leaks due to the zero-order hold, as
well as the asynchronous switching times associated with sampling. Asyn-
chronous switching times arise because the haptic display generally does
not enter or exit the virtual wall exactly at a sampling time; typically, the



�

�

�

�

�

�

�

�

7.5. Control Methods 139

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time (seconds)

di
sp

la
ce

m
en

t (
m

) 
an

d 
sc

al
ed

 w
al

l f
or

ce
 (

N
)

sampled data ball displacement 

f_wall 

reference ball displacement 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

time (seconds)

di
sp

la
ce

m
en

t (
m

) 
an

d 
sc

al
ed

 w
al

l f
or

ce
 (

N
)

sampled data ball displacement 

f_wall 

reference ball displacement 

(a) (b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

time (seconds)

di
sp

la
ce

m
en

t (
m

) 
an

d 
sc

al
ed

 w
al

l f
or

ce
 (

N
)

sampled data ball displacement 

f_wall 

reference ball displacement 

(c)

Figure 7.13. (a) Sampled-data system simulation of a bouncing ball. (b) Half
sample prediction simulation results of a bouncing ball. (c) Bouncing ball sim-
ulation with sampling and zero-order hold correction algorithm active [Gillespie
and Cutkosky 96].

transition from “outside” to “inside” the virtual wall occurs in between
sampling intervals (Figure 7.3). These two sources of error are treated sep-
arately. The goal is to design a digital controller to cancel the effects of
these induced energy leaks, stabilizing the system. Figure 7.13(a) shows a
sampled-data system simulation of a ball bouncing on a surface, without
sampling correction.

The dominant behavior of the zero-order hold can be approximated as
a half sample delay. By designing a controller that predicts the state of
the system one half sample forward in time, the majority of the error in-
troduced by the zero-order hold can be canceled. At sample time t = kT ,
the controller predicts the state at t = KT +T/2 and then renders the vir-
tual environment using the predicted system state. Figure 7.13(b) shows
simulation results using a half sample prediction algorithm of a sampled-
data system rendering a bouncing ball. It can be seen that modeling the



�

�

�

�

�

�

�

�

140 7. Stability of Haptic Displays

Figure 7.14. One-port network with passivity controller [Ryu et al. 04]. ( c© 2004
IEEE)

zero-order hold as a half sample delay improves the rendering during the
majority of the time the ball is in contact with the virtual wall. However,
during the last sample, and while in contact with the wall, the algorithm
introduces an error, computing a force pulling back toward the wall. This
error occurs because the ball exits the virtual wall between sampling in-
tervals due to the secondary effect of sampling, asynchronous switching
times.

To address this second concern, a model of the system to predict thresh-
old crossing times using state information is also incorporated. Conceptu-
ally, this is estimating ta and tb in Figure 7.3, given a model of the known
properties of the system and virtual environment being rendered. Dead-
beat control is then used to compensate for the energy leaks caused by these
asynchronous switching times. Figure 7.13(c) shows the final improvement
after correcting the half sample delay and using deadbeat control to correct
for asynchronous switching times. Note that correcting for the effects of
sampling is independent of the added problem of sensor quantization.

Expanding on this work and the work on virtual coupling networks,
[Hannaford et al. 01] introduced passivity observers (POs) and passivity
controllers (PCs) for stabilizing haptic interaction with virtual environ-
ments. Passivity observers analyze system behavior and track the energy
flow between elements to estimate errors introduced into the sampled-data
system. Passivity controllers act to dissipate this excess energy by adjust-
ing the impedance between elements in the system (Figure 7.14). They
effectively inject additional damping to dissipate energy.

One of the main advantages of POs is that the PC does not modify the
desired system impedance unless an energy correction is necessary. Unlike
the virtual coupling, which constantly moderates the feel of the virtual
environment, the passivity controller adds damping only when necessary
to counteract energy leaks. This can potentially lead to better feeling
virtual environments.

The earliest POs assumed that velocity and force were constant between
samples, but more recent passivity observers presented in [Ryu et al. 05],
based on [Ryu et al. 04] and [Stramigioli et al. 02], show that this assump-
tion can be relaxed. The resulting passivity observer for an impedance



�

�

�

�

�

�

�

�

7.5. Control Methods 141

Figure 7.15. Effect of passivity controller and modeled reference energy [Ryu
et al. 05]. ( c© 2005 IEEE)

causality device takes the following form:

Eobsv(k) =

⎡⎣ k∑
j=0

f(tj−1)(x(tj) − x(tj−1))

⎤⎦+f(tj)(x(tj)−x(tj−1)). (7.32)

The bracketed term of Equation (7.32) represents the exact energy input
to the discrete-time virtual environment from time 0 to time tk, and the
second term is an estimate of the energy input one time step ahead, and is
based on the assumption that the velocity does not change during that time
step. If the dynamics of the controller are much faster than the dynamics of
the mechanical system, then the predictive second term in Equation (7.32)
is typically not necessary. If at any time the observed energy, Eobsv, is
negative, then the sampled-data system may be contributing to instability.
It is then the job of the PC to modify the impedance of the network to
dissipate the excess energy.

To further improve the performance of PO/PC systems and main-
tain the perception of a good feeling virtual environment, the excess en-
ergy should be dissipated smoothly. [Ryu et al. 05] introduced a PO that
smoothly corrects for energy leaks by modeling the behavior of a reference
system and comparing that to the observed behavior, shown in Figure 7.15.
For simple virtual environments, a model of the energy flow into the vir-
tual environment can be explicitly calculated to act as the reference energy.
However, most interesting virtual environments are nonlinear, making an
exact calculation of the energy flow into the virtual environment very diffi-



�

�

�

�

�

�

�

�

142 7. Stability of Haptic Displays

cult. In this case, and in the case of designing a general passivity observer,
a simple energy model can be used to reference the behavior. One imple-
mentation of such an energy tracking reference is the numerical integration
of the power flow into the virtual environment, where the force is computed,
given the observed position information.

In the case of a continuous and lossless one-port network system, the
energy input to the system should be equal to the energy stored, S, plus
the energy dissipated, D:∫ t

0

f(τ)ẋ(τ)dτ = S(t) +D(t), ∀t ≥ 0 (7.33)

This leads to the following PC algorithm for the one-port network with
impedance causality shown in Figure 7.14 [Ryu et al. 05]. In this case, the
PO (Eobsv in step 4, Equation (7.34)) uses the modeled energy, instead of
the one-step-ahead predicted energy in Equation (7.32).

1. x1(k) = x2(k) is the input.

2. ∆x(k) = x1(k) − x1(k − 1).

3. f2(k) is the output of the one-port network.

4. The actual energy input at step k is

Eobsv(k) =
k∑

j=0

f1(j − 1)∆x(j). (7.34)

5. S(k) and D(k) are the amount of stored energy and dissipated energy
of the virtual environment at step k, respectively.

6. The PC control force to make the actual input energy follow the
reference energy is calculated:

fPC(k) =

{
−(Eobsv(k)−S(k)−D(k))

∆x(k) if W (k) < 0,
0 if W (k) ≥ 0,

(7.35)

where W (k) = Eobsv(k) − S(k) −D(k).

7. f1(k) = f2(k) + fPC(k) is the output.

Another improvement to the passivity observer gained by following the
energy of a reference system is the problem of resetting. Consider the case
of a virtual environment that is both highly dissipative in certain regions
and active in other regions. The active region requires the passivity con-
troller to add damping to maintain stability. If the user spends a long time



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 143

in the dissipative region before contacting the active region, a large accu-
mulation of positive energy in the passivity observer can be built up during
interaction with the dissipative region. This is very similar to the problem
of integrator windup. Upon switching to the active region, the passivity
observer may not act until the net energy becomes negative, causing a delay
while the accumulated excess of passivity is reduced. During that delay,
the system can exhibit unstable behavior. If the passivity observer tracks
a reference energy system, this problem of resetting can be avoided.

Another method of tracking and dissipating energy leaks is presented
by [Stramigioli et al. 02]. This work uses a port-Hamiltonian method for
estimating these sampled-data system errors. The key aspect of all of
these energy leak and passivity controllers is determining the inaccuracy
introduced by the discrete-time approximation of the continuous system,
so that the controller can dissipate this excess energy.

7.6 Extending Z-Width
This section first extends the passivity criterion in Equation (7.2) and gives
insight into passivity design with frequency-dependent damping. Then,
mechanical and electrical methods of implementing high frequency damping
are reviewed.

7.6.1 Frequency-Dependent Passivity Criterion

A system in feedback with an uncertainty set consisting of all possible
passive behaviors must itself be strictly passive, to guarantee closed loop
stability [Colgate and Hogan 88]. We use this fact to establish the strict
passivity of the haptic display model in Figure 7.16. Specifically, we replace
the block representing the human operator with a block containing the
uncertainty set Σ. The set Σ is the set of all linear, time-invariant (LTI),
passive operators that map vh to Fh. It is well known that such an operator
must be positive real; i.e., in the Nyquist plane, the real part (representing
energy dissipation) must be non-negative. Thus, Σ can be represented by
the half-plane shown in Figure 7.17.

The task, therefore, is to prove the stability of the system illustrated in
Figure 7.16. Doing so establishes the strict passivity of the haptic display.
In this section, we only outline the proof, which uses Nyquist theory. The
basic strategy is to write the closed loop characteristic equation as 1 +
A(s)∆(s) = 0, where ∆(s) is the uncertainty set consisting of the unit disk.
If the open loop (uncoupled) system is stable, then a sufficient condition
for closed loop (coupled) stability is

1 +A(jω)∆(jω) �= 0 ∀ω, ∀∆, (7.36)



�

�

�

�

�

�

�

�

144 7. Stability of Haptic Displays

1( )hZ s−

( )H z
1
sT

hF

hv

Haptic Display

Virtual Environment (digital)

-

Σ

mF

hx1 sTe

s

−−

Figure 7.16. Model of a haptic system. Here, Zh is the impedance of the haptic
display hardware; H(z) is the (linear) virtual environment; Σ is the uncertainty
set that we use to replace the human operator. Note that we assume that the
actuator force Fm and human force Fh are collocated.

Σ

Re

Im

Figure 7.17. The set of all possible LTI passive impedances occupies the right
half Nyquist plane.

or, equivalently,
|A(jω)| < 1 ∀ω. (7.37)

This is a version of the small gain theorem [Desoer and Vidyasagar 75].
Straightforward manipulation shows that the sufficient condition for the

closed loop stability of Figure 7.16 is:

1−H(ejωT )
1 − e−jωT

T

n=∞∑
n=−∞

1
[Z(jω + jnωs) + Σ(jω + jnωs)](ω + nωs)2

�= 0,

(7.38)



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 145

where ωs = 2π/T is the sample rate. Consider the sum Z + Σ. Because
Σ has an arbitrary imaginary part, the imaginary part of Z contributes
nothing further. The real part of Z, however, shifts Σ to either the right
or left, depending on sign. In the cases of interest, �{Z(jω)} > 0, which
shifts Σ to the right. Moreover, 1/(Z + Σ) is easily found to be a circular
disk centered on the real axis and tangent to the origin, as well as the point
(1/�{Z(jω)}, 0). If this disk were frequency independent, we could factor
it out of the infinite sum, but in general this is not the case. Here, we
will make the assumption that �{Z(jω)} is non-decreasing with frequency,
meaning that the amount of damping in the haptic display remains fixed
or grows with increasing frequency. With this assumption, it is apparent
that

1
Z(jω + jnωs) + Σ(jω + jnωs)

⊂ 1
�{Z(jω)} + Σ(jω)

∀n �= 0 (7.39)

and Equation (7.38) is satisfied whenever Equation (7.40) holds true:

1 +H(ejωT )
1 − e−jωT

T [�{Z(jω)}+ Σ(jω)]

n=∞∑
n=−∞

1
(ω + nωs)2

�= 0. (7.40)

The infinite sum can be solved analytically, yielding:

1 +H(ejωT )
T (1 − e−jωT )

2(1 − cos(ωT ))[�{Z(jω)} + Σ(jω)]
�= 0, (7.41)

or, in terms of the unit disk, ∆:

1 +H(ejωT )
T (e−jωT − 1)

4(1 − cos(ωT ))
1 + ∆

�{Z(jω)} �= 0. (7.42)

For compactness, we define

r(jω) =
T (e−jωT − 1)

4(1 − cos(ωT ))
. (7.43)

The assumption of uncoupled stability enables us to rewrite Equation (7.42)
as

1 +
r(jω)H(ejωT )

�{Z(jω)} + r(jω)H(ejωT )
∆ �= 0, (7.44)



�

�

�

�

�

�

�

�

146 7. Stability of Haptic Displays

which is the form of Equation (7.36). Thus, stability requires that∣∣∣∣ r(jω)H(ejωT )
�{Z(jω)} + r(jω)H(ejωT )

∣∣∣∣ < 1. (7.45)

This can be manipulated into the following form:

�{Z(jω)} +
T

2(1 − cos(ωT ))
�{(e−jωT − 1)H(ejωT )} > 0 (7.46)

for 0 ≤ ω ≤ ωN =
ωs

2
.

Equation (7.46) may be compared to the result of Colgate and Schenkel,
also presented here as Equation (7.2) [Colgate and Schenkel 97]. In the
event that �{Z(jω)} has a fixed value of b, the results are the same. Equa-
tion (7.46) is therefore a more general result than previously reported, but
subject to the non-decreasing assumption.

7.6.2 Insights into Passivity and Damping

The passivity criterion in Equation (7.46) is slightly more general than
Equation (7.2) in that it allows for frequency-dependent physical damp-
ing, but only under the assumption that the physical damping is a non-
decreasing function of frequency.

The criterion in Equation (7.46) lets us, in effect, sum together the
physical damping (first term) and virtual damping (second term). At each
frequency from zero to the Nyquist frequency, the sum (total damping)
must be positive to ensure passivity.

Figure 7.18 shows, as an example, the physical, virtual, and total damp-
ing for the haptic display pictured in Figure 7.19(a), and implements the
virtual wall of Equation (7.3). It is evident that, in order to ensure passiv-
ity at the Nyquist frequency, a considerable excess of damping is required
at low frequencies.

The negative virtual damping at high frequency is caused principally by
the phase delay of the backwards difference differentiator used to compute
velocity. This effect can be minimized by filtering. For instance, if we com-
bine a first order low-pass digital filter with the differentiator and set the
cutoff frequency at one-fifth the Nyquist frequency, we obtain Figure 7.20.
The high frequency negative damping has been reduced but at a cost. The
extra phase lag introduced by the filter causes negative virtual damping to
occur at lower frequencies. This is a good illustration of why high order
velocity filters are rarely used in haptics: the cost of added phase delay
often out weighs the benefits of magnitude roll-off. To the best of the au-
thor’s knowledge, no theory of optimal filter design for haptics (other than



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 147

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Frequency (w/w
N
)

D
a
m

p
in

g
 L

e
v
e
ls

Physical Damping

Virtual Damping

Total Damping

Figure 7.18. Physical, virtual, and total damping levels for the system of Fig-
ure 7.19(a) and the virtual wall of Equation (7.3) with m/b = 0.1, KT/b = 1,
B/b = 0.5. Note the excess of total damping at low frequency required to achieve
positive damping at the Nyquist frequency.

m

b

,h hF vmF

(a)

m

b
m2

,h hF vmF

(b)

Figure 7.19. (a) Model of a haptic display having inertia m and viscous damping
b. (b) Addition of the mass m2 gives rise to “high pass” damping.

the work of [Janabi-Sharifi et al. 00], reviewed previously, which is aimed
at handling quantization), has been developed.

A second approach to improving Z-width is to replace the simple, fixed
damper of Figure 7.19(a) with a high frequency damper, such as the one
in Figure 7.19(b). By connecting the distal end of the damper to a floating
inertia rather than to ground, the effective physical damping, (�{Z(jω)})
approaches zero at low frequency. Figure 7.21 shows that the combination
of “high pass” damping and velocity filtering enables a significantly higher
impedance virtual wall to be implemented passively than for the näıve
design of Figures 7.18 and 7.19(a).



�

�

�

�

�

�

�

�

148 7. Stability of Haptic Displays

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Frequency (w/w
N
)

D
a
m

p
in

g
 L

e
v
e
ls

Physical Damping

Virtual Damping
Total Damping

Total Damping w/o Filter

Figure 7.20. Physical, virtual, and total damping for the system of Figure 7.19(a),
with the same parameters as Figure 7.18 and the addition of a first order low
pass velocity filter having a cutoff frequency one-fifth of the Nyquist frequency.
Note that the improved total damping at high frequencies is offset by reduced
total damping at low frequencies. Nonetheless, it is evident that the physical
damping could be reduced or the virtual wall impedance increased without loss
of passivity.

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Frequency (w/w
N
)

D
a
m

p
in

g
 L

e
v
e
ls

Physical Damping

Virtual Damping

Total Damping

Figure 7.21. Physical, virtual, and total damping for the system of Figure 7.19(b),
with the same low pass velocity filter as Figure 7.20, and a higher impedance
virtual wall. Parameters are m/b = 0.1, m2/b = 0.01, KT/b = 1.8, B/b = 0.9.
Positive total damping is maintained at all frequencies without significant excess
at any frequency.



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 149

7.6.3 Mechanical Methods

The direct approach of adding a mechanical viscous damper to the haptic
interface to increase the maximum passive impedance of the system works
well, as demonstrated by [Colgate and Brown 94], and illustrated in Fig-
ure 7.22. The maximum passive virtual stiffness and damping are limited
by the physical dissipation in the mechanism by Equation (7.4). The addi-
tional physical damping is counteracted using digital control; the damper
torque is measured and a low-passed version of this torque is added to the
motor command. This masks the user’s perception of damping at the low
frequencies of human voluntary motion but improves system stability and
passivity at high frequencies, where discrete-time control is ineffectual and
energy leaks are most problematic.

There are some practical problems with typical physical dampers, such
as temperature dependence, fluid leakage, and Coulomb friction generated
in fluid seals. Figure 7.4 shows the increased impedance range when phys-
ical damping is added to the haptic display and when the sampling rate
is increased. Magnetic dampers using eddy currents also work with the
added benefit of being able to turn off the damping, when rendering low
impedances [Gosline et al. 06]. It is also possible to use mechanical brakes
to dissipate energy and mimic the behavior of a damper in order to provide

Figure 7.22. Design of a 1-DOF haptic display with motor (on the left) and
fluid-filled viscous damper (on the right) connected via a removable steel tape
[Brown 95].



�

�

�

�

�

�

�

�

150 7. Stability of Haptic Displays

the necessary dissipation in the mechanism [An and Kwon 06], although
the slow dynamic response of magnetic brakes may limit their performance.

7.6.4 Electrical Methods

More recently, a variety of techniques emerged that take advantage of
analog components for rendering continuous time behavior. This method
strives to avoid the difficulties presented by mechanical dampers, but still
incorporates the dramatic performance improvements afforded.

One such method of electrically increasing the Z-width of a haptic dis-
play is to design an analog motor controller that locally monitors each joint
and controls the coupling stiffness and damping [Kawai and Yoshikawa 02]
in order to maintain passivity. A schematic of this is shown in Figure 7.23.
In this way, the joint stiffness and damping are continuously controlled,
while the virtual environment is updated and commands the joint coupling
parameters at the sampling intervals, as shown in Figure 7.24. The increase
in passivity and system Z-width using these analog impedance controllers
is shown in [Kawai and Yoshikawa 04].

Another class of controllers takes advantage of the motor’s natural dy-
namics. Since electric motors are gyrators, a damper on the mechanical side
of the motor acts as a resistor on the electrical side of the motor [Karnopp
et al. 00]. [Mehling et al. 05] used a resistor and capacitor in parallel with
the motor to add frequency-dependent electrical damping to a haptic dis-
play, as illustrated in Figure 7.25.

Figure 7.23. Outline of analog feedback control corresponding to two joints [Kawai
and Yoshikawa 04]. ( c© 2004 IEEE)



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 151

Conventional haptic device.

Proposed haptic device.

Figure 7.24. Conventional and electrically coupled hybrid haptic device [Kawai
and Yoshikawa 04]. ( c© 2004 IEEE)

+ -

Motor

Damper
B

+ -

Motor
Kt, Rm

R1

+ -

Motor
Kt, Rm

R1 C
(a)                                (b )                            (c) 

Figure 7.25. (a) A mechanically damped system and (b) two electrically damped
systems; (b) one without and (c) one with frequency dependence [Mehling
et al. 05]. ( c© 2005 IEEE)



�

�

�

�

�

�

�

�

152 7. Stability of Haptic Displays

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

50

100

150

200

250

300

V
irt

ua
l S

tif
fn

es
s 

(N
m

/ra
d)

Virtual Damping (Nms/rad)

Average Stability Boundaries for Tested Levels of Electrical Damping

(1) No Electrical Damping
(2) Electrical Damping = 0.00755 Nms/rad
(3) Electrical Damping = 0.0151 Nms /rad

(1)

(2)

(3)

Figure 7.26. Z-width plot of the average stability boundary for each level of
electrical damping. Dashed lines indicate plus or minus one standard deviation
[Mehling et al. 05]. ( c© 2005 IEEE)

The amount of electrical damping added is a function of the motor
torque constant Kt, the motor winding resistance Rm, and the external
resistor R1:

beq =
K2

t

R1 +Rm
. (7.47)

This technique can be quite effective, as illustrated in Figure 7.26. [Mehling
et al. 05] used an R-C cutoff frequency of 2.6 Hz, providing significant
damping at higher frequencies, where the haptic display is likely to be
unstable or exhibit limit cycle oscillations and above the frequencies of
human voluntary motion. It is important to note that the capacitor acts
as apparent inertia on the mechanical side of the motor. For this reason,
the R-C time constant of the electrical damper must be selected carefully.
The resistance must be small enough to provide useful damping at the
frequencies of interest, while keeping the capacitance small enough to cause
only a modest impact on apparent inertia at low frequency.

Clearly, maximum physical damping, b, is provided when R1 goes to
zero, i.e., the motor is “crowbarred.” However, this creates problems with
driving the motor; any voltage applied bypasses the motor. The winding
resistance, Rm, also sets an upper bound on the electrical damping that
can be achieved in this configuration. There is also a practical limit to how
large the capacitance can be in addition to the added apparent inertia at
low impedance.



�

�

�

�

�

�

�

�

7.6. Extending Z-Width 153

+

_

_
+

eA

KL

kT

F F

ẋW ẋ
m

c

FH

eW

i

√
2R

√
2R

v

u

Wave Transform

R
Analog

Circuit

Figure 7.27. The wave transform connecting the virtual environment to the elec-
trical domain is implemented with an analog circuit [Diolaiti and Niemeyer 06].
( c© 2006 IEEE)

To increase electrical damping beyond the limit of Equation (7.47), it
is possible to design a circuit to cancel the effect of the motor winding
resistance, Rm [Diolaiti and Niemeyer 06]. Such a circuit in the motor
amplifier allows the motor winding resistance to be reduced dramatically;
however, due to noise and thermal effects, Rm cannot be canceled com-
pletely. Due to gyration, the motor winding inductance acts like a spring
on the mechanical side. [Diolaiti and Niemeyer 06] take advantage of this
by combining wave variable control with a circuit to cancel Rm, leaving
the springlike inductance to couple the physical world with the virtual en-
vironment. The benefit is that for common DC motors, such as those in
the Phantom haptic display, the resulting effective spring constant of the
inductance is much higher than the maximum passive stiffness that can be
attained using feedback and digital control. This technique also requires
recasting the digital controller in the form of wave variables, as shown in
Figure 7.27.

Extending Diolaiti and Niemeyer’s work, it is possible to use analog
circuitry to estimate the back EMF (electromotive force or voltage) of the
winding, by canceling both the resistance and the inductance of the motor
windings. The back EMF of the motor is proportional to velocity, so feeding
this signal back to the motor inside the current control amplifier provides
electrical damping. One caveat is that prior knowledge of the parameters
and dynamics of the motor is required in order to design such circuitry, and
dynamic tuning of the parameters is necessary to compensate for heating
in the windings.

7.6.5 Psychophysical Methods

In addition to analytical and quantitative methods for increasing the max-
imum passive stiffness that can be rendered by a haptic display, there are a



�

�

�

�

�

�

�

�

154 7. Stability of Haptic Displays

variety of psychophysical techniques available to improve human perception
of stiff virtual surfaces.

[Salcudean and Vlaar 97] developed a rendering method for virtual
walls using a “braking pulse” that occurs upon contact with the wall bound-
ary. The force of the pulse is designed to bring the haptic display to rest
as quickly as possible, ideally in one sampling period. This corresponds to
a very high level of damping when crossing the wall boundary, but since
the high level of damping is not sustained, it does not lead to instabil-
ity that would occur with a similar level of virtual damping in a constant
parameter virtual wall. After the braking pulse, as the user remains in
contact with the virtual wall, the rendering method consists of the stan-
dard spring-damper virtual wall with virtual stiffness and damping gains
set, such that they are stable. This results in behavior that is similar
to an object colliding with a real wall and increases the perceived wall
stiffness.

[Lawrence et al. 00b] introduced the concept of rate-hardness as a way of
quantifying human perception of our virtual surfaces. Rate-hardness is the
ratio of initial rate of change of force versus initial velocity upon penetrating
the surface. Human perception studies indicate that rate-hardness is a
more relevant perceptual hardness metric then absolute mechanical stiffness
when rendering virtual surfaces. This is likely due to the relatively poor
performance of the human kinesthetic sense when in contact with stiff walls.
When a human is already in contact with a stiff virtual wall, the change in
position relative to the change in force when haptically querying the wall
is very small.

If the user is allowed to dynamically test the wall through tapping, for
example, human perception is much better at distinguishing varying surface
hardness. It seems that tapping elicits high frequency force differences,
which can be perceived by the pressure and vibration sensory receptors in
the fingers. Artificially increasing the rate hardness can act as a haptic
illusion, making the surface seem harder than the stiffness alone would
predict [Lawrence et al. 00b].

[Okamura 98] introduced a technique to improve the perception of
contact with virtual objects. High frequency open-loop force transients
corresponding to interaction events in the virtual environment are super-
imposed on a standard virtual wall controller, as indicated in Figure 7.28.
To determine the open loop vibrations to display, high resolution vibration
and position information was gathered while tapping on a variety of ma-
terials. The data was fit to the amplitude A(v), decay constant B, and
frequency ω of a decaying sinusoidal signal Q(t), resulting in each material
having a different vibration signature:

Q(t) = A(v)e−Bt sin(ωt). (7.48)



�

�

�

�

�

�

�

�

7.7. Summary 155

Proportional

Transient

P
os

iti
on

F
or

ce

vin

Time

Figure 7.28. Schematic of position and force in event-based haptic display
[Kuchenbecker et al. 06]. ( c© 2006 IEEE)

Typical haptic displays generally do not accurately reproduce high fre-
quency vibration signals. To compensate for these device dynamics, [Oka-
mura et al. 01] improved the vibration models by performing a set of human
perceptual experiments to tune the parameters of the vibration signatures.
Based on the results of the experiments, the adjusted parameters result
in more realistic perception of tapping on the three test materials: rub-
ber, wood, and aluminum. One drawback to these techniques is that each
material type, geometry, and haptic display needs to be individually char-
acterized prior to use to determine appropriate vibration signatures.

Extending the work on reality-based vibration feedback, [Kuchenbecker
et al. 06] utilized an acceleration matching technique based on the experi-
ence of contacting the real object being rendered in the virtual environment.
To improve the accuracy of the force transients displayed upon contact with
a virtual object, the open-loop acceleration signal is pre-warped by an in-
verted system model to correct for the distortion and dynamics induced by
the haptic display. Chapter 21 treats in more detail measurement-based
haptic rendering.

7.7 Summary
In summary, haptic instability frequently arises from a lack of passivity
when rendering virtual environments. In order to maintain passivity, vir-



�

�

�

�

�

�

�

�

156 7. Stability of Haptic Displays

tual environment impedance can be reduced to acceptable levels for passiv-
ity, but this depends upon the specific hardware used, and highly complex
virtual environments make this undesirable. To preserve the universal-
ity and accuracy of virtual environments, virtual couplings can be used
to modulate the impedance transmitted between the haptic display and
the virtual environment to ensure passivity. Passivity controllers can in-
crease the nominal impedance of haptic display by counteracting energy
leaks introduced by the sampled-data system. Direct methods of design-
ing for passivity work to increase the maximum passive impedance of the
haptic interface, improving performance. Lastly, perceptual methods of
improving performance take advantage of the limits of human perception
to create the illusion of higher performance rendering on existing haptic
display hardware.

Acknowledgments

This work was supported in part by Northwestern University, National
Science Foundation IGERT Fellowships through grant DGE-9987577, and
National Science Foundation Grant No. 0413204.



�

�

�

�

�

�

�

�

Part II
Rendering Techniques



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

8
Introduction to Haptic
Rendering Algorithms

M. A. Otaduy and M. C. Lin

The second part of this book focuses on the rendering algorithm of a haptic
interface system. It presents several techniques commonly used for com-
puting interactions between virtual objects and for displaying the contact
forces to a user. The collection of chapters covers different aspects of the
rendering algorithm, such as collision detection and contact force compu-
tation, with the specific challenges and solutions associated with different
configuration spaces (such as 3D point, 3D object, etc.), material proper-
ties (rigid vs. solid), or model descriptions (polygonal surface, parametric
surface, etc.).

In this chapter we first give an overview on the key elements in a typical
rendering algorithm. We start by formulating a general definition of the
haptic rendering problem. Then, we list different algorithmic components
and describe two of the traditional approaches in detail: direct rendering
vs. rendering through a virtual coupling. We continue with an exposition
of basic concepts for modeling dynamics and contact, both with rigid and
deformable bodies, and we conclude with an introduction to multirate ren-
dering algorithms for enhancing the quality of haptic rendering.

8.1 Definition of the Rendering Problem
In the real world, we perceive contact forces when we touch objects in the
environment. These forces depend on the surface and material properties
of the objects, as well as the location, orientation, and velocity with which
we touch them. Using an analogy with the real world, haptic rendering can
be defined as the process of generating contact forces to create the illusion
of touching virtual objects.

159



�

�

�

�

�

�

�

�

160 8. Introduction to Haptic Rendering Algorithms

8.1.1 Kinesthetic Display of Tool Contact

Haptic perception can be divided into two main categories, based on the
nature of the mechanoreceptors that are activated: cutaneous perception
is related to mechanoreceptors in the skin, while kinesthetic perception is
related to mechanoreceptors in joints, tendons, and muscles. And the type
of contact forces that can be perceived can be classified into two types:
forces that appear in direct contact between the skin and the environment,
and forces that appear due to contact between an object manipulated by
the user (i.e., the tool) and other objects in the environment.

In this part of the book, we focus mostly on the kinesthetic perception
of contact forces through a tool, i.e., the perception of contact between a
manipulated tool and other objects, on our joints, tendons, and muscles.
As mentioned in Chapter 1, even when using an intermediate tool, subjects
can infer medium- and large-scale properties of the objects in the environ-
ment as if touching them directly. Moreover, the use of a tool becomes
a convenient computational model in the design of haptic rendering algo-
rithms, and even the computation of direct skin interaction could make use
of a tool model for representing e.g., fingers (as described in Chapter 4).

8.1.2 Teleoperation of a Virtual Tool

Figure 8.1 shows an example of haptic rendering of the interaction between
two virtual jaws. The user manipulates a haptic device, and can perceive
through the rendering algorithm the contact between the jaws as if he or
she were actually holding and moving the upper jaw. In this example, the
upper jaw can be regarded as a virtual tool, and the lower jaw constitutes
the rest of the virtual environment.

Haptic rendering of the interaction between a virtual tool and a virtual
environment consists of two tasks:

1. Compute and display the forces resulting from contact between the
virtual tool and the virtual environment.

2. Compute the configuration of the virtual tool.

A haptic rendering system is composed of two sub-systems: one real
system (i.e., the user and the haptic device), and one virtual system (i.e.,
the tool and the environment). The tool acts as a virtual counterpart
of the haptic device. From this perspective, haptic rendering presents a
remarkable similarity to master-slave teleoperation, a topic well studied in
the field of robotics. The main difference is that in teleoperation both the
master and the slave are real physical systems, while in haptic rendering
the tool is a virtual system. Similarly, haptic rendering shares some of
the challenges of teleoperation, namely, the computation of transparent



�

�

�

�

�

�

�

�

8.1. Definition of the Rendering Problem 161

Figure 8.1. Manipulation of a virtual jaw. The user manipulates a haptic device,
and though the rendering algorithm can perceive forces as if manipulating the
upper jaw in the virtual environment.

teleoperation: i.e., the virtual tool should follow the configuration of the
device, and the device should produce forces that match those computed
on the tool, without filtering or instability artifacts.

8.1.3 A Possible Definition

It becomes clear from the discussion above that a haptic rendering problem
should address two major computational issues, i.e., finding the tool config-
uration and computing contact forces, and it should use information about
device configuration. Moreover, it requires knowledge about the environ-
ment, and in some cases it modifies the environment as well. With these
aspects in mind, one possible general definition of the rendering problem
could be as follows:

Given a configuration of the haptic device H, find a configuration of the
tool T that minimizes an objective function f(H− T ), subject to environ-
ment constraints. Display to the user a force F(H, T ) dependent on the
configurations of the device and the tool.

This definition assumes a causality precedence where the input variable
is the configuration of the haptic device H, and the output variable is the
force F. This precedence is known as impedance rendering, because the
haptic rendering algorithm can be regarded as a programmable mechanical
impedance [Hogan 85,Adams and Hannaford 98], as depicted in Figure 8.2.



�

�

�

�

�

�

�

�

162 8. Introduction to Haptic Rendering Algorithms

Figure 8.2. Overview of haptic rendering. The top block diagram shows haptic
rendering as an impedance control problem, with the device configuration as
input, and the device forces as output. A more detailed look in the bottom
breaks the haptic rendering problem into two subproblems: (1) computation of
the tool configuration, and (2) computation of device forces.

In impedance rendering, the device control system should provide position
information and implement a force control loop.

A different possibility is admittance rendering, where the haptic ren-
dering system can be regarded as a programmable mechanical admittance
that computes the desired device configuration, as the result of input de-
vice forces. In that case, the device control should provide device forces
and implement a position control loop. As discussed by [Adams and Han-
naford 98], the two types of rendering systems present dual properties,
and their design can be addressed in a unified manner; therefore, here we
restrict the exposition to impedance rendering.

In the definition of the haptic rendering problem presented above, we
have not specified the objective function that must be optimized for com-
puting the tool’s configuration, nor the function for computing output
forces. The differences among various haptic rendering algorithms lie pre-
cisely in the design of these functions and are briefly outlined next and
covered in the following chapters.



�

�

�

�

�

�

�

�

8.2. Components of a Rendering Algorithm 163

Figure 8.3. Main components of a general impedance-type rendering algorithm.

8.2 Components of a Rendering Algorithm
On a high level, for an impedance-rendering system, the rendering algo-
rithm must be composed of (i) a solver module that determines the con-
figuration of the tool, and (ii) a collision detection module that defines
environment constraints on the tool. Figure 8.3 depicts such a high-level
description of the algorithm. More specifically, we distinguish the follow-
ing components of the rendering algorithm, which may vary among specific
implementations.

8.2.1 The Tool Model

The number of degrees of freedom (DOFs) of the tool is a variable that
to a large extent depends on the application, and should be minimized as
much as possible to reduce the complexity of the rendering. Hence, in many
modeling applications (see Chapter 26), it suffices to describe the tool as
a point with three DOFs (translation in 3D), in medical applications (see
Chapter 24), it is often possible to describe it as a ray segment with five
DOFs, and in virtual prototyping (see Chapter 22), it is often required
to describe the tool as a solid with six DOFs (translation and rotation in
3D). When the tool is represented as a point, the haptic rendering problem
is known as three-degree-of-freedom (3-DOF) haptic rendering, and when
the tool is represented as a rigid body, it is known as six-degree-of-freedom
(6-DOF) haptic rendering.

In case of modeling the tool and/or the environment with solid objects,
the haptic rendering algorithm also depends on the material properties of
these objects. Rigid solids (see Section 8.4.1 and Chapter 16) are limited
to six DOFs, while deformable solids (see Section 8.4.2 and Chapters 19
and 20) may present a large number of DOFs. At present, the dynamic
simulation of a rigid tool is efficiently handled in commodity processors,
and the challenge may lie on the complexity of the environment and the



�

�

�

�

�

�

�

�

164 8. Introduction to Haptic Rendering Algorithms

contact configuration between tool and environment. Efficient dynamic
simulation of complex deformable objects at haptic rates is, however, an
issue that deserves further research.

8.2.2 The Optimization Problem

The simplest possible option for the objective function is the distance be-
tween tool and haptic device, i.e., f = ‖H−T ‖. Given this objective func-
tion, one can incorporate information about the environment in multiple
ways. In the most simplest way, known as direct rendering and described in
more detail in the next section, the environment is not accounted for in the
optimization leading to the solution T = H. Another possibility is to intro-
duce hard inequality constraints gi(T ) ≥ 0 that model non-penetration of
the tool in the environment. The highly popular god-object 3-DOF haptic
rendering algorithm [Zilles and Salisbury 95] formulates such an optimiza-
tion problem. Non-penetration may also be modeled following the penalty
method, with soft constraints that are added to the objective function:
f = ‖H − T ‖ +

∑
i kig

2
i (T ).

As in general optimization problems, there are multiple ways of solving
the tool’s configuration. The optimization may be solved until convergence
on every rendering frame, but it is also possible to perform a finite number
of solver iterations (e.g., simply one), leading to a quasi-static solution for
every frame.

Moreover, one could add inertial behavior to the tool, leading to a prob-
lem of dynamic simulation. Then, the problem of solving the configuration
of the tool can be formulated as a dynamic simulation of a virtual physically
based replica of a real object. This approach has been, in fact, followed by
several authors (e.g., [McNeely et al. 99,Otaduy and Lin 06]). Modeling
the virtual tool as a dynamic object has shown advantages for the analysis
of stability of the complete rendering algorithm, as described in Chapter 7.
If the dynamic simulation can be regarded as a solution to an optimiza-
tion problem, where forces represent the gradient of the objective function,
then the selected type of numerical integration method can be viewed as
a different method for solving the optimization problem. For example, a
simple explicit Euler corresponds to gradient descent, while implicit Euler
corresponds to a Newton solver.

8.2.3 Collision Detection

As noted in Figure 8.3, in the context of haptic rendering, collision detection
is the process that, given a configuration of the tool, detects potentially
violated environment constraints. Collision detection can easily become the
computational bottleneck of a haptic rendering system with geometrically
complex objects, and its cost often depends on the configuration space



�

�

�

�

�

�

�

�

8.3. Direct Rendering vs. Virtual Coupling 165

of the contacts. Therefore, we devote much attention to the detection of
collisions with a point tool for 3-DOF rendering (see Chapter 10) and the
detection of collisions with a solid tool for 6-DOF rendering (see Chapters 9,
11, 12, and 13).

There are also many variations of collision detection, depending on the
geometric representation of the objects. In this book, we focus mostly on
objects using surface representations, with most of the chapters discussing
approaches for polygonal representations, and one chapter on techniques
for handling parametric surfaces (see Chapter 17). Similarly, we separately
handle collision detection for objects with high-resolution texture informa-
tion in Chapter 18.

8.2.4 Collision Response

In algorithms where the tool’s configuration is computed through a dynamic
simulation, collision response takes the environment constraints given by
the collision detection module as input and computes forces acting on the
tool. Therefore, collision response is tightly related to the formulation of
environment constraints gi(T ) discussed above.

The two commonly used approaches for collision response are penalty
methods and Lagrange multipliers, which we introduce later in Section 8.4.3.
Other chapters in this book describe collision response in more detail.
Chapter 11 presents a penalty-based approach for collision response on
a rigid body in the context of 6-DOF rendering, while Chapters 16 and 20
describe constraint-based approaches on rigid and deformable bodies, re-
spectively. In case of dynamic environments, collision response must be
computed on the environment objects as well.

8.3 Direct Rendering vs. Virtual Coupling
We now focus on two specific approaches to the rendering algorithm, to
illustrate with examples the different components of the algorithm.

8.3.1 Direct Rendering Algorithm

The overall architecture of direct rendering methods is shown in Figure 8.4.
Direct rendering relies on an impedance-type control strategy. First, the
configuration of the haptic device is received from the controller, and it is
assigned directly to the virtual tool. Collision detection is then performed
between the virtual tool and the environment. Collision response is typ-
ically computed as a function of object separation or penetration depth
(see Section 9.4) using penalty-based methods. Finally, the resulting con-
tact force (and possibly torque) is directly fed back to the device controller.



�

�

�

�

�

�

�

�

166 8. Introduction to Haptic Rendering Algorithms

Figure 8.4. Main components of a direct rendering algorithm.

More formally, and following the discussion from Section 8.2.2, direct
rendering corresponds to an optimization problem that trivially assigns
T = H (up to some scale or rigid transformation). This solution answers
the second problem in haptic rendering, i.e., the computation of the con-
figuration of the tool. Then, the first problem, the computation of forces,
is formulated as a function of the location of the tool in the virtual envi-
ronment, F(g, T ).

The popularity of direct rendering stems obviously from the simplicity of
the calculation of the tool’s configuration, as there is no need to formulate a
complex optimization problem (for example, rigid body dynamics in 6-DOF
rendering). However, the use of penalty methods for force computation
has its drawbacks, as penetration values may be quite large and visually
perceptible, and system instability can arise if the force update rate drops
below the range of stable values (see the discussion in Chapter 7).

Throughout the years, direct rendering architectures have often been
used as a first practical approach to haptic rendering. Thus, the first 3-
DOF haptic rendering algorithms computed forces based on potential fields
defined inside the environment. However, as pointed out early by [Zilles
and Salisbury 95], this approach may lead to force discontinuities and
pop-through problems. Direct rendering algorithms are perhaps more pop-
ular for 6-DOF rendering, and a number of authors have used them, in
combination with convex decomposition and hierarchical collision detec-
tion [Gregory et al. 00b,Ehmann and Lin 01] (see Section 9.3 for more de-
tails); with parametric surface representations [Nelson et al. 99] (see Chap-
ter 17); with collision detection hierarchies based on normal cones [Johnson
and Cohen 01,Johnson and Willemsen 03,Johnson and Willemsen 04,John-
son et al. 05] (see also Section 17.7); or together with fast penetration
depth computation algorithms and contact clustering [Kim et al. 02c,Kim
et al. 03] (see Section 9.4). In most of these approaches, the emphasis was
on fast collision detection or proximity queries, and the work can also be
combined with the virtual coupling algorithms described next.



�

�

�

�

�

�

�

�

8.3. Direct Rendering vs. Virtual Coupling 167

8.3.2 Rendering through Virtual Coupling

Despite the apparent simplicity of direct rendering, the computation of
contact and display forces may become a complex task from the stabil-
ity point-of-view. As discussed in more detail in Chapter 7, stability of
haptic rendering can be answered by studying the range of programmable
impedances. With direct rendering and penalty-based contact forces, ren-
dering impedance is hardly controllable, leading often to unstable haptic
display.

As also described in Chapter 7, stability enforcement can largely be
simplified by separating the device and tool configurations, and insert-
ing in-between a viscoelastic link referred to as virtual coupling [Colgate
et al. 95]. The connection of passive subsystems through virtual coupling
leads to an overall stable system. Figure 8.5 depicts the configurations
of the device and the tool in a 6-DOF virtual contact scenario using vir-
tual coupling. Contact force and torque are transmitted to the user as a
function of the translational and rotational misalignment between tool and
device configurations.

Figure 8.6 depicts the general structure of a rendering algorithm based
on virtual coupling (for an impedance-type display). The input to the ren-
dering algorithm is the device configuration, but the tool configuration is
solved in general through an optimization problem, which also accounts for
environment constraints. The difference between device and tool configu-

Figure 8.5. Manipulation through virtual coupling. As the spoon is constrained
inside the handle of the cup, the contact force and torque are transmitted through
a virtual coupling. A wireframe image of the spoon represents the actual config-
uration of the haptic device [Otaduy and Lin 06]. ( c© 2006 IEEE)



�

�

�

�

�

�

�

�

168 8. Introduction to Haptic Rendering Algorithms

Figure 8.6. Main components of a rendering algorithm using virtual coupling.

ration is used both for the optimization problem and for computing output
device forces.

The most common form of virtual coupling is a viscoelastic spring-
damper link. Such a virtual coupling was used by [Zilles and Salisbury 95,
Ruspini et al. 97] in the god-object and virtual proxy algorithms for 3-DOF
rendering. The concept was later extended to 6-DOF rendering [McNeely
et al. 99], by considering translational and rotational springs. For simplic-
ity, here we also group under the name of virtual coupling other approaches
that separate tool and device configurations, such as the four-channel archi-
tecture based on teleoperation control designed by [Sirouspour et al. 00], or
constraint-aware projections of virtual coupling for 6-DOF rendering [Or-
tega et al. 06].

The use of a virtual coupling allows a separate design of the impedance
displayed to the user (subject to stability criteria), from the impedance
(i.e., stiffness) of environment constraints acting on the tool. Environment
constraints can be of high stiffness, which reduces (or even completely
eliminates) visible interpenetration problems.

On the other hand, virtual coupling algorithms may suffer from no-
ticeable and undesirable filtering effects, in case the update rate of the
haptic rendering algorithm becomes too low, which highly limits the value
of the rendering impedance. Multirate algorithms [Adachi et al. 95,Mark
et al. 96,Otaduy and Lin 06] (discussed in more detail in Section 8.5 in this
chapter) can largely increase the transparency of the rendering by allowing
stiffer impedances.

8.4 Modeling the Tool and the Environment
In this section we pay special attention to the optimization problem for
computing the tool configuration, by briefly introducing some examples: a
6-DOF tool solved with rigid body dynamic simulation, deformable objects,
and formulation of contact constraints.



�

�

�

�

�

�

�

�

8.4. Modeling the Tool and the Environment 169

8.4.1 Rigid Body Dynamics

We first consider a tool modeled as a rigid body in 3D, which yields 6 DOFs:
3D translation and rotation. One possibility for solving the configuration
of the tool is to consider a dynamic model where the tool is influenced by
the environment through contact constraint forces, and by the user through
virtual coupling force and torque.

We define the generalized coordinates of the tool as q, composed of the
position of the center of mass x and a quaternion describing the orienta-
tion θ. We define the velocity vector v by the velocity of the center of mass
vx and the angular velocity ω expressed in the world frame. We denote
by F the generalized forces acting on the tool (i.e., force Fx and torque T,
including gravity, centripetal and Coriolis torque, the action of the virtual
coupling, and contact forces).

Given the mass m and the inertia tensor M of the tool, the dynamics
are defined by the Newton-Euler equations:

mv̇x = Fx,

Mω̇ = T + (Mω) × ω. (8.1)

and the relationship between the generalized coordinates and the velocity
vector is

ẋ = vx,

θ̇ = Gω. (8.2)

The matrix G relates the derivative of the quaternion to the angular ve-
locity, and its definition is out of the scope of this book, but may be found
in e.g., [Shabana 89]. The same reference will serve for an introduction to
rigid body dynamics and the derivation of the Newton-Euler equations.

For compactness, it is useful to write the equations of motion in general
form:

Mv̇ = F,

q̇ = Gv. (8.3)

Time discretization with implicit integration. Here, we consider time dis-
cretization schemes that yield a linear update of velocities and positions of
the form

M̃v(i+ 1) = ∆tF̃,

q(i+ 1) = ∆tG̃v(i+ 1) + q(i). (8.4)

Note that the updated coordinates q(i+1) need to be projected afterwards
onto the space of valid rotations (i.e., unit quaternions).



�

�

�

�

�

�

�

�

170 8. Introduction to Haptic Rendering Algorithms

One example of linear update is obtained by using Backward Euler dis-
cretization with first-order approximation of derivatives. As pointed out
by [Colgate et al. 95], implicit integration of the differential equations de-
scribing the virtual environment can ease the design of a stable haptic
display. This observation has lead to the design of 6-DOF haptic render-
ing algorithms with implicit integration of the rigid body dynamics of the
tool [Otaduy and Lin 05,Otaduy and Gross 07]. Implicit integration also
enhances display transparency by enabling stable simulation of the tool
with small mass values.

Linearized Backward Euler discretization takes a general ODE of the
form ẏ = f(y, t) and applies a discretization y(i + 1) = y(i) + ∆tf(y(i +
1), t(i+ 1)), with a linear approximation of the derivatives f(y(i+ 1), t(i+
1)) ≈ f(y(i), t)+ ∂f

∂y (y(i+1)−y(i))+ ∂f
∂t ∆t. For time-independent deriva-

tives, which is our case, this yields an update rule: y(i+1) = y(i)+∆t(I−
∆t ∂f

∂y )−1f(i).
Applying the linearized Backward Euler discretization to (8.3), and

discarding the derivative of the inertia tensor, the terms of the update rule
given in Equation (8.4) correspond to

M̃ = M − ∆t
∂F
∂v

− ∆t2
∂F
∂q

bfG,

F̃ = F(i) +
(

1
∆t

M − ∂F
∂v

)
v(i). (8.5)

As can be inferred from the equations, implementation of implicit inte-
gration requires the formulation of Jacobians of force equations ∂F

∂q and
∂F
∂v . These Jacobians include the term for inertial forces (Mω) × ω, con-
tact forces (see Section 8.4.3), or virtual coupling (see next). [Otaduy and
Lin 06,Otaduy 04] formulate in detail these Jacobians.

Six-DOF virtual coupling. We pay special attention here to modeling vis-
coelastic virtual coupling for 6-DOF haptic rendering. The tool T will
undergo a force and torque that move it toward the configuration H of
the haptic device, expressed in coordinates of the virtual environment. We
assume that the tool undergoes no force when the device’s configuration in
the reference system of the tool corresponds to a position xc and orienta-
tion θc. We refer to this configuration as coupling configuration. Coupling
is often engaged at the center of mass of the tool (i.e., xc = 0), but this
is not necessarily true. Coupling at the center of mass has the advantage
that coupling force and torque are fully decoupled from each other.

Given configurations (xT , θT ) and (xH, θH) for the tool and the device,
linear coupling stiffness kx and damping bx, the coupling force F on the



�

�

�

�

�

�

�

�

8.4. Modeling the Tool and the Environment 171

tool can be defined as

F = kx(xH − xT − RT xc) + bx(vH − vT − ωT × (RT xc)). (8.6)

The definition of the coupling torque requires the use of an equivalent
axis of rotation u [McNeely et al. 99]. This axis of rotation can be de-
fined using the scalar and vector parts (∆θs and ∆θu respectively) of the
quaternion ∆θ = θH · θ−1

c · θ−1
T describing the relative coupling orientation

between tool and device. Then,

u = 2 · acos(∆θs) ·
(

1
sin(acos(∆θs))

· ∆θu

)
. (8.7)

The coupling torque can then be defined using rotational stiffness kθ and
damping bθ as

T = (Rxc) × F + kθu + bθ(ωH − ωT ). (8.8)

Multibody simulation. Dynamic simulation of the rigid tool itself is not a
computationally expensive problem, but the problem becomes considerably
more complex if the tool interacts with multiple rigid bodies. In fact,
the fast and robust computation of multibody contact is still a subject
of research, paying special attention to stacking or friction [Stewart and
Trinkle 00,Mirtich 00,Milenkovic and Schmidl 01, Guendelman et al. 03,
Kaufman et al. 05].

Moreover, with multibody contact and implicit integration it is not
possible to write a decoupled update rule, given in Equation (8.4) for each
body. The coupling between bodies may appear (a) in the Jacobians of
contact forces when using penalty methods, or (b) through additional con-
straint equations when using Lagrange multipliers (see Section 8.4.3).

8.4.2 Dynamics of Deformable Objects

There are multiple options for modeling deformable objects, and researchers
in haptic rendering have often opted for approximate approaches that trade
accuracy for computational cost. Here we do not aim at covering in depth
the modeling of deformable objects, but rather highlight through an exam-
ple the inclusion in the complete rendering algorithm. Chapters 19 and 20
discuss in more detail practical examples of deformable object modeling
for haptic rendering, focusing respectively on fast approximate models and
the handling of contact.

The variational formulation of continuum elasticity equations leads to
elastic forces defined as the negative gradient of elastic energy

∫
Ω σ · ε dΩ,

where σ and ε represent stress and strain tensors. The various elastic-
ity models differ in the definition of elastic strain or the definition of the



�

�

�

�

�

�

�

�

172 8. Introduction to Haptic Rendering Algorithms

relationship between stress and strain. Given the definition of elastic en-
ergy, one can reach a discrete set of equations following the finite element
method [Zienkiewicz and Taylor 89]. Typically, the dynamic motion equa-
tions of a deformable body may be written as

M · v̇ = F− K(q) · (q − q0) − D · v, (8.9)
q̇ = v. (8.10)

where M, D, and K represent, respectively, mass, damping, and stiffness
matrices. The stiffness matrix captures elastic forces and is, in general,
dependent on the current configuration q.

At present times, haptic rendering calls for fast methods for modeling
elasticity, and a reasonable approach is to use the linear Cauchy strain ten-
sor, as well as the linear Hookean relationship between stress and strain.
Linear strain leads, however, to considerable artifacts under large deforma-
tions, which can be eliminated by using corotational methods that mea-
sure deformations in the unrotated setting of each mesh element [Müller
et al. 02,Müller and Gross 04].

The use of corotational strain allows for stable and robust implicit inte-
gration methods, while producing a linear update rule for each time step.
With linearized Backward Euler (described before for rigid bodies), the
update rule becomes

M̃v(i+ 1) = ∆tF̃, (8.11)
q(i+ 1) = ∆tv(i+ 1) + q(i). (8.12)

The discrete mass matrix M and force vector F become

M̃ = M + ∆t
(
D− ∂F

∂v

)
+ ∆t2

(
K(q) − ∂F

∂q

)
,

F̃ = F(i) +
(

1
∆t

M + D − ∂F
∂v

)
v(i). (8.13)

Chapter 20 offers a more detailed discussion on the efficient simulation of
linear elastic models with corotational methods, as well as the implemen-
tation of virtual coupling with a deformable tool.

8.4.3 Contact Constraints

Contact constraints model the environment as algebraic equations in the
configuration space of the tool, gi(T ) ≥ 0. A configuration of the tool
T0 such that gi(T0) = 0 indicates that the tool is exactly in contact with
the environment. Collision response exerts forces on the tool such that
environment constraints are not violated. We will look at two specific ways



�

�

�

�

�

�

�

�

8.4. Modeling the Tool and the Environment 173

of modeling environment contact constraints, penalty-based methods and
Lagrange multipliers, and we will focus as an example on their application
to a rigid tool.

Penalty method. In general terms, the penalty method models contact con-
straints as springs whose elastic energy increases with object interpenetra-
tion. Penalty forces are computed as the negative gradient of the elastic
energy, which produces collision response that moves objects toward a non-
penetrating configuration.

For simplicity, we will consider here linearized point-on-plane contacts.
Given a colliding point p of the tool, a general contact constraint has the
form gi(p) ≥ 0, and after linearization nT (p − p0) ≥ 0, where n = ∇gi is
the normal of the constraint (i.e., the normal of the contact plane), and p0

is the contact point on the environment. With such a linearized constraint,
penetration depth can easily be defined as δ = −nT (p− p0).

Penalty energies can be defined in multiple ways, but the simplest is
to consider a Hookean spring, which yields an energy E = 1

2kδ
2, where

k is the contact stiffness. Then, the contact penalty force becomes F =
−∇E = −kδ∇δ. It is also common to apply penalty forces when objects
become closer than a certain tolerance d, which can be easily handled by
redefining the penetration depth as δ = d − nT (p − p0). The addition
of a tolerance has two major advantages: the possibility of using penalty
methods in applications that do not allow object interpenetration, and a
reduction of the cost of collision detection. With the addition of a tolerance,
object interpenetration occurs less frequently, and, as noted in Section 9.4,
computation of penetration depth is notably more costly than computation
of separation distance.

With a rigid tool, the contact point p can be expressed in terms of
the rigid body state as p = x + Rr, where x and R are, respectively, the
position and orientation of the tool, and r is the position of the contact
point in the tool’s reference frame. Then, for the case of a rigid tool, and
adding a damping term b, the penalty force and torque are

F = −kN(x + Rr− p0) − bN(v + ω × (Rr)),
T = (Rr) × F, (8.14)

where N = nnT is a matrix that projects a vector onto the normal of the
constraint plane.

Penalty-based methods offer several attractive properties: the force
model is local to each contact and computationally simple, object inter-
penetration is inherently allowed, and the cost of the numerical integra-
tion is almost insensitive to the complexity of the contact configuration.
This last property makes penalty-based methods well suited for interac-
tive applications with fixed time steps, such as haptic rendering. In fact,



�

�

�

�

�

�

�

�

174 8. Introduction to Haptic Rendering Algorithms

Figure 8.7. Torque discontinuity: (a) Penetration depth and torque at time ti,
with contact point pi; (b) Penetration depth and torque at time ti+1, after the
contact moves to contact point pi+1.

penalty-based methods have been applied in many 6-DOF haptic rendering
approaches [McNeely et al. 99,Kim et al. 03,Johnson and Willemsen 03,Mc-
Neely et al. 06,Otaduy and Lin 06,Barbič and James 07].

However, penalty-based methods also have some disadvantages. For
example, there is no direct control over physical parameters, such as the
coefficient of restitution, and friction forces are difficult to model, as they
require tracking contact points and using local methods [Karnopp 85,Hay-
ward and Armstrong 00]. But, most importantly, geometric discontinuities
in the location of contact points and/or normals lead to torque discon-
tinuities, as depicted schematically in Figure 8.7. Different authors have
proposed various definitions for contact points and normals, with various
advantages and drawbacks. [McNeely et al. 99,McNeely et al. 06,Barbič and
James 07] sample the objects with a discrete set of points, and define con-
tact points as the penetrating subset. [Johnson and Willemsen 03,Otaduy
and Lin 06], on the other hand, employ continuous surface definitions, and
define contact points as local extrema of the distance function between
colliding surfaces. Using a fixed discrete set of points allows for increased
force continuity, while using continuous surface definitions allows for the
detection of all interpenetrations. With the strict definition of penalty
energy given above, penalty force normals are defined as the gradient of
penetration depth, which is discontinuous on the medial axis of the ob-
jects. [McNeely et al. 99,McNeely et al. 06,Barbič and James 07] avoid this
problem by defining as contact normal the surface normal at each pene-
trating point. This alternative definition is continuous in time, but does
not guarantee that contact forces reduce interpenetration.

With penalty-based methods, non-penetration constraints are enforced
by means of very high contact stiffness, which could yield instability prob-
lems if numerical integration is executed using fast explicit methods. The
use of implicit integration of the tool, as described in Section 8.4.1, enhances
stability in the presence of high contact stiffness [Wu 00,Larsen 01,Otaduy



�

�

�

�

�

�

�

�

8.4. Modeling the Tool and the Environment 175

and Lin 06, Barbič and James 07]. However, the dynamic equations of
the different dynamic bodies (see Equation (8.4) for rigid bodies or Equa-
tion (8.12) for deformable bodies) then become coupled, and a linear system
must be solved for each contact group. We refer to [Otaduy and Lin 06]
for further details on the Jacobians of penalty force and torque for 6-DOF
haptic rendering.

Lagrange multipliers. The method of Lagrange multipliers allows for an
exact enforcement of contact constraints g(T ) ≥ 0 by modeling workless
constraint forces Fc = JTλ normal to the constraints. Here we consider
multiple constraints grouped in a vector g, and their generalized normals
are gathered in a matrix JT = ∇g. Constraint forces are added to regular
forces of the dynamic equations of a colliding object (e.g., the tool). Then,
constraints and dynamics are formulated in a joint differential algebraic
system of equations. The “amount” of constraint force λ is the unknown
of the system, and it is solved such that constraints are enforced.

Typically, contact constraints are nonlinear, but the solution of con-
strained dynamics systems can be accelerated by linearizing the constraints.
Given the state q(i) of the tool at a certain time, constraint linearization
yields g(i+1) ≈ g(i)+∆tJ ·v(i+1). This linearization, together with the
discretized state update equation, yields the following system to be solved
per simulation frame:

M̃ · v(i+ 1) = ∆tF̃ + JTλ,

J · v(i+ 1) ≥ − 1
∆t

g(i). (8.15)

The addition of constraints for non-sticking forces λ ≥ 0, λT g(q) = 0
yields a linear complementarity problem (LCP) [Cottle et al. 92], which
combines linear equalities and inequalities. The problem in Equation (8.15)
is a mixed LCP and can be transformed into a strict LCP through algebraic
manipulation:

JM̃−1JTλ ≥ − 1
∆t

g(i) − ∆tJM̃−1F̃. (8.16)

The LCP can be solved through various techniques [Cottle et al. 92], and
once the Lagrange multipliers λ are known, it is possible to update the
state of the tool.

There are other variants of the problem, for example by allowing sticking
forces through equality constraints, or differentiating the constraints and
expressing them on velocities or accelerations. Several of these variants
of contact constraints with Lagrange multipliers have been employed in
practical solutions to haptic rendering, some of them covered in detail in
this book. Section 15.2.1 discusses the god-object method of [Zilles and



�

�

�

�

�

�

�

�

176 8. Introduction to Haptic Rendering Algorithms

Salisbury 95], the first application of Lagrange multipliers for contact in
3-DOF haptic rendering. Chapter ?? describes an extension of the god-
object method to 6-DOF rendering, and Chapter 20 formulates in detail
frictional contact for haptic rendering of deformable objects.

Constraint-based methods with Lagrange multipliers handle all con-
current contacts in a single computational problem and attempt to find
contact forces that produce physically and geometrically valid motions. As
opposed to penalty-based methods, they solve one global problem, which
allows, for example, for relatively easy inclusion of accurate friction mod-
els. However, constraint-based methods are computationally expensive,
even for the linearized system in Equation (8.15), and the solution of con-
strained dynamics and the definition of constraints (i.e., collision detection)
are highly intertwined. The full problem of constrained dynamics is highly
nonlinear, but there are various time-stepping approaches that separate a
collision-free dynamics update, collision detection, and collision response,
for solving locally linear problems [Bridson et al. 02,Cirak and West 05].
Fast enforcement of constrained motion is, however, still a topic of research
in haptic rendering, in particular for rendering deformable objects.

8.5 Multirate Algorithm
As discussed in Section 8.3.2, rendering algorithms based on virtual cou-
pling [Colgate et al. 95] can serve to easily design stable rendering. How-
ever, the complexity of tool and environment simulation may require low
update rates, which turn into low admissible coupling stiffness, and hence
low-quality rendering.

Independently of the simulation and collision detection methods em-
ployed, and the mechanical characteristics of the tool or the environment,
a common solution for enhancing the quality and transparency of hap-
tic rendering is to devise a multirate algorithm (see [Barbagli et al. 03]
for stability analysis of multirate algorithms). A slow process computes
accurate interaction between the tool and the environment and updates
an approximate but simple intermediate representation [Adachi et al. 95].
Then, a fast process synthesizes the forces to be sent to the device, using
the intermediate representation. There have been two main approaches for
designing intermediate representations, which we discuss next.

8.5.1 Geometric vs. Algebraic Intermediate Representations

One approach is to design a local and/or coarse geometric representation
of the tool and/or the environment. A slow thread performs a computa-
tion of the interaction between the full representations of the tool and the



�

�

�

�

�

�

�

�

8.5. Multirate Algorithm 177

environment, and updates the local coarse representation. In parallel, a
fast thread computes the interaction between tool and environment using
the simplified representations. The fast computation involves identifying
simplified contact constraints, through collision detection, and computing
the rendering forces. Note that this approach can be used in the context
of both virtual coupling algorithms or direct rendering.

The earliest example of multirate rendering by [Adachi et al. 95] com-
putes collision detection between a point tool and the environment in the
slow thread, approximates the environment as a plane, and then uses the
plane representation in the fast thread. A similar approach was followed
by [Mark et al. 96], with addition of plane filtering between local model
updates. Others used meshes of different resolutions coupled through Nor-
ton equivalents [Astley and Hayward 98], or local linearized submeshes for
approximating high-frequency behavior [Çavuşoğlu and Tendick 00]. Re-
cently, [Johnson et al. 05] have suggested the use of local collision detection
algorithms for updating the contact constraints in the fast loop.

The second approach is to design a simplified representation of the col-
lision response model between the tool and the environment. The slow
thread performs full computation of collision detection and response be-
tween tool and environment, and updates a simplified version of the colli-
sion response model. This model is then used in the fast thread for comput-
ing collision response for rendering forces to the user. The main difference
with the geometric approach is that the fast thread does not recompute
collision detection for defining contact constraints.

Early approaches to multirate simulation of deformable models consid-
ered force extrapolation for defining the local algebraic model [Picinbono
et al. 00]. This book also describes in further detail two recent approaches
that identify contact constraints in the slow thread, and then use those
constraints for force computation in the fast thread, for rigid bodies [Or-
tega et al. 06] (in Chapter 16), or for deformable bodies [Duriez et al. 04]
(in Chapter 20). Apart from those, we should mention the use of contact
constraints for computing a least-squares solution to Poisson’s restitution
hypothesis for rigid bodies [Constantinescu et al. 05]. Last, the rest of this
section describes two examples that compute in the slow thread a linear
model of the contact response between the tool and the environment, and
then simply evaluate this linear model in the fast thread, for penalty-based
methods [Otaduy and Lin 05,Otaduy and Lin 06] or for constraint-based
methods with Lagrange multipliers [Otaduy and Gross 07].

8.5.2 Example 1: Multirate Rendering with Penalty Methods

Figure 8.8 shows the structure of the rendering algorithm suggested by
[Otaduy and Lin 05, Otaduy and Lin 06]. The visual thread computes



�

�

�

�

�

�

�

�

178 8. Introduction to Haptic Rendering Algorithms

Figure 8.8. Multirate rendering architecture with a linearized contact model. A
haptic thread runs at force update rates simulating the dynamics of the tool and
computing force feedback, while a visual thread runs asynchronously and updates
the linearized contact model [Otaduy and Lin 05,Otaduy and Lin 06].

collision detection between the tool and the environment, as well as collision
response using the penalty-based method (see Section 8.4.3). Moreover, the
equations of collision response are linearized, and the linear model is fed
to the haptic thread. The haptic thread runs at fast haptic update rates,
solving for the configuration of the tool, subject to forces computed using
the linearized contact model. Figure 8.9 shows one application scenario of
the multirate rendering algorithm.

[Otaduy and Lin 05,Otaduy and Lin 06] applied the linearization of
penalty-based forces to 6-DOF haptic rendering with a rigid tool. Recall
Equation (8.14), which describes penalty forces for a rigid tool. Assum-
ing that the visual thread computes collision detection for a configuration
(q0,v0) of the tool, a penalty-based contact model can be linearized in

Figure 8.9. Virtual interaction using a linearized contact model. Dexterous inter-
action of an upper jaw (47,339 triangles) being moved over a lower jaw (40,180
triangles), using the method by [Otaduy and Lin 05,Otaduy and Lin 06]. ( c© 2005
IEEE)



�

�

�

�

�

�

�

�

8.5. Multirate Algorithm 179

general as

Fc(q,v) ≈ Fc(q0,v0) +
∂Fc

∂q
(q − q0) +

∂Fc

∂v
(v − v0). (8.17)

For more details on the linear approximation for a rigid tool, we refer
to [Otaduy and Lin 05,Otaduy and Lin 06].

An interesting observation of the linearized penalty-based method is
that it imposes no additional cost if the rendering algorithm computes
dynamics of the tool with implicit integration. As shown in Equation (8.5),
the definition of discrete-time inertia requires the same Jacobians ∂F

∂q and
∂F
∂v as the linearized contact model. We would like to point out that these
Jacobians are also used in quasi-static methods for solving the configuration
of the tool [Wan and McNeely 03,Barbič and James 07].

8.5.3 Example 2: Multirate Rendering with Constraints

Figure 8.10 shows the overall structure of the multirate rendering algorithm
presented by [Otaduy and Gross 07] for 6-DOF haptic rendering between
a rigid tool and a deformable environment. This algorithm creates two
instances of the rigid tool manipulated by the user. The visual thread,
typically running at a low update rate (as low as tens of Hz), performs a
full simulation of the visual tool coupled to the haptic device and interact-
ing with a deformable environment. The haptic thread, running at a fast
update rate of typically 1 kHz, performs the simulation of the haptic tool
and computes force values to be rendered by the haptic device. Collision
detection and full constraint-based collision response are only computed in
the visual thread. At the same time, the parameters of a linear contact
model are updated, and fed to the haptic thread. This linear model can be
evaluated with a fixed, low number of operations, and ensures extremely
fast update of contact forces in the haptic thread.

For penalty-based collision response, [Otaduy and Lin 05] proposed
a linearized contact model in the state space of the tool. However, for
constraint-based collision response, [Otaduy and Gross 07] proposed a model
of contact Jacobian, linearly relating contact forces Fc and the rest of the
forces F̃ acting on the tool. The linearized model takes the form

Fc(F̃) ≈ Fc(F̃0) +
∂Fc

∂F̃
(F̃ − F̃0). (8.18)

All that needs to be done in the visual thread is to compute the contact
Jacobian ∂Fc

∂F̃
.

The LCP formulation in Equation (8.16) for collision response can be
compactly rewritten as Aλλ ≥ bλ. The resolution of the LCP yields a



�

�

�

�

�

�

�

�

180 8. Introduction to Haptic Rendering Algorithms

Figure 8.10. Multirate rendering using a discrete-time contact Jacobian [Otaduy
and Gross 07].

set of inactive contacts, for which the contact force is zero, and a set of
active contacts for which the constraints hold exactly Aλ,aλa = ba ⇒
λa = A−1

λ,aba. The contact force can then be written in terms only of
active contacts as Fc = JT

a A−1
λ,aba. Then, the contact Jacobian can be

easily formulated as

∂Fc

∂F̃
=
∂Fc

∂ba
· ∂ba

∂F̃
= −∆tJT

a A−1
λ,aJaM̃−1. (8.19)

This formulation involves several approximations, such as ignoring the
change of active constraints between time steps or changes of inertia. Note
also that Equation (8.19) should be slightly modified to account for a mov-
ing or deforming environment, as the state of the tool and the environment
are not explicitly separated. Multirate algorithms enable programming
very high rendering stiffness, under the assumption that the contact space
changes slowly. This is in fact the case in many situations, especially during
sliding contact between tool and environment.



�

�

�

�

�

�

�

�

9
Overview on Collision and

Proximity Queries
M. C. Lin and D. Manocha

In a geometric context, a collision or proximity query reports information
about the relative configuration or placement of two objects. Some of the
common examples of such queries include checking whether two objects
overlap in space or their boundaries intersect, or computing the minimum
Euclidean separation distance between their boundaries, etc.

Many publications have been written on different aspects of these queries
in computer graphics, computational geometry, robotics, computer-aided
design, virtual environments, and haptics. These queries arise in diverse
applications including robot motion planning, virtual prototyping, dynamic
simulation, computer gaming, interactive walkthroughs, molecular model-
ing, etc.

For haptic rendering, in order to create a sense of touch between the
user’s hand and a virtual object, contact or restoring forces are generated
to prevent penetration into the virtual model. This step requires collision
detection, penetration depth computation, and determining the contact
forces. Often, separation distances between pairs of objects are also com-
puted to estimate time of collision as well.

This chapter1 gives an overview of different queries and various classes
of algorithms for performing queries for different types of geometric mod-
els. These techniques include algorithms for collision detection, distance
queries, and penetration depth query among convex polytopes, non-convex
polygonal models, and curved objects, as well dynamic queries and han-
dling of large environments consisting of multiple objects.

1A preliminary version appeared in [Lin and Manocha 03].

181



�

�

�

�

�

�

�

�

182 9. Overview on Collision and Proximity Queries

9.1 Problem Definitions
First, we will define some of the commonly used queries in haptic rendering.

• Collision detection determines if two objects overlap in space or their
boundaries share at least one common point.

• Separation distance computes the length of the shortest line joining
two objects. Given two sets of points A and B desribing the two
objects, the distance between them can be defined as:

dist(A,B) = min
a∈A

min
b∈B

|a− b|.

• Penetration depth typically refers to the minimum distance needed
to translate one object to make the two overlapping objects disjoint
from each other. Given a set of points A and B describing the two
objects, the penetration depth between them can be defined as:

pd(A,B) = magnitude of shortest �v such thatmin
a∈A

min
b∈B

|−−−→a− b+�v| > 0.

• Contact manifolds computation enumerates the set of contact points
or yields some representation of the intersection set.

Distance queries can take on three variant forms: exact, approximate,
and Boolean. The exact form asks for the exact distance between the
objects. The approximate form yields an estimation (either lower or upper
bound), which is within some given error tolerance of the true measure,
and the tolerance could be specified as a relative or absolute error. The
Boolean form reports whether the exact measure is greater or less than a
given tolerance value (either predefined by the users or computed based
on variables in the simulations). Furthermore, the norm by which distance
is defined can also vary. For example, the Euclidean norm is the most
commonly used in haptic rendering. However, in principle other norms are
possible, such as the L1 and L∞ norms.

Each of these queries can be further augmented by introducing the
element of time. If the trajectories of two objects are known, then the next
time when the status of a particular Boolean query (whether collision,
separation distance, or penetration) will change can be determined. In
fact, this “time-to-next-event” query can have exact, approximate, and
Boolean forms as well. These queries are called dynamic queries, whereas
the ones that do not use motion information are called static queries. In the
case where the motion of an object cannot be represented as a closed form
function of time, the underlying application often performs static queries at



�

�

�

�

�

�

�

�

9.2. Convex Polytopes 183

specific time steps in the application. For collision queries performed over
a period of time, such queries are often referred to as continuous collision
detection or CCD (see Chapter 12).

These measures, as defined above, apply only to pairs of objects. How-
ever, there may exist many objects in the work space, and we need to
compute the proximity information among all or a subset of them. There-
fore, most of the queries listed above also have associated N -body variants.

Finally, the geometric primitives can be represented in different forms.
They may be convex polytopes, general polygonal models, curved models
represented using parametric or implicit surfaces, set theoretic combina-
tion of objects, etc. Different sets of algorithms have been known to pro-
cess each representation. In this chapter, we highlight several key classes
of techniques and algorithms for collision detection, separation distance,
and penetration depth computation used in haptic rendering. These are
followed by the details of algorithms for more commonly used geometric
representations and more advanced query methods in the next few chapters.

9.2 Convex Polytopes
In this section, we give a brief survey of algorithms for collision detection
and separation distance computation between a pair of convex polytopes.
A number of algorithms with good asymptotic performance have been pro-
posed. The best known runtime bound in computational geometry for
Boolean collision queries takes O(log2 n) time, where n is the number of fea-
tures [Dobkin and Kirkpatrick 90]. It precomputes the Dobkin-Kirkpatrick
hierarchy for each polytope and uses it to perform the runtime query. In
practice, three classes of algorithms are commonly used for convex poly-
topes. These are linear programming, Minkowski sums, and tracking closest
features based on Voronoi diagrams.

9.2.1 Linear Programming

The problem of checking whether two convex polytopes intersect or not can
be posed as a linear programming (LP) problem. More specifically, two
convex polytopes do not overlap, if and only if there exists a separation
plane between them. The coefficients of the separation plane equation are
treated as unknowns. The linear constraints are formulated by imposing
that all the vertices of the first polytope lie on one half-space of this plane
and those of the other polytope lie on the other half-space. The linear
programming algorithms are used to check whether there is any feasible
solution to the given set of constraints. Given the fixed dimension of the
problem, some of the well-known linear programming algorithms [Seidel 90]



�

�

�

�

�

�

�

�

184 9. Overview on Collision and Proximity Queries

can be used to perform the Boolean collision query in expected linear time.
By caching the last pair of witness points to compute the new separating
planes, [Chung and Wang 96] proposed an iterative method that can quickly
update the separating axis or the separating vector in nearly “constant
time” in dynamic applications with high motion coherence.

9.2.2 Minkowski Sums and Convex Optimization

The collision and distance queries can be performed based on the Minkowski
sum of two objects. It has been shown in [Cameron and Culley 86], that
the minimum separation distance between two objects is the same as the
minimum distance from the origin of the Minkowski sums of A and −B
to the surface of the sums. The Minkowski sum is also referred to as the
translational C-space obstacle (TCSO). While the Minkowski sum of two
convex polytopes can have O(n2) features [Dobkin et al. 93], a fast algo-
rithm for separation distance computation based on convex optimization
that exhibits linear-time performance in practice has been proposed by
Gilbert et al. [Gilbert et al. 88]. It is also known as the GJK algorithm.
It uses pairs of vertices from each object that define simplices within each
polytope and a corresponding simplex in the TCSO. Initially the simplex
is set randomly and the algorithm refines it using local optimization, till it
computes the closest point on the TCSO from the origin of the Minkowski
sums. The algorithm assumes that the origin is not inside the TCSO.

9.2.3 Tracking Closest Features Using Geometric Locality
and Motion Coherence

[Lin and Canny 91] proposed a distance computation algorithm between
non-overlapping convex polytopes. It is often referred to as the LC algo-
rithm and it keeps track of the closest features between the polytopes. This
is the first approach that explicitly takes advantage of motion coherence
and geometric locality. The features may correspond to a vertex, face, or
an edge on each polytope. It precomputes the external Voronoi region for
each polytope. At each time step, it starts with a pair of features and
checks whether they are the closest features, based on the test whether
they lie within each other’s Voronoi region. If not, it performs a local walk
on the boundary of each polytope until it finds the closest features. It is
highlighted in Figure 9.1. In applications with high motion coherence, the
local walk typically takes nearly “constant time” in practice. Typically
the number of neighbors for each feature of a polytope is constant and the
extent of “local walk” is proportional to the amount of the relative motion
undergone by the polytopes.



�

�

�

�

�

�

�

�

9.2. Convex Polytopes 185

R1

R2

Fa

CP

Object B

Object A

Vb

Pa
Ea

Figure 9.1. A walk across external Voronoi region of Object A. A vertex of
Object B, Vb, lies in the Voronoi region of Ea.

[Mirtich 98] further optimized this algorithm by proposing a more ro-
bust variation that avoids some geometric degeneracies during the local
walk, without sacrificing the accuracy or correctness of the original algo-
rithm.

[Guibas et al. 99] proposed an approach that exploits both coherence of
motion using LC [Lin and Canny 91] and hierarchical representations by
Dobkin and Kirkpatrick [Dobkin and Kirkpatrick 90] to reduce the runtime
dependency on the amount of the local walks.

[Ehmann and Lin 00] modified the LC algorithm and used an error-
bounded level-of-detail (LOD) hierarchy to perform different types of prox-
imity queries, using a progressive refinement framework. The implemen-
tation of this technique, “multi-level Voronoi marching,” outperforms the
existing libraries for collision detection between convex polytopes. It also
uses an initialization technique based on directional lookup using hashing,
resembling that of [Dworkin and Zeltzer 93].

By taking the similar philosophy as LC [Lin and Canny 91], [Cameron 97]
presented an extension to the basic GJK algorithm by exploiting motion
coherence and geometric locality in terms of connectivity between neighbor-
ing features. It keeps track of the witness points, a pair of points from the
two objects that realize the minimum separation distance between them.
As opposed to starting from a random simplex in the TCSO, the algorithm



�

�

�

�

�

�

�

�

186 9. Overview on Collision and Proximity Queries

starts with the witness points from the previous iteration and performs hill
climbing to compute a new set of witness points for the current configu-
ration. The running time of this algorithm is a function of the number of
refinement steps that the algorithm has to perform.

9.2.4 Kinetic Data Structures

Recently, a new class of algorithms using kinetic data structures (or KDS
for short) have been proposed for collision detection between moving con-
vex polygons and polyhedra [Basch et al. 99,Erickson et al. 99,Kirkpatrick
et al. 02]. These algorithms are designed based on the formal framework of
KDS to keep track of critical events and exploits motion coherence and ge-
ometric locality. The performance of a KDS-based algorithm is separation
sensitive and may depend on the amount of the minimum distance between
the objects during their motion, relative to their size. The type of motion
includes straight-line linear motion, translation along an algebraic trajec-
tory, or algebraic rigid motion (including both rotation and translation).

9.3 General Polygonal Models
Algorithms for collision and separation distance queries between general
polygons model can be classified based on whether they are closed poly-
hedral models or represented as a collection of polygons. The latter, also
referred to as polygon soups, make no assumption related to the connectiv-
ity among different faces or whether they represent a closed set.

Some of the commonly known algorithms for collision detection and sep-
aration distance computation use spatial partitioning or bounding volume
hierarchies (BVHs). The spatial subdivisions are a recursive partitioning
of the embedding space, whereas bounding volume hierarchies are based
on a recursive partitioning of the primitives of an object. These algorithms
are based on the divide-and-conquer paradigm. Examples of spatial par-
titioning hierarchies include k-D trees and octrees [Samet 89], R-trees and
their variants [Held et al. 95], cone trees, BSPs [Naylor et al. 90] and their
extensions to multi-space partitions [Bouma and Vanecek 91]. The BVHs
use bounding volumes (BVs) to bound or contain sets of geometric prim-
itives, such as triangles, polygons, curved surfaces, etc. In a BVH, BVs
are stored at the internal nodes of a tree structure. The root BV contains
all the primitives of a model, and child BVs each contain separate parti-
tions of the primitives enclosed by the parent. Leaf node BVs typically
contain one primitive. In some variations, one may place several primi-
tives at a leaf node, or use several volumes to contain a single primitive.
The BVHs are used to perform collision and separation distance queries.



�

�

�

�

�

�

�

�

9.3. General Polygonal Models 187

These include sphere-trees [Hubbard 93, Quinlan 94], AABB-trees [Beck-
mann et al. 90,Held et al. 95,Ponamgi et al. 97], OBB-trees [Gottschalk
et al. 96, Barequet et al. 96, Gottschalk 99], spherical shell-trees [Krish-
nan et al. 98b,Krishnan et al. 98a], k-DOP-trees [Held et al. 96,Klosowski
et al. 98], SSV-trees [Larsen et al. 99], and convex hull-trees [Ehmann and
Lin 01].

9.3.1 Collision Detection

The collision queries are performed by traversing the BVHs. Two models
are compared by recursively traversing their BVHs in tandem. Each re-
cursive step tests whether BVs A and B, one from each hierarchy, overlap.
If A and B do not overlap, the recursion branch is terminated. But if A
and B overlap, the enclosed primitives may overlap and the algorithm is
applied recursively to their children. If A and B are both leaf nodes, the
primitives within them are compared directly.

9.3.2 Separation Distance Computation

The structure of the separation distance query is very similar to the collision
query. As the query proceeds, the smallest distance found from comparing
primitives is maintained in a variable δ. At the start of the query, δ is initial-
ized to infinity, or to the distance between an arbitrary pair of primitives.
Each recursive call with BVs A and B must determine if some primitive
within A and some primitive within B are closer than, and therefore will
modify, δ. The call returns trivially if BVs A and B are farther than the
current δ, since this precludes any primitive pairs within them being closer
than δ. Otherwise the algorithm is applied recursively to its children. For
leaf nodes, it computes the exact distance between the primitives, and if
the new computed distance is less than δ, it updates δ.

To perform approximate distance query, the distance between BVs A
and B is used as a lower limit to the exact distances between their prim-
itives. If this bound prevents δ from being reduced by more than the
acceptable tolerance, that recursion branch is terminated.

9.3.3 Queries on Bounding Volumes

Algorithms for collision detection and distance computation need to per-
form the underlying queries on the BVHs. These include computing whether
two BVs overlap or computing the separation distance between them. In
many ways, the performance of the overall proximity query algorithm is
governed by the performance of the sub-algorithms used for proximity
queries on a pair of BVs.



�

�

�

�

�

�

�

�

188 9. Overview on Collision and Proximity Queries

B

A

B

Ar

a1 1

a2 2

rB

b2 2

1 1b

L

T

LT

A
A

B

Figure 9.2. L is a separating axis for OBBs A and B, because A and B become
disjoint intervals under projection onto L.

A number of specialized and highly optimized algorithms have been
proposed to perform these queries on different BVs. It is relatively simple
to check whether two spheres overlap. Two AABBs can be checked for
overlap by comparing their dimensions along the three axes. The separation
distance between them can be computed based on the separation along
each axis. The overlap test can be easily extended to k-DOPs, where their
projections are checked along the k fixed axis [Klosowski et al. 98].

An efficient algorithm to test two OBBs for overlap based on the sep-
arating axis theorem (SAT) has been presented in [Gottschalk et al. 96,
Gottschalk 99]. It computes the projection of each OBB along 15 axes in
3D. The 15 axes are computed from the face normals of the OBBs (6 face
normals) and by taking the cross-products of the edges of the OBBs (9
cross-products). It is shown that two OBBs overlap if and only if their
projections along each of these axes overlap. Furthermore, an efficient al-
gorithm that performs overlap tests along each axis has been described.
In practice, it can take anywhere from 80 (best case) to 240 (worst case)
arithmetic operations to check whether two OBBs overlap. It is robust and
works well in practice [Gottschalk et al. 96]. Figure 9.2 shows one of the
separating axis test for two rectangles in 2D.

Algorithms based on different swept sphere volumes (SSVs) have been
presented in [Larsen et al. 99]. Three types of SSVs are suggested: point



�

�

�

�

�

�

�

�

9.3. General Polygonal Models 189

swept-sphere (PSS), line swept-sphere (LSS), and a rectangular swept-sphere
(RSS). Each BV is formulated by taking the Minkowski sum of the underly-
ing primitive, a point, line or a rectangle in 3D, respectively, with a sphere.
Algorithms to perform collision or distance queries between these BVs can
be formulated as computing the distance between the underlying primi-
tives, i.e., a point, line, or a rectangle in 3D. Larsen et al. [Larsen et al. 99]
have presented an efficient and robust algorithm to compute distance be-
tween two rectangles in 3D, as well as the lines and points. Moreover, they
used priority-directed search and primitive caching to lower the number of
bounding volume tests for separation distance computations.

In terms of higher order bounding volumes, fast overlap tests based
on spherical shells have been presented in [Krishnan et al. 98b, Krishnan
et al. 98a]. Each spherical shell corresponds to a portion of the volume
between two concentric spheres. The overlap test between two spherical
shells takes into account their structure and reduces to checking whether
there is a point contained in a circle that lies in the positive half-plane
defined by two lines. The two lines and the circles belong to the same
plane.

9.3.4 Performance of Bounding Volume Hierarchies

The performance of BVHs on proximity queries is governed by a number
of design parameters. These include techniques to build the trees, number
of children each node can have, and the choice of BV type. An additional
design choice is the descent rule. This is the policy for generating recursive
calls when a comparison of two BVs does not prune the recursion branch.
For instance, if BVs A and B failed to prune, one may recursively compare
A with each of the children of B, B with each of the children of A, or each of
the children of A with each of the children of B. This choice does not affect
the correctness of the algorithm, but may impact the performance. Some
of the commonly used algorithms assume that the BVHs are binary trees
and each primitive is a single triangle or a polygon. The cost of performing
the proximity query is given by [Gottschalk et al. 96,Larsen et al. 99]:

T = Nbv × Cbv +Np × Cp,

where T is the total cost function for proximity queries, Nbv is the number
of bounding volume pair operations, and Cbv is the total cost of a BV
pair operation, including the cost of transforming each BV for use in a
given configuration of the models, and other per BV-operation overhead.
Np is the number of primitive pairs tested for proximity, and Cp is the
cost of testing a pair of primitives for proximity (e.g., overlaps or distance
computation).



�

�

�

�

�

�

�

�

190 9. Overview on Collision and Proximity Queries

Typically for tight-fitting bounding volumes, e.g., oriented bounding
boxes (OBBs), Nbv and Np are relatively low, whereas Cbv is relatively
high. In contrast, Cbv is low, while Nbv and Np may be higher for simple
BV types like spheres and axis-aligned bounding boxes (AABBs). Due
to these opposing trends, no single BV yields optimum performance for
proximity queries in all situations.

9.4 Penetration Depth Computation
In this section, we give a brief overview of penetration depth (PD) computa-
tion algorithms between convex polytopes and general polyhedral models.
The PD of two interpenetrating objects A and B is defined as the minimum
translation distance that one object undergoes to make the interiors of A
and B disjoint. It can be also defined in terms of the TCSO. When two
objects are overlapping, the origin of the Minkowski sum of A and −B is
contained inside the TCSO. The penetration depth corresponds to the min-
imum distance from the origin to the surface of TCSO [Cameron 97]. PD
computation is often used in penalty-based force computation for haptic
rendering [Kim et al. 03], as well as motion planning [Hsu et al. 98] and con-
tact resolution for dynamic simulation [McKenna and Zeltzer 90, Stewart
and Trinkle 96].

Figure 9.3 shows an application of penetration depth computation,
along with separation distance computation to haptic rendering. For ex-
ample, computation of dynamic response in penalty-based methods often
needs to perform PD queries for imposing the non-penetration constraint
for rigid body simulation. In addition, many applications, such as motion
planning and dynamic simulation, require a continuous distance measure
when two (non-convex) objects collide, in order to have a well-posed com-
putation.

Some of the algorithms for PD computation involve computing the
Minkowski sums and computing the closest point on surface from the ori-
gin. The worst case complexity of the overall PD algorithm is governed
by the complexity of computing Minkowski sums, which can be O(n2) for
convex polytopes and O(n6) for general (or non-convex) polyhedral mod-
els [Dobkin et al. 93]. Given the complexity of Minkowski sums, many
approximation algorithms have been proposed in the literature for fast PD
estimation.

9.4.1 Convex Polytopes

[Dobkin et al. 93] proposed a hierarchical algorithm to compute the di-
rectional PD using Dobkin and Kirkpatrick polyhedral hierarchy. For any



�

�

�

�

�

�

�

�

9.4. Penetration Depth Computation 191

Figure 9.3. Penetration depth is applied to virtual exploration of a digestive
system using haptic interaction to feel and examine differt parts of the model.
The distance computation and penetration depth computation algorithms are
used for disjoint (D) and penetrating (P) situations, respectively, to compute the
forces at the contact areas. ( c© 2003 Presence.)

direction d, it computes the directional penetration depth in O(log n logm)
time for polytopes with m and n vertices. [Agarwal et al. 00] presented
a randomized approach to compute the PD values [Agarwal et al. 00].
It runs in O(m

3
4+εn

3
4+ε + m1+ε + n1+ε) times for any positive constant

ε. [Cameron 97] presented an extension to the GJK algorithm [Gilbert
et al. 88] to compute upper and lower bounds on the PD between convex
polytopes. Van den Bergen has further elaborated this idea in an expand-
ing polytope algorithm [van den Bergen 01]. The algorithm iteratively
improves the result of the PD computation by expanding a polyhedral
approximation of the Minkowski sums of two polytopes. [Kim et al. 02c]



�

�

�

�

�

�

�

�

192 9. Overview on Collision and Proximity Queries

presented an incremental algorithm that marches towards a “locally opti-
mal” solution by walking on the surface of the Minkowski sum. The surface
of the TCSO is implicitly computed by constructing a local Gauss map and
performing a local walk on the polytopes.

9.4.2 Polyhedral Models

Algorithms for penetration depth estimation between general polygonal
models are based on discretization of the object space containing the objects
or use of digital geometric algorithms that perform computations on a finite
resolution grid. [Fisher and Lin 01] presented a PD-estimation algorithm
based on the distance field computation using the fast marching level-set
method. It is applicable to all polyhedral objects as well as deformable
models, and it can also check for self-penetration. [Hoff et al. 01, Hoff
et al. 02] proposed an approach based on performing discretized computa-
tions on the graphics rasterization hardware. It uses multi-pass rendering
techniques for different proximity queries between general rigid and de-
formable models, including penetration depth estimation.

However, most of these methods compute a “local measure of penetra-
tion.” [Kim et al. 02c] presented a fast, global approximation algorithm
for general polyhedral models using a combination of object-space as well
discretized computations. Given the global nature of the PD problem, it
decomposes the boundary of each polyhedron into convex pieces, computes
the pairwise Minkowski sums of the resulting convex polytopes, and uses
graphics rasterization hardware to perform the closest point query up to
a given discretized resolution. The results obtained are refined using a lo-
cal walking algorithm. To further speed up this computation and improve
the estimate, the algorithm uses a hierarchical refinement technique that
takes advantage of geometry culling, model simplification, accelerated ray-
shooting, and local refinement with greedy walking. The overall approach
combines discretized closest point queries with geometry culling and refine-
ment at each level of the hierarchy. Its accuracy can vary as a function of
the discretization error.

9.4.3 Other Metrics

Other metrics to characterize the intersection between two objects include
the growth distance defined by [Gilbert and Ong 94]. It unifies the distance
measure regardless of whether the objects are disjoint or overlapping and
is different from the PD between two inter-penetrating convex objects.

In 6-DOF haptic rendering, the rotational component in penalty forces,
such as torque, should be considered in order to compute the response
force. In order to take also into account the rotational motion, a new PD
measure—generalized penetration depth (PDg) has been proposed [?,Zhang



�

�

�

�

�

�

�

�

9.5. Volumetric Representations 193

et al. 07b, Zhang et al. 07a], where PDg is defined as the minimal trans-
lational and rotational motion that separates the two overlapping models.
In general, to compute PDg for non-convex polyhedra is difficult, mainly
due to its high computational complexity, the non-linear rotational term
embedded in the definition, and the inherent non-convexity from the un-
derlying geometric models. As a result, most current PDg algorithms for
non-convex models only compute an approximate or a local solution [Zhang
et al. 07b, Zhang et al. 07a]. [Zhang et al. 07a] present an efficient local
PDg algorithm, where PDg computation is formulated as a constrained
optimization problem and efficient local search techniques are employed
for iterative optimization of PDg.

9.5 Volumetric Representations
In many applications, such as surgical simulation and computational steer-
ing of scientific data, volumetric data are commonly used. To test for
collision between two volumetric objects, one commonly used technique is
to sample one object and test the inclusion of each sampled point of one
object against the voxels of the other.

Extending this technique for six-degree-of-freedom haptic rendering, a
simple and efficient method has been proposed using the voxel-pointshell
method [McNeely et al. 99]. More detail about this technique will be pre-
sented in Chapter 11.

9.5.1 Distance Field Methods

By generalizing the idea of voxels to 3D for intersection tests, distance field
methods can be used efficiently for proximity queries. Many algorithms
are known to compute the distance fields of geometric models. These al-
gorithms use either a uniform grid or an adaptive grid. A key issue in
generating discrete distance samples is the underlying sampling rate used
for adaptive subdivision. Many adaptive refinement strategies use trilinear
interpolation or curvature information to generate an octree spatial decom-
position [Shekhar et al. 96,Frisken et al. 00,Perry and Frisken 01,Vleugels
and Overmars 97].

Given voxel data, many exact and approximate algorithms for distance
field computation have been proposed [Mullikin 92, Breen et al. 00, Gib-
son 98a]. A good overview of these algorithms has been given in [Cuise-
naire 99]. The approximate methods compute the distance field in a local
neighborhood of each voxel. Danielsson [Danielsson 80] uses a scanning
approach in 2D based on the assumption that the nearest object pixels
are similar. The fast marching method (FMM) [Sethian 99] propagates a



�

�

�

�

�

�

�

�

194 9. Overview on Collision and Proximity Queries

contour to compute the distance transformation from the neighbors. This
provides an approximate finite difference solution to the Eikonal Equation
|∇u| = 1/f .

A class of exact distance transform algorithms is based on computing
partial Voronoi diagrams [Lin 93]. A scan-conversion method to compute
the 3-D Euclidean distance field in a narrow band around manifold triangle
meshes is the characteristics/scan-conversion (CSC) algorithm [Mauch 03].
The CSC algorithm uses the connectivity of the mesh to compute polyhe-
dral bounding volumes for the Voronoi cells. The distance function for each
site is evaluated only for the voxels lying inside this polyhedral bounding
volume.

Distance field computation can be accelerated using graphics hardware.
The graphics-hardware-based algorithms compute a 2D slice of the distance
field at a time. [Hoff et al. 99] rende a polygonal approximation of the dis-
tance function on the depth-buffer hardware and compute the generalized
Voronoi Diagrams in two and three dimensions. This approach works on
any geometric model that can be polygonized and is applicable to any dis-
tance function that can be rasterized. An efficient extension of the 2D
algorithm for point sites is proposed in [Denny 03]. It uses precomputed
depth textures, and a quadtree to estimate Voronoi region bounds. How-
ever, the extension of this approach to higher dimensions or higher-order
primitives is not presented. An efficient GPU-based implementation of the
CSC algorithm is presented in [Sigg et al. 03]. The number of polygons sent
to the graphics pipeline is reduced, and the non-linear distance functions
are evaluated using fragment programs.

One of the problems for computing distance fields using GPUs is the
resulting sample errors. Extending the earlier work [Hoff et al. 99], [Sud
et al. 04] compute bounds on the spatial extent of the Voronoi region of
each primitive. These bounds are then used to cull and clamp the distance
functions rendered for each slice to accelerate the overall computation.
They have demonstrated this algorithm on large models composed of tens
of thousands of primitives on high resolution grids and its application to
medial axis evaluation and proximity computations.

9.6 Spline and Algebraic Objects
Most of the algorithms highlighted above are limited to polygonal objects.
Many applications of geometric and solid modeling use curved objects,
whose boundaries are described using rational splines or algebraic equa-
tions. Algorithms to perform different proximity queries on these objects
can be classified based on the following methods: subdivision methods,
tracing methods, and analytic methods. A survey on these techniques is



�

�

�

�

�

�

�

�

9.6. Spline and Algebraic Objects 195

given in [Pratt 86,Hoffmann 89,Manocha 92]. Next, we briefly enumerate
these methods.

9.6.1 Subdivision Methods

All subdivision methods for parametric surfaces work by recursively sub-
dividing the domain of the two surface patches in tandem and examining
the spatial relationship between patches [Lane and Riesenfeld 80]. In all
cases, depending on various criteria, the domains are further subdivided
and recursively examined, or the given recursion branch is terminated. In
all cases, whether it is the intersection curve or the distance function, the
solution is computed only to some finite precision.

9.6.2 Tracing Methods

The tracing method begins with a given point known to be on the in-
tersection curve [Barnhill et al. 87,Manocha and Canny 91,Krishnan and
Manocha 97]. Then the intersection curve is traced in sufficiently small
steps until the edge of the patch is found, or until the curve returns to
itself to close a loop. In practice, it is easy to check for intersections with
a patch boundary, but difficult to know when the tracing point has re-
turned to its starting position. Frequently, this is posed as an initial-value
differential equations problem [Kriezis et al. 90a] or solving a system of al-
gebraic equations [Manocha and Canny 91,Krishnan and Manocha 97,Lin
and Manocha 97]. At the intersection point on the surfaces, the intersec-
tion curve must be mutually orthogonal to the normals of the surfaces.
Consequently, the vector field which the tracing point must follow is given
by the cross product of the normals.

9.6.3 Analytic Methods

Analytic methods usually involve implicitizing one of the parametric
surfaces—obtaining an implicit representation of the model
[Sederberg et al. 84,Manocha and Canny 92]. The parametric surface is
a mapping from (u, v)-space to (x, y, z)-space, and the implicit surface is
a mapping from (x, y, z)-space to the real numbers. By substituting the
parametric functions fx(u, v), fy(u, v), fz(u, v) for the x, y, z of the implicit
function, we obtain a scalar function in u and v. The locus of roots of this
scalar function map out curves in the (u, v) plane which are the preimages
of the intersection curve [Kriezis et al. 90b, Manocha and Canny 91, Kr-
ishnan and Manocha 97, Sarraga 83]. Based on its representation as an
algebraic plane curve, efficient algorithms have been proposed by a number
of researchers [Abhyankar and Bajaj 88,Krishnan and Manocha 97,Keyser
et al. 99].



�

�

�

�

�

�

�

�

196 9. Overview on Collision and Proximity Queries

9.7 Deformable Models
Due to the dynamically changing geometry, collision detection and proxim-
ity queries between deformable models pose many interesting challenges.

9.7.1 BVH-based Methods

Many of the commonly used collision detection algorithms utilize spatial
partitioning or bounding volumes hierarchies. Typical spatial partioning
methods used for queries between flexible bodies include uniform parti-
tioning and adaptive grids (e.g., quadtrees or octrees). Most proximity
computation algorithms for deformable models use hierarchies of spheres
or use AABBs [Agarwal et al. 04,van den Bergen 97,Larsson and Akenine-
Möller 01,James and Pai 04]. However, these hierarchies may not be able
to perform significant culling in close proximity configurations or for self-
proximity queries. Thus, they can result in a high number of false positives
and wasted tests.

9.7.2 Specialized Tests

Many specialized algorithms have been proposed to perform collision queries
on deformable models. These include GPU-based algorithms [Knott and
Pai 03, Govindaraju et al. 05] for inter-object or intra-object collisions.
Other methods for self-collisions are based on the curvature test [Volino and
Thalmann 00] and these can be combined with BV hierarchies. [Teschner
et al. 03] use spatial hashing techniques to check for inter-object collisions
and self-collisions. All of these algorithms perform only collision queries.

9.7.3 Distance and Penetration Depth Computation

All 3D scalar or discrete distance fields can be efficiently computed using
graphics hardware [Fischer and Gotsman 05, Sigg et al. 03, Sud et al. 05],
thus making them suitable for dynamically changing geometry such as de-
formable models. The discrete distance fields can be used to perform inter-
object proximity queries between rigid and deformable models at image-
space resolution [Hoff et al. 02, Sud et al. 05]. However, these algorithms
may not provide sufficient accuracy for robust contact handling.

Efficient penetration depth (PD) computation algorithms have been pro-
posed for rigid polyhedral models [Kim et al. 02e], but they involve consid-
erable preprocessing. Many approximate PD computation algorithms for
deformable models are based on GPU-based computations [Hoff et al. 02,
Redon and Lin 06], precomputed distance fields [Fisher and Lin 01] or
spatial hashing [Heidelberger et al. 04].



�

�

�

�

�

�

�

�

9.8. Dynamic Queries 197

9.7.4 Self-Collision Detection

Self-collision detection is perhaps one of the most costly queries for de-
formable models. Given the complexity of self-collision detection, many
interactive algorithms either do not check for self-collisions [Cordier and
Magnenat-Thalmann 02,Fuhrmann et al. 03] or perform approximate colli-
sion detection using multiple layers [Cordier and Magnenat-Thalmann 02,
Kang and Cho 02] or voxelized grids [Meyer et al. 00]. It may be difficult
to give bounds on the accuracy of a simulation with approximate collision
detection.

[Volino and Thalmann 94] presented a sufficient condition for detecting
self-collisions in highly tessellated surfaces using curvature and convexity
properties [Mezger et al. 03,Provot 97,Volino and Thalmann 00]. This test
can be applied in a hierarchical manner on large models, though it can be
expensive for interactive applications [Volino and Thalmann 00].

Many algorithms treat each polygonal primitive as a separate object
and apply N -body collision detection algorithms based on uniform grids or
AABB-based sorting [Ericson 04]. In particular, efficient algorithms that
incrementally update the AABB for each triangle and check for overlaps by
projecting them to the coordinate axes are widely used [Baraff 92,Cohen
et al. 95]. However, prior N-body approaches have two major limitations
in terms of using them for self-collision detection. First, the level of culling
based on AABBs or rectangular cells of a grid may be low. Second, the
storage requirements of coherence-based sorting algorithms can grow as
a quadratic function of the number of primitives. Sud et al. introduce
novel algorithms to perform collision and distance queries among multiple
deformable models in dynamic environments, based on the properties of
the second-order discrete Voronoi diagram to perform N-body culling [Sud
et al. 06].

9.8 Dynamic Queries
In this section we give a brief overview of algorithms used to perform dy-
namic queries. Unlike static queries, which check for collisions or perform
separation distance queries at discrete instances, these algorithms use con-
tinuous techniques based on the object motion to compute the time of first
collision.

Many algorithms assume that the motion of the objects can be ex-
pressed as a closed form function of time. [Cameron 90] presented algo-
rithms that pose the problem as interference computation in a 4-dimensional
space. Given a parametric representation of each object’s boundary as well
as its motion, Herzen et al. [Herzen et al. 90] presented a collision detec-



�

�

�

�

�

�

�

�

198 9. Overview on Collision and Proximity Queries

tion algorithm that subdivides the domain of the surface, including the
time dimension. They use Lipschitz Conditions, based on bounds on the
various derivatives of the mapping, to compute bounds on the extent of
the resulting function. The bounds are used to check two objects for over-
lap. [Snyder et al. 93] improved the runtime performance of this algorithm
by introducing more conditions that prune the search space for collisions
and combined it with interval arithmetic [Moore 79].

Other continuous techniques use the object motion to estimate the time
of first contact. For prespecified trajectories consisting of a sequence of
individual translations and rotations about an arbitrary axis, [Boyse 79]
presented an algorithm for detecting and analyzing collisions between a
moving and a stationary objects. [Canny 86] described an algorithm for
computing the exact points of collision for objects that are simultaneously
translating and rotating. It can deal with any path in the space that can
be expressed as a polynomial function of time.

[Redon et al. 02b,Kim and Rossignac 03] proposed an algorithm that re-
places the unknown motion between two discrete instances by an arbitrary
rigid motion. It reduces the problem of computing the time of collision to
computing a root of a univariate cubic polynomial.

More recent methods have been proposed to perform dynamic queries
for rigid, articulated models or avatars in virtual environments [Redon
et al. 04a,Redon et al. 04b,Kim et al. 07] and for deformable models at
interactive rates [Govindaraju et al. 06, Govindaraju et al. 07]. Please
refer to Chapter 12 for a tutorial on the basic steps to perform continuous
collision detection.

9.9 Multiresolution Techniques
The algorithm by [Guibas et al. 99] based on the hierarchical representa-
tions of [Dobkin and Kirkpatrick 90] to reduce the runtime dependency on
the amount of the local walks can be considered as a first-step toward the
design of multiresolution technique for collision detection.

Among one of the first multiresolution proximity query algorithms is the
multi-level Voronoi marching by [Ehmann and Lin 00], based on an error-
bounded level-of-detail (LOD) hierarchy to accelerate proximity queries for
convex polyhedra.

More recently, multiresolution algorithms for collision detection have
been proposed for general non-convex polyhedral models based on contact
levels of detail [Otaduy and Lin 03a] for haptic rendering [Otaduy and
Lin 03b], and dynamic simplifications [Yoon et al. 04] for visual simulation.
We refer the readers to Chapter 13 for more detail.



�

�

�

�

�

�

�

�

9.10. Large Environments 199

9.10 Large Environments
Large environments are composed of multiple moving objects. Different
methods have been proposed to overcome the bottleneck of O(n2) pairwise
tests in an environment composed of n objects. The problem of performing
proximity queries in large environments is typically divided into two parts
[Hubbard 93,Cohen et al. 95]: the broad phase, in which we identify the
pair of objects on which we need to perform different proximity queries,
and the narrow phase, in which we perform the exact pairwise queries. An
architecture for the multi-body collision detection algorithm is shown in
Figure 9.4. In this section, we present a brief overview of algorithms used
in the broad phase.

9.10.1 Domain Partitioning

The simplest algorithms for large environments are based on spatial subdi-
visions. The space is divided into cells of equal volume, and at each instance
the objects are assigned to one or more cells. Collisions are checked among
all object pairs belonging to each cell. In fact, Overmars has presented
an efficient algorithm based on hash table to efficiently perform point loca-
tion queries in fat subdivisions [Overmars 92]. This approach works well for
sparse environments in which the objects are uniformly distributed through
the space. Another approach operates directly on four-dimensional volumes
swept out by object motion over time [Cameron 90].

Architecture for Multi-body
Collision Detection

Simulation

Pruning
Multi-body Pairs

Pairwise Exact
Collision Detection

object transformations overlapping pairs

colliding
   pairs

Analysis/
Response

  response
parameters

Figure 9.4. Typically, the object’s motion is constrained by collisions with other
objects in the simulated environment. Depending on the outcome of the proxim-
ity queries, the resulting simulation computes an appropriate response.



�

�

�

�

�

�

�

�

200 9. Overview on Collision and Proximity Queries

Some of the commonly used algorithms compute an axis-aligned bound-
ing box (AABB) for each object, based on their extremal points along each
direction. Given n bounding boxes, it checks which boxes overlap in space.
A number of efficient algorithms are known for the static version of this
problem. In 2D, the problem reduces to checking 2D intervals for overlap
using interval trees and can be performed in O(n log n+s), where s is the to-
tal number of intersecting rectangles [Edelsbrunner 83]. In 3D, algorithms
of O(n log2 n+ s) complexity are known, where s is the number of pairwise
bounding boxes that are overlapping [Hopcroft et al. 83,Six and Wood 82].
Algorithms for N -body proximity queries in dynamic environments are
based on the sweep and prune approach [Cohen et al. 95]. It incremen-
tally computes the AABBs for each object and checks them for overlap by
computing the projection of the bounding boxes along each dimension and
sorting the interval endpoints using an insertion sort or bubble sort [Shamos
and Hoey 76,Baraff 92, Cohen et al. 95]. In environments where the ob-
jects make relatively small movements between successive frames, the lists
can be sorted in expected linear time and the expected complexity of the
algorithm is O(n + m), where m is the number of overlapping intervals
along any dimension. Based on similar ideas, extended algorithms for col-
lision detection between the links of kinematic chains are given in [Lotan
et al. 02].

9.10.2 Scheduling Schemes

Given that bounds on the maximum velocity and acceleration of the objects
are known, [Lin 93] presented a scheduling scheme that maintains a priority
queue and sorts the objects, based on approximate time to collision. The
approximation is computed based on the separation distance, as well as
the bounds on the velocity and acceleration. A similar approach along
with a spatial partitioning scheme has been used to reduce the frequency
of collision queries among many rigid objects [Mirtich and Canny 95].

9.10.3 Out-of-Core Algorithms

In many applications, it may not be possible to load a massive geometric
model composed of millions of primitives in the main memory for interactive
proximity queries. In addition, algorithms based on spatial partitioning or
bounding volume hierarchies also add additional memory overhead. Thus,
it is important to develop proximity query algorithms that use a relatively
small or bounded memory footprint.

[Wilson et al. 99] presented an out-of-core algorithm to perform collision
and separation distance queries on large environments. It is based on the
concept of overlap graphs to exploit locality of computation. For a large



�

�

�

�

�

�

�

�

9.11. Proximity Query Packages 201

model, the algorithm automatically encodes the proximity information be-
tween objects and represents it using an overlap graph. The overlap graph
is computed offline and preprocessed using graph partitioning, object de-
composition and refinement algorithms. At run time it traverses localized
sub-graphs and orders the computations to check the corresponding geom-
etry for proximity tests, as well as to pre-fetch geometry and associated
hierarchical data structures. To perform interactive proximity queries in
dynamic environments, the runtime algorithm uses the BVHs, modifies the
localized sub-graph(s) on the fly, and takes advantage of spatial and tempo-
ral coherence. A survey on memory management issues related to handling
of and interacting with massive datasets can also be found in [Kasik 07].

9.11 Proximity Query Packages
Many systems and libraries have been developed for performing different
proximity queries. These include:

• I-COLLIDE is an interactive and exact collision-detection system
for environments composed of convex polyhedra or unions of convex
pieces. The system is based on the LC incremental distance com-
putation algorithm [Lin and Canny 91] and an algorithm to check
for collision between multiple moving objects [Cohen et al. 95]. It
takes advantage of temporal coherence. (http://gamma.cs.unc.edu/
I COLLIDE)

• RAPID is a robust and accurate interference detection library for a
pair of unstructured polygonal models. It is applicable to polygon
soups—models which contain no adjacency information and obey no
topological constraints. It is based on OBBTrees and uses a fast
overlap test based on the separating axis theorem to check whether
two OBBs overlap [Gottschalk et al. 96]. (http://gamma.cs.unc.edu/
OBB/OBBT.html)

• V-COLLIDE is a collision detection library for large dynamic envi-
ronments [Hudson et al. 97] and unites the N -body processing algo-
rithm of I-COLLIDE with the pair processing algorithm of RAPID.
Consequently, it is designed to operate on large numbers of static
or moving polygonal objects, and the models may be unstructured.
(http://gamma.cs.unc.edu/V COLLIDE)

• Enhanced GJK Algorithm is a library for distance computation based
on the enhanced GJK algorithm [Gilbert et al. 88] developed by



�

�

�

�

�

�

�

�

202 9. Overview on Collision and Proximity Queries

Cameron [Cameron 97]. It takes advantage of temporal coherence be-
tween successive frames. (http://www.comlab.ox.ac.uk/oucl/users/
stephen.cameron/distances.html)

• SOLID is a library for interference detection of multiple three-
dimensional polygonal objects undergoing rigid motion. The shapes
used by SOLID are sets of non-convex polygons without topological
constraints or polygon soups. The library exploits frame coherence
by maintaining a set of pairs of proximate objects using incremen-
tal sweep and prune on hierarchies of axis-aligned bounding boxes.
Though slower for close proximity scenarios, its performance is com-
parable to that of V-COLLIDE in other cases. (http://www.win.tue.
nl/cs/tt/gino/solid/)

• PQP, a Proximity Query Package, supports collision detection, sepa-
ration distance computation, or tolerance verification. It uses OBB-
Tree for collision queries and a hierarchy of swept sphere volumes to
perform distance queries [Larsen et al. 99]. It assumes that each ob-
ject is a collection of triangles and can handle polygon soup models.
(http://gamma.cs.unc.edu/SSV/)

• SWIFT, a library for collision detection, distance computation, and
contact determination between three-dimensional polygonal objects
undergoing rigid motion. It assumes that the input primitives are
convex polytopes or union of convex pieces. The underlying algorithm
is based on a variation of Lin-Canny algorithm [Ehmann and Lin 00].
The resulting system is faster, more robust, and memory efficient as
compared to I-COLLIDE. (http://gamma.cs.unc.edu/SWIFT/)

• SWIFT++ is a library for collision detection, approximate and exact
distance computation, and contact determination between polyhedral
models. It assumes that the models are closed and bounded. It
decomposes the boundary of each polyhedron into convex patches and
precomputes a hierarchy of convex polytopes [Ehmann and Lin 01].
It uses the SWIFT library to perform the underlying computations
between the bounding volumes. (http://gamma.cs.unc.edu/SWIFT+
+/)

• QuickCD is a general-purpose collision detection library, capable of
performing exact collision detection on complex models. The input
model is a collection of triangles, and it makes assumptions related to
the structure or topologies of the model. It precomputes a hierarchy
of k-DOPs for each object and uses them to perform fast collision
queries [Klosowski et al. 98]. (http://www.ams.sunysb.edu/∼jklosow/
quickcd/QuickCD.html)



�

�

�

�

�

�

�

�

9.11. Proximity Query Packages 203

• OPCODE is a collision detection library between general polygonal
models. It uses a hierarchy of AABBs. As compared to RAPID,
SOLID, or QuickCD, it consumes much less memory. (http://www.
codercorner.com/Opcode.htm)

• DEEP estimates the penetration depth and the associated penetra-
tion direction between two overlapping convex polytopes. It uses an
incremental algorithm the computes a “locally optimal solution” by
walking on the surface of the Minkowski sum of two polytopes [Kim
et al. 02c]. (http://gamma.cs.unc.edu/DEEP/)

• PIVOT computes generalized proximity information between arbi-
trary objects using graphics hardware. It uses multi-pass render-
ing techniques and accelerated distance computation and provides an
approximate solution for different proximity queries. These include
collision detection, distance computation, local penetration depth,
contact region and normals, etc. [Hoff et al. 01, Hoff et al. 02]. It
involves no preprocessing and can also handle deformable models.
(http://gamma.cs.unc.edu/PIVOT/)



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

10
Collision Detection for
Three-DOF Rendering

M. C. Lin

As mentioned in Chapter 9, an important component of haptic interaction
is to efficiently find all the contacts between the haptic probe and the mod-
els in the virtual environment for force display. The virtual environments
may be composed of tens or hundreds of thousands of polygons, possibly
much more for rapid prototyping of complex machinery.

Since detection of a collision or penetration is the required first step for
most haptic rendering systems, in this chapter we will present techniques for
fast and scalable collision detection used in three-degree-of-freedom haptic
display. The targeted environments are polygonal models consisting of tens
of thousands of primitives, such as CAD models of high complexity. Some of
these algorithms are also easily extensible to support a wide range of force-
feedback devices (including six degree-of-freedom arms) and deformable
surfaces.

10.1 Related Work
In the ray-tracing literature, the problem of computing fast intersections
between a ray and a three-dimensional geometric model has also been ex-
tensively studied [Arvo and Kirk 89]. While a number of algorithms have
been proposed that make use of bounding volume hierarchies, spatial par-
titioning, or frame-to-frame coherence, there is relatively little available on
hybrid approaches combining two or more such techniques.

To perform proximity queries for 3-DOF haptic rendering, the basic
intersection test is to check if the line segment swept out by the tip of the
haptic probe has collided with any object in the scene. Several possible
hiearchical approaches can be used to perform such a query.

• Bounding volume hierarchies. As mentioned in Chapter 9, a number
of algorithms based on hierarchical representations have been pro-
posed. The set of bounding volumes include spheres [Hubbard 93,

205



�

�

�

�

�

�

�

�

206 10. Collision Detection for Three-DOF Rendering

Quinlan 94], axis-aligned bounding boxes [Beckmann et al. 90,Held
et al. 95], oriented bounding boxes [Gottschalk et al. 96, Barequet
et al. 96], approximation hierarchies based on S-bounds [Cameron 91],
spherical shells [Krishnan et al. 98b] and k-dop’s [Klosowski et al. 96].
[Ruspini et al. 97] presented a haptic interface library, HL, that uses
a multi-level control system to effectively simulate contacts with vir-
tual environments. It uses a bounding volume hierarchy based on
sphere-trees [Quinlan 94].

In the close proximity scenarios, hierarchies of oriented bounding
boxes (OBBTrees) appear superior to many other bounding volumes
[Gottschalk et al. 96]. The original algorithm [Gottschalk et al. 96] is
applicable to collision detection between two 3D objects. A special-
ized test based on the separating axis theorem [Gottschalk et al. 96]
can be used to perform collision detection between a line segment and
a 3D object, which we will describe in the next section.

• Spatial partitioning approaches. Some of the simplest algorithms for
collision detection are based on spatial decomposition techniques and
can be used to perform collision detection for 3-DOF haptic display as
well. These algorithms partition the space into uniform or adaptive
grids (i.e. volumetric approaches), octrees [Samet 89], k-D trees, or
binary spatial partitioning (BSP) [Naylor et al. 90]. To overcome the
problem of large memory requirements for volumetric approaches,
some authors [Overmars 92] have proposed the use of hash tables.
Such techniques are also applicable, though their performance may
vary significantly, depending on the complexity of the objects and
contact configurations.

• Utilizing frame-to-frame coherence. In many simulations, the objects
move only a little between successive frames. Many efficient algo-
rithms that utilize frame-to-frame coherence have been proposed for
convex polytopes [Lin and Canny 91,Cameron 96,Baraff 90]. Cohen
et al. [Cohen et al. 95] have used coherence-based incremental sorting
to detect possible pairs of overlapping objects in large environments.

10.2 A Fast Proximity Query Algorithm for 3-DOF
Haptic Interaction

In this section, we describe one of the recent algorithms that have demon-
strated efficiency, scalability, and flexibility for 3-DOF haptic interaction,
H-COLLIDE1. In this section, we will give an overview of the haptic system

1A preliminary version appeared in [Gregory et al. 99b].



�

�

�

�

�

�

�

�

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 207

setup and algorithmic techniques that are an integral part of this collision
detection framework.

10.2.1 Haptic System Architecture

Due to the stringent update requirements for real-time haptic display, the
haptic system using H-COLLIDE runs a special standalone haptic server
written with VRPN (http://www.cs.unc.edu/Research/nano/manual/vrpn)
on a PC connected to the PHANTOM. The client application runs on an-
other machine, which is typically the host for graphical display. Through
VRPN, the client application sends the server the description of the scene
to be haptically displayed, and the server sends back information such as
the position and orientation of the PHANTOM probe. The client applica-
tion can also modify and transform the scene being displayed by the haptic
server.

10.2.2 Algorithm Overview

Given the last and current positions of the PHANTOM probe, the algo-
rithm needs to determine if the tip of the probe has in fact passed through
the object’s surface, in order to display the appropriate force. The probe
movement is usually small, due to the high haptic update rates. This obser-
vation implies that only a relatively small volume of the workspace needs
to be checked for collision.

Approaches using spatial partitioning seem to be natural candidates
for such situations. For large and complex models, techniques based on
uniform or adaptive grids can be implemented more efficiently using hash
tables. However, to achieve the desired speed, these approaches still have
extremely high storage requirements, even when implemented using a hash-
ing scheme.

Despite its better fit to the underlying geometry, the hierarchical bound-
ing volume method based on OBBTrees may end up traversing trees to
great depths to locate the exact contact points for large, complex mod-
els. To take advantage of each approach and to avoid some deficiency of
each, a hybrid technique called H-COLLIDE has been proposed [Gregory
et al. 99a].

• Hybrid hierarchical representation. Given a virtual environment con-
taining several objects, each composed of tens of thousands of poly-
gons, the algorithm computes a hybrid hierarchical representation of
the objects as part of the off-line pre-computation. It first parti-
tions the entire virtual workspace into coarse-grain uniform grid cells.
Then, for each grid cell containing some primitives of the objects in



�

�

�

�

�

�

�

�

208 10. Collision Detection for Three-DOF Rendering

the virtual world, it computes the OBBTrees for that grid cell and
stores the pointer to the associated OBBTrees using a hash table for
constant-time proximity queries.

• Specialized intersection tests. The online computation of our colli-
sion detection system consists of three phases. In the first phase, it
identifies the region of potential contacts by determining which cells
were touched by the probe path, using the precomputed look-up ta-
ble. In the second phase, it traverses the OBBTree(s) in that cell
to determine if collisions have occurred, using the specialized fast
overlap test to be described later. In the third phase, if the line seg-
ment intersects with an OBB in the leaf node, then it computes the
(projected) surface contact point(s) (SCP) using techniques similar
to those in [Sensable Technologies, Inc. 08,Thompson et al. 97].

• Frame-to-frame coherence. If in the previous frame the probe of the
feedback device was in contact with the surface of the model, we ex-
ploit frame-to-frame coherence by first checking if the last intersected
triangle is still in contact with the probe. If so, we cache this contact
witness. Otherwise, we check for collision using hybrid hierarchical
representation of the objects.

offline

online

Compute hybrid hierarchial representation

Find segment’s bounding grid cell(s)

Query cell’s OBBTree(s)

Check potential triangles for intersection

Input last position and current position / SCP

false true

Check contact witness

Return FALSE or intersection point / SCP

Figure 10.1. The system architecture of H-COLLIDE. ( c© 1999 IEEE.)



�

�

�

�

�

�

�

�

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 209

10.2.3 Overlap Test based on a Line Segment against an OBB-
Tree

H-COLLIDE, a framework for fast and accurate collision detection for hap-
tic interaction, is designed based on the hybrid hierarchical representation
and the algorithmic techniques described above. Figure 10.1 shows the
system architecture of H-COLLIDE.

For haptic display using a point probe, we can specialize the algorithm
based on OBBTrees by only testing a line segment (representing the path
swept out by the probe device between two successive steps) and an OBB-
Tree. (The original algorithm [Gottschalk et al. 96] uses an overlap test
between a pair of OBBs and can take more than 200 operations per test.)
At run time, most of the computation is spent in finding collisions between
a line segment and an OBB. To optimize this query, we have developed a
very fast overlap test between a line segment and an OBB, which takes as
few as 6 operations and only 36 arithmetic operations in the worst case,
not including the cost of transformation.

At the first glance, it is tempting to use sophisticated and optimized
line clipping algorithms. However, the line-OBB intersection problem for
haptic interaction is a simpler one than line clipping, and the environment
is dynamic and consists of many OBBs. Next, we’ll describe this specialized
overlap test between a line segment and an oriented bounding box for haptic
rendering. Without loss of generality, we will choose the coordinate system
centered on and aligned with the box—so the problem is transformed to an
overlap test between a segment and a centered axis-aligned bounding box.
Our overlap test uses the separating axis theorem described in [Gottschalk
et al. 96], but specialized for a line segment against an OBB.

Specifically, the candidate axes are the three box face normals (which
are aligned with the coordinate axes) and their cross-products with the seg-
ment’s direction vector. With each of these six candidate axes, we project
both the box and the segment onto it and test whether the projection in-
tervals overlap. If the projections are disjoint for any of the six candidate
axes, then the segment and the box are disjoint. Otherwise, the segment
and the box overlap.

How are the projection intervals computed? Given a direction vector
v of a line through the origin, and a point p, let the point p′ be the axial
projection of p onto the line. The value dp = v · p/|v| is the signed distance
of p′ from the origin along the line. Now consider the line segment with
midpoint m and endpoints m+ w and m− w. The half-length of the line
segment is |w|. The image of the segment under axial projection is the
interval centered at

ds = v ·m/|v|,



�

�

�

�

�

�

�

�

210 10. Collision Detection for Three-DOF Rendering

c

m-w

m

m+wLs

ds

Lb

Figure 10.2. Overlap test between a line segment and an OBB. ( c© 1999 IEEE.)

and with half-length
Ls = |w · v|/|v|.

Given a box centered at the origin, the image of the box under axial
projection is an interval with midpoint at the origin.

Furthermore, if the box has thicknesses 2tx, 2ty, and 2tz along the
orthogonal unit directions ux, uy, and uz, the half-length of the interval is
given by

Lb = |txv · ux/|v|| + |tyv · uy/|v|| + |tzv · uz/|v||.

With the intervals so expressed, the axis v is a separating axis if and only
if (see Figure 10.2)

|ds| > Lb + Ls

Let us assume that the box is axis-aligned; then ux = [1, 0, 0]T , uy =
[0, 1, 0]T , and uz = [0, 0, 1]T , and the dot products with these vectors be-
come simple component selections. This simplifies the box interval length
computation to

Lb = |txvx| + |tyvy| + |tzvz|.

Now, recall that the candidate axis v is either a box face normal, or a cross
product of a face normal with the line segment direction vector. Consider
the former case, when v is a box face normal, for example [1, 0, 0]T . In this
case, the components vy and vz are zero, and the component vx is one, and
we are left with

Lb = tx.

The projection of the line segment onto the x−axis is also simple:

Ls = |wx|.



�

�

�

�

�

�

�

�

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 211

So, the test for the v = [1, 0, 0]T axis is

|mx| > tx + |wx|.

The tests for the candidate axes v = [0, 1, 0]T and v = [0, 0, 1]T have similar
structure.

The three cases where v is a cross product of w with one of the box
faces are a little more complex. Recall that in general,

Lb = |txv · ux| + |tyv · uy| + |tzv · uz|.

For the sake of concreteness, we will choose v = w× uy. Then this expres-
sion becomes

Lb = |tx(w × uy) · ux| + |ty(w × uy) · uy| + |tz(w × uy) · uz|.

Application of the triple product identity

(a× b) · c = (c× a) · b

yields

Lb = |tx(uy × ux) · w| + |ty(uy × uy) · w| + |tz(uy × uz) · w|.

All of these cross products simplify, because the u vectors are mutually
orthogonal, ux × uy = uz, uy × uz = ux, and uz × ux = uy, so

Lb = |tx(−uz) · w| + |ty(0) · w| + |tz(ux) · w|.

And again, using the fact that ux = [1, 0, 0]T , and so forth,

Lb = tx|wz| + tz|wx|.

The half-length of the segment interval is

Ls = |w · (w × uy)| = |uy · (w × w)| = |uy · 0| = 0,

which is what we would expect, since we are projecting the segment onto
a line orthogonal to it.

Finally, the projection of the segments midpoint falls at

ds = (w × uy) ·m = (m× w) · uy = mzwx −mxwz,

which is just the y−component of m× w. The final test is

|mzwx −mxwz| > tx|wz | + tz|wx|.

Similar derivations are possible for the cases v = w × ux and v = w × uz.



�

�

�

�

�

�

�

�

212 10. Collision Detection for Three-DOF Rendering

Writing out the entire procedure, and precomputing a few common
subexpressions, we have the following pseudocode:

let X = |wx|
let Y = |wy |
let Z = |wz |
if |mx| > X + tx return disjoint
if |my| > Y + ty return disjoint
if |mz | > Z + tz return disjoint
if |mywz −mzwy| > tyZ + tzY return disjoint
if |mxwz −mzwx| > txZ + tzX return disjoint
if |mxwy −mywx| > txY + tyX return disjoint
otherwise return overlap

When a segment and an OBB are disjoint, the routine often encounters
an early exit and only one (or two) out of the six expressions is executed.
Total operation count for the worst case is: 9 absolute values, 6 compar-
isons, 9 add and subtracts, 12 multiplies. This does not include the cost of
transforming, (i.e., 36 operations), the problem into a coordinate system
centered and aligned with the box.

10.3 Implementation Issues
H-COLLIDE has been successfully implemented in C++ and interfaced
with GHOST, a commercial software developer’s toolkit for haptic ren-
dering, and used it to find surface contact points between the probe of a
PHANTOM arm and large geometric models (composed of tens of thou-
sands of polygons). Next, we describe some of the implementation issues.

10.3.1 Hashing Scheme

Clearly, it is extremely inefficient to allocate storage for all these cells,
since a polygonal surface is most likely to occupy a very small fraction of
them. We use a hash table to alleviate the storage problem. From each
cell location at (x, y, z) and a grid that has len cells in each dimension, we
can compute a unique key using

key = x+ y ∗ len+ z ∗ len2.

In order to avoid hashing too many cells with the same pattern into the
same table location, we compute the actual location for a grid cell in the
hash table with

TableLoc = random(key)%TableLength.



�

�

�

�

�

�

�

�

10.4. System Performance 213

Should the table have too many cells in one table location, we can
simply grow the table. Hence, it is possible to determine which triangles
we need to check in constant time, and the amount of storage required is a
constant factor (based on the grid grain) of the surface area of the object
we want to “feel.”

Determining the optimal grid grain is a nontrivial problem. Please refer
to [Gregory et al. 98] for a detailed retreatment and a possible analytical
solution to this problem. We simply set the grain of the grids to be the
average length of all edges. If the model has a very irregular triangulation,
it is very possible that there could be a large number of small triangles in
a single grid cell.

Querying an OBBTree takes O(logn) time, where n is the number of
triangles in the tree. During the off-line computation, we can ensure that n
is a small number compared to the total number of triangles in the model;
thus, the overall running time of our hybrid approach should be constant.

10.3.2 User Options

Since the hybrid approach used in H-COLLIDE has a higher storage re-
quirement than either individual technique alone, the system also allows
the user to select a subset of the techniques, such as the algorithm purely
based on OBBTrees, to opt for better performance on a machine with less
memory.

10.4 System Performance
For comparison, adaptive grids, H-COLLIDE, an algorithm using only
OBBTrees with the specialized overlap test described in Section 10.2.3,
has been implemented to compare their performance. These implementa-
tions have been applied and tested on a wide range of models of varying
sizes. (See the models at http://www.cs.unc.edu/∼geom/HCollide/model.
pdf.) Their performance varies based on the models, the configuration of the
probe relative to the model, machine configuration (e.g., cache and memory
size) and the combination of techniques used by our system. H-COLLIDE
results in a factor of 2–20 times speed improvement as compared to a na-
tive GHOST method. For a number of models composed of 5, 000–80, 000
polygons, H-COLLIDE is able to compute all the contacts and responses
at rates higher than 1000 Hz on a 400 MHz PC.

10.4.1 Obtaining Test Data

The test data is obtained by deriving a class from the triangle mesh prim-
itive that comes with SensAble Technologies’ GHOST library, version 2.0



�

�

�

�

�

�

�

�

214 10. Collision Detection for Three-DOF Rendering

Method Hash Grid Hybrid OBBTree GHOST

Ave Col. Hit 0.0122 0.00883 0.0120 0.0917
Worst Col. Hit 0.157 0.171 0.0800 0.711
Ave Col. Miss 0.00964 0.00789 0.00856 0.0217
Worst Col. Miss 0.0753 0.0583 0.0683 0.663
Ave Int. Hit 0.0434 0.0467 0.0459 0.0668
Worst Int. Hit 0.108 0.102 0.0793 0.100
Ave Int. Miss 0.0330 0.0226 0.0261 0.0245
Worst Int. Miss 0.105 0.141 0.0890 0.364
Ave. Query 0.019 0.014 0.017 0.048

Table 10.1. Timings in msecs for Man Symbol, 5K tris.

beta. This data records the startpoint and the endpoint of each segment
used for collision detection during a real force-feedback session with a 3-
DOF PHANTOM arm. The three techniques mentioned above are inter-
faced with GHOST for comparison with a native GHOST method, and
timed the collision detection routines for the different libraries, using the
data from the test set. The test set for each of these models contains 30,000
readings.

The distinction between a collision and an intersection shown in the
tables is particular to GHOST’s haptic rendering. Each haptic update cycle
contains a “collision” test to see if the line segment from the last position
of the PHANTOM probe to its current position has intersected any of
the geometry in the haptic scene. If there has been a collision, then the
intersected primitive suggests a surface contact point for the PHANTOM
probe to move towards. In this case it is now necessary to perform an
“intersection” test to determine if the line segment from the last position
of the PHANTOM probe to the suggested surface contact point intersects
any of the geometry in the scene (including the primitive with which there
was a “collision”).

The timings (in milliseconds) shown in Tables 10.1–10.5 were obtained
by replaying the test data set on a four processor 400 MHz PC, with 1 GB of
physical memory. Each timing was obtained using only one processor. For
comparison, we ran the same suite of tests on a single processor 300 MHz
Pentium Pro with 128 MB memory. The hybrid approach appeared to be
the most favorable, as well.

10.4.2 Comparison between Algorithms

Since the algorithms run on a real-time system, we are not only interested
in the average performance, but also the worst case performance. Tables
10.1–10.5 show the timings in milliseconds obtained for both cases on each
model and each contact configuration.



�

�

�

�

�

�

�

�

10.4. System Performance 215

Method Hash Grid Hybrid OBBTree GHOST

Ave Col. Hit 0.0115 0.0185 0.0109 0.131
Worst Col. Hit 0.142 0.213 0.138 0.622
Ave Col. Miss 0.0104 0.00846 0.0101 0.0176
Worst Col. Miss 0.0800 0.0603 0.0813 0.396
Ave Int. Hit 0.0583 0.0568 0.0652 0.0653
Worst Int. Hit 0.278 0.200 0.125 0.233
Ave Int. Miss 0.0446 0.0237 0.0349 0.0322
Worst Int. Miss 0.152 0.173 0.111 0.287
Ave. Query 0.030 0.025 0.028 0.070

Table 10.2. Timings in msecs for Man with Hat, 7K tris.

Method Hash Grid Hybrid OBBTree GHOST

Ave Col. Hit 0.0138 0.0101 0.0134 0.332
Worst Col. Hit 0.125 0.168 0.0663 0.724
Ave Col. Miss 0.00739 0.00508 0.00422 0.0109
Worst Col. Miss 0.0347 0.0377 0.0613 0.210
Ave Int. Hit 0.0428 0.0386 0.0447 0.0851
Worst Int. Hit 0.0877 0.102 0.0690 0.175
Ave Int. Miss 0.0268 0.0197 0.0213 0.0545
Worst Int. Miss 0.0757 0.0697 0.0587 0.284
Ave. Query 0.022 0.016 0.039 0.18

Table 10.3. Timings in msecs for Nano Surface, 12K tris.

All our algorithms are able to perform collision queries at rates faster
than the required 1000 Hz force update rate for all models in the worst
case. Although the hybrid approach often outperforms the algorithm based
on OBBTrees, it is sometimes slightly slower than the alogrithm based
on OBBTrees. We conjecture that this behavior is due to the cache size
of the CPU (independent of the memory size) and the memory paging
algorithm of the operating system. Among techniques that use hierarchical
representations, cache access patterns can often have a dramatic impact on
run time performance.

H-COLLIDE requires more memory and is likely to have a less cache-
friendly memory access pattern than the algorithm purely based on OBB-
Trees, despite the fact that both were well within the realm of physical
memory available to the machine. Furthermore, by partitioning polygons
into groups using grids, H-COLLIDE can enable real-time local surface
modification.

The adaptive grids-hashing scheme, a commonly used technique in ray-
tracing, did not perform equally well in all cases. Once again, our hy-
pothesis is that its inferior worst-case behavior is due to its cache access



�

�

�

�

�

�

�

�

216 10. Collision Detection for Three-DOF Rendering

Method Hash Grid Hybrid OBBTree GHOST

Ave Col. Hit 0.0113 0.00995 0.0125 0.104
Worst Col. Hit 0.136 0.132 0.177 0.495
Ave Col. Miss 0.0133 0.00731 0.0189 0.0280
Worst Col. Miss 0.128 0.0730 0.137 0.641
Ave Int. Hit 0.0566 0.0374 0.609 0.0671
Worst Int. Hit 0.145 0.105 0.170 0.293
Ave Int. Miss 0.0523 0.0225 0.0452 0.0423
Worst Int. Miss 0.132 0.133 0.167 0.556
Ave. Query 0.027 0.014 0.028 0.048

Table 10.4. Timings in msecs for Bronco, 18K tris.

Method Hash Grid Hybrid OBBTree GHOST

Ave Col. Hit 0.0232 0.0204 0.0163 1.33
Worst Col. Hit 0.545 0.198 0.100 5.37
Ave Col. Miss 0.00896 0.00405 0.00683 0.160
Worst Col. Miss 0.237 0.139 0.121 3.15
Ave Int. Hit 0.228 0.0659 0.0704 0.509
Worst Int. Hit 0.104 0.138 0.103 1.952
Ave Int. Miss 0.258 0.0279 0.0256 0.229
Worst Int. Miss 0.0544 0.131 0.0977 3.28
Ave. Query 0.030 0.016 0.016 0.320

Table 10.5. Timings in msecs for Butterfly, 79K tris.

patterns, in addition to its storage requirements. We believe the native
GHOST method at the time of benchmarking uses an algorithm based on
BSP trees. While it is competitive for the smaller model sizes, its perfor-
mance fails to scale up for larger models. H-COLLIDE, and the specialized
algorithm purely based on OBBTrees and the specialized overlap test, ap-
pear to be relatively unaffected by the model complexity. This result is
due to the fact that the OBBTrees-based algorithm has a growth rate of
O(logn), where n is the total number of polygons per tree [Gottschalk
et al. 96] and that H-COLLIDE has a constant growth rate.

10.5 Conclusion
We have presented several collision detection methods for 3-DOF haptic in-
teraction and described one of the most efficient algorithms, H-COLLIDE,
in detail. H-COLLIDE is capable of performing collision detection for hap-
tic interaction with complex polygonal models at rates higher than 1000 Hz
on a desktop PC. This framework has shown to be extensible for support-



�

�

�

�

�

�

�

�

10.6. Acknowledgments 217

ing 3-DOF haptic display of deformable models as well, as described in
Chapter 26. In addition, it can possibly be combined with the tracing al-
gorithm [Thompson et al. 97] to handle complex sculptured models more
efficiently, by using their control points.

10.6 Acknowledgments
H-COLLIDE is developed by Arthur Gregory and Stefan Gottschalk under
the advice of Ming Lin and Russell Taylor in the Department of Computer
Science, University of North Carolina at Chapel Hill [Gregory et al. 99a],
and supported in part by the Army Research Office, National Science
Foundation, National Institute of Health, National Center for Research
Resources, and Intel Corporation.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

11
Voxel-Based Collision
Detection for Six-DOF

Rendering
W. A. McNeely, K. D. Puterbaugh, and J. J. Troy

This chapter describes a voxel-based collision detection approach for 6-DOF
haptic rendering. The approximate nature of the collision detection ap-
proach enables a reliable 1000 Hz haptic refresh rate in the manipulation of
modestly complex rigid objects within an arbitrarily complex rigid environ-
ment. The approach effectively renders a short-range force field surround-
ing the environment, which repels the manipulated object(s) and strives
to maintain a voxel-scale minimum separation distance that is known to
preclude exact surface interpenetration. The algorithm was designed for
haptically-aided virtual assembly/disassembly and maintenance analysis in
aircraft engineering, and implemented as the Voxmap PointShellTM (VPS)
software by Boeing. The present chapter describes the basic design pre-
sented in [McNeely et al. 99], as well as further improvements to the algo-
rithm presented in [McNeely et al. 06].

The chapter begins in Section 11.1 with an overview of the algorithm,
describing the basic object representations and a per-contact force model.
Then, Section 11.2 describes the basic voxel data structures from [McNeely
et al. 99], with enhancements from [McNeely et al. 06], and the associated
proximity queries. Section 11.3 and Section 11.4 describe, respectively, op-
timizations for exploiting geometrical awareness and temporal coherence.
Section 11.5 describes the complete rendering algorithm based on virtual
coupling, Section 11.6 presents application examples, and Section 11.7 dis-
cusses related approaches.

11.1 Algorithm Overview
The voxel-based rendering algorithm is geared toward applications in which
exact surface representation is not required. These applications permit an

219



�

�

�

�

�

�

�

�

220 11. Voxel-Based Collision Detection for Six-DOF Rendering

approximate collision detection algorithm with the limitation of voxel scale
accuracy. An inherent advantage of a voxel approach is that it is applica-
ble to arbitrarily complex geometry. Notably, it is not limited to convex
geometry, and thus it is free from any requirement for convex decomposi-
tion. Convexity constraints are commonly imposed in polygon-based ap-
proaches, for performance reasons. Another inherent advantage of voxels is
their volumetric nature, which conveys a performance advantage in collision
detection and also facilitates the implementation of distance fields.

The approach supports the manipulation of several rigid objects within
an arbitrarily rich rigid environment by rendering a half-voxel-deep force
field that surrounds the environment and serves to block potential inter-
penetration of the exact surface representations. For the initial discussion
of the method we will assume the existence of only one dynamic object,
but the method can be scaled to multiple dynamic objects, which will be
discussed in Section 11.5.3. Given a predetermined spatial accuracy (i.e.,
voxel size), rendering performance depends linearly on the total exposed
surface area of the manipulated object(s). There is also a relatively mi-
nor dependence on the instantaneous amount of contact/proximity, with a
worst-case performance (e.g., maximum contact/proximity) of about half
that of the best-case performance.

The main components of the algorithm are:

• A simple penalty force scheme called the tangent-plane force model,
explained in Section 11.1.2;

• A fixed-depth voxel tree, explained in Section 11.2.4;

• A voxel map that can be used to collectively represent all static ob-
jects, explained in Section 11.2.5;

• Optimizations for exploiting geometrical awareness (see Section 11.3)
and temporal coherence (see Section 11.4).

Although the simplicity of the force model is critically important to
performance, it can generate force magnitude discontinuities (but not force
direction discontinuities), especially under sliding motion. In 3-DOF point-
contact haptics, force discontinuities can be devastating to force quality and
stability, but under 6-DOF rendering there is a stochastic effect that lessens
their impact. However, it proved necessary to introduce various measures
to explicitly enhance force quality and stability, such as:

• A single-body dynamic model based on virtual coupling;

• Pre-contact braking forces.



�

�

�

�

�

�

�

�

11.1. Algorithm Overview 221

Original
Object

Pointshell
& Normals

Voxmap

Figure 11.1. Voxmap colliding with pointshell.

All such measures are explained in Section 11.5.
Data storage is often a secondary consideration in haptics work, because

it is tempting to trade memory efficiency for higher performance. However,
voxels are relatively inefficient as geometric modeling elements, and a gen-
eralized octree method improves their memory efficiency, as explained in
Section 11.2.4. Moreover, dynamic pre-fetching can be exploited, thanks
to temporal coherence, as explained in Section 11.4.3.

11.1.1 Object Representation

In the tangent-plane force model, dynamic objects are represented by a set
of surface point samples, plus associated inward-pointing surface normals,
collectively called a pointshell. During each haptic update, the dynamic
object’s motion transformation is applied to every point of the pointshell.
The environment is collectively represented by a single spatial occupancy
map called a voxmap, which is illustrated in Figure 11.1.

11.1.2 Tangent-Plane Force Model

Each haptically rendered frame involves sampling the voxmap at every
point of the pointshell. When a point interpenetrates a voxel (assumed for
now to be a surface voxel) as shown in Figure 11.2, a depth of interpen-
etration is calculated as the distance d from the point to a plane within
the voxel called the tangent plane. The tangent plane is dynamically con-
structed to pass through the voxel’s center point and to have the same
normal as the point’s associated normal. If the point has not penetrated
below that plane (i.e., closer to the interior of the static object), then d is



�

�

�

�

�

�

�

�

222 11. Voxel-Based Collision Detection for Six-DOF Rendering

Force Vector Along
Point Normal

Tangent
Plane

Pointshell

Static
Surface

d

Figure 11.2. Tangent-plane force model.

zero. Force is simply proportional to d by Hooke’s law (F = Kffd). We
call Kff the force field stiffness, since the voxel represents a half-voxel-deep
force field. The net force and torque acting on the dynamic object are ob-
tained as the sum of all force/torque contributions from such point-voxel
intersections.

The tangent-plane force model was inspired by the fact that the surfaces
of contacting objects are tangent at an osculation point. It is important
that the force takes its direction from a precomputed surface normal of the
dynamic object. This proves to be considerably faster than the common
practice of dynamically computing it from the static object’s surface, or
in the case of a force field, dynamically taking the gradient of a potential
field.

One can see that this simple model has discontinuities in force mag-
nitude when a point crosses a voxel boundary, for example, under sliding
motion. Section 11.5 describes how discontinuities can be mitigated for
haptic purposes.

11.2 Voxel Data Structures
This section outlines the creation and usage of voxel-based data structures.
Exact (polygonal) surface penetration and memory usage will also be dis-
cussed.

11.2.1 Voxmap and Pointshell

One begins by selecting a global voxel size, s, that meets the virtual sce-
nario’s requirements for accuracy and performance. The performance as-
pect is that the force model requires traversing a set of point samples, and
s determines the number of such points. Consider a solid object such as
the teapot in Figure 11.3(a). It partitions space into regions of free space,
object surface, and object interior. Now tile this space into a volume occu-



�

�

�

�

�

�

�

�

11.2. Voxel Data Structures 223

Figure 11.3. Teapot: (a) Polygonal model. (b) Voxel model. (c) Pointshell
model.

pancy map, or voxmap, as in Figure 11.3(b). The collection of center points
of all surface voxels constitutes the pointshell needed by the tangent-plane
force model, as in Figure 11.3(c).

This method for creating the pointshell is not optimal, but it is con-
venient. Its accuracy may be improved by choosing points that lie on the
exact geometrical representation.

A neighbor voxel is defined as sharing a vertex, edge, or face with the
subject voxel. Each voxel has 26 neighbors. It is important that each envi-
ronment object be voxelized in its final position and orientation in the world
frame, because such transformations cause its voxelized representation to
change shape slightly.

By the nature of 3D scan conversion, voxmaps are insensitive to surface
imperfections, such as gaps or cracks that are smaller than the voxel width.
However, identifying the interior of a voxmap can be difficult. We adopt the
practice of (1) scan-converting to create surface voxels, (2) identifying free-
space voxels by propagating the voxelized walls of the object’s bounding
box inward until surface voxels are encountered, and (3) declaring all other
voxels to be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

11.2.2 Distance Fields

It is useful to have advance warning of potential contact between pointshell
and voxmap objects. For example, such warning is required by the tem-
poral coherence technique described in Section 11.4. For that reason the
voxelization of an object is extended beyond its surface into free space
surrounding the object, marking such free-space voxels with integer values
that represent a conservative estimate of distance-to-surface expressed in
units of voxel size. This creates a voxel-based distance field, as illustrated
in the 2D example of Figure 11.4.

We employ a simple chess-board distance-transformation algorithm
[Borgefors 86] to calculate the distance field, which gives a conservative
estimate of Euclidean distance along non-axis-aligned directions.



�

�

�

�

�

�

�

�

224 11. Voxel-Based Collision Detection for Six-DOF Rendering

4 4 4 4 4 4 4

3 3 3 3 3 3 4

3 2 2 2 2 3 4

2 2 1 2 3 3 4

2 1 1 2 3 4 4

2 1 1 2 3 3 3

2 2 1 2 2 2 3

3 2 2 2 2 3 3

4

4

3

3

3

3

3

3

5

5

5

5

4

4

4

4

0 0

N 0

N-1 N 0

N-1 N 0

N-1 N 0

N-1 N 0

N-1 N 0

N-1 N 0

0

0

0

0

0

0

0

0

...

N

N

Figure 11.4. Voxel-based distance field (in 2D).

VPS supports 2-, 4-, or 8-bit voxels. The smallest positive value(s)
are conventionally reserved for interior voxels, which in Figure 11.4 are
marked 1. The distance field extends out to a user-specified maximum
value, constrained only by the integer range.

Unless noted otherwise, we assume the use of 4-bit voxels in this chapter,
since that is a practical choice for haptic applications in current comput-
ing environments. For 4-bit voxels the outermost positive voxels could be
marked with values up to 15, representing a distance-to-surface of 13 voxels.
However, the hierarchical extension of temporal coherence (Section 11.4.1)
works optimally when the maximum distance-to-surface is matched to the
power of the voxel hierarchy. Using a 512-tree (see Section 11.2.4), with
512 the cube power of 8, the optimum maximum distance-to-surface is 8,
corresponding to voxels marked 10 (since surface voxels are marked 2).
Consequently, values 11 through 15 of the 4-bit range are unused.

The geometrical awareness technique described in Section 11.3 requires
three different types of distance field, based on distance to selected geo-
metrical features (vertex, edge, or face). Each field is independently pre-
computed and packed into a word. For 4-bit voxels, this implies 16-bit
words, where the remaining 4 bits are unused. When discussing voxel
bitwidth, one must be careful to specify whether it refers to the bitwidth
of an individual distance field, or, less rigorously, to the size of the word
required to store all three distance fields. Whenever the expression 16-bit
voxels is used in this chapter, it refers to 16-bit words containing three
distance fields of 4 bits each (The other 4 bits are unused in the standard
implementation).



�

�

�

�

�

�

�

�

11.2. Voxel Data Structures 225

11.2.3 Collision Offsetting

In the tangent-plane force model shown in Figure 11.2, the exact surfaces
of colliding objects are allowed to interpenetrate by voxel-scale distances
during a point-voxel intersection. While this may be acceptable for some
applications, we seek instead to preclude exact-surface interpenetration.
This is done by offsetting the force field outward away from the surface,
and we refer to the voxel layer in which tangent-plane forces are generated
as the force layer. To conservatively avoid exact-surface interpenatration,
one must adopt the second layer of free-space voxels as the force layer,
as shown in Figure 11.5 (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as surface
bounding volumes). Since the distance field extends farther than two layers
into free space, one may move the force layer to even more distant free-
space layers and thereby create a collision-offsetting effect. This is useful
in task simulations where additional clearance is needed but is not formally
modeled, e.g., to allow for human grasp in a part-manipulation task. For
example, a common engineering rule is to design extra clearance into part
removal paths, whenever possible, in order to accommodate tool access
and human grasping and to serve as a cushion against assembly tolerance
buildup. In VPS one can dynamically vary the force layer and thereby
dynamically vary the amount of clearance.

Force-layer offsetting also serves to prevent any spike-like feature in the
static object from generating a linear column of voxels that the pointshell
could completely fail to penetrate for certain orientations of the dynamic
object. The force layer has no such features, because voxel values are
propagated to 26 connected neighbors during the offsetting process.

One might consider extending this scheme to the pointshell. The point-
shell is normally derived from the centerpoints of surface voxels, but a free-
space voxel layer might also be used for that purpose. However, free-space

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

Figure 11.5. Criterion for exact-surface interpenetration.



�

�

�

�

�

�

�

�

226 11. Voxel-Based Collision Detection for Six-DOF Rendering

layers contain more voxels than the surface layer, and VPS performance
degrades as pointshell size increases. For that reason, VPS derives the
pointshell from the surface layer, except in the situation when the user
requests a range of collision offsetting that exceeds what is achievable by
dynamically varying the force layer inside the voxmap object. In that case,
VPS derives the pointshell from the free-space layer that is both nearest
the surface and minimally satisfies the user’s requested range of collision
offsetting.

Despite the static nature of the pointshell as described above, it is pos-
sible to dynamically vary the locations of the points in the pointshell, by
displacing them a short distance along the direction of the surface normal,
either towards free space or towards the interior of the object. This provides
the capability of fine-tuning the amount of collision offsetting. However,
this has the problem that, depending on the direction of displacement and
the local curvature of the surface, the displaced points may spread apart,
creating a looser mesh of points that runs the risk of undetected penetra-
tion. One way to counteract this effect is to select a voxel size for the
pointshell object that is smaller than that of the voxmap object, at the
price of tactically degrading VPS performance.

An interesting application of pointshell displacement is mating-surface
simulation, as illustrated in Figure 11.12(a) for a simple ball-and-socket
scenario. In general, mating-surface simulation is problematic at haptic
speeds, in the absence of kinematical constraints or similar special-case
information, because manifold surface contact is computationally expen-
sive. If mating parts are permanently constrained within a mechanism
for the entire duration of a motion scenario, then kinematical constraints
are certainly appropriate. However, it becomes problematic when kine-
matical constraints may engage or disengage during a simulation. For ex-
ample, if a wrench can be used on a certain type of fastener, then the
simulating system must know that association in advance. Any subse-
quent changes to tool or part geometry are liable to invalidate that associ-
ation. Furthermore, the simulating system must somehow decide when
to engage the constraint and when to disengage it, e.g., by detecting
that the tool is sufficiently aligned with the part to engage the kinemat-
ical constraint. This leads to artifacts such as a mysterious attractive
force that acts to seat the tool whenever it is sufficiently aligned with the
part. Another artifact is a sticky feeling when trying to disengage the
tool. VPS suggests an approach, albeit a computationally expensive one,
to avoid such problems and artifacts by avoiding kinematic constraints
altogether.1

1Developers are still free to create additional constraints on top of the basic VPS
collision detection implementation.



�

�

�

�

�

�

�

�

11.2. Voxel Data Structures 227

1 2 3 4 5

10

20

30

40

50

60

70

M
em

or
y,

 M
B

Exponent, N

(Octree)

140

Figure 11.6. Memory usage of 23N tree as a function of N .

11.2.4 Voxel Tree Storage

A natural next step is to impose an octree organization on the voxels, for
the sake of memory efficiency and scalability. However, the need for a
consistently fast haptic refresh rate is at odds with the variability in the
tree traversal time. This is addressed with a hierarchy that represents a
compromise between memory efficiency and haptic rendering performance.
It is a generalization of octree with a tree depth that is limited to three
levels, explained as follows.

At each level of the tree, the cubical volume of space is divided into 23N

sub-volumes, where N is a positive integer (N is unity for an octree). We
discovered that the most memory-efficient value for N may be at higher
values, depending on the sparseness of the geometry. Figure 11.6 illustrates
a study of the total memory consumed by a 23N -tree as a function of N
for geometry that is typical in aircraft engineering applications. It has a
minimum at N = 3, which might be called a 512-tree.

Tree depth is further limited by fixing both the minimum and maximum
dimensions of the bounding volumes in the tree. The minimum dimension
is the size of voxels at the leaf level, and the maximum dimension is given
implicitly by creating only three levels above the leaf level. The minimum-
size requirement means that smaller features may not be adequately rep-
resented, but we fundamentally accept a global accuracy limitation, anal-
ogous to the practice of accepting a fixed tessellation error in polygonal
surface representations. The maximum-size requirement impacts memory
efficiency and scalability, because one must cover all remaining space with
the largest-size bounding volumes. However, these effects are mitigated by
the use of a 23N -tree, since for a fixed number of levels, higher values of N
increase the dynamic range of the bounding volume dimensions.



�

�

�

�

�

�

�

�

228 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.7. Close-up features of a wiring and hydraulic installation in which
many objects are merged into a single voxmap (shown as semi-transparent cubes).
The voxel size is artificially inflated for illustration purposes.

11.2.5 Merged Scene Voxmap

If it were necessary to separately calculate the interaction force for each
of N environment objects, then the computing burden would grow linearly
with N . However, there is no inherent need to separately compute such in-
teractions on a pairwise basis for objects not moving relative to each other.
For example, there is no need to identify the type of a contacted object
in order to apply different material properties, since all static environment
objects are treated as rigid. Furthermore, under the force-field approach,
objects are never actually contacted in the sense of undergoing surface in-
tersections. Therefore, the voxel representations of all environment objects
can be merged together as if they were a single object, applying straight-
forward precedence rules to merged voxel values and recalculating a voxel
tree for the voxmap. Figure 11.7 shows a static environment in which all
non-moving objects are merged into a single voxmap.

11.3 Geometrical Awareness
Although the approach presented here is voxel-based, voxels may inherit
properties of their parent polyhedral objects at discretization time, which
has great value in culling point-voxel intersections at run time, as explained
below.

To begin, consider the interaction of a pair of rigid non-penetrating
polyhedral objects. Consider their surfaces as a pair of point manifolds
that exhibit an arbitrary (even infinite) number of point intersections (sur-



�

�

�

�

�

�

�

�

11.3. Geometrical Awareness 229

Block 1

Block 2

Figure 11.8. One 2D block rests upon another 2D block (circles represent vertex-
edge contacts).

face contacts) for a given configuration. For physically-based modeling
purposes, the only interesting contacts are those where one or both points
belong to a C1 discontinuity in their respective parent surface. As a sim-
ple 2D example, the only interesting contacts between two blocks are their
vertex-edge contacts, as illustrated in Figure 11.8.

In 3D, only vertex-surface and edge-edge contacts are interesting (“Sur-
face” is understood to include its edge boundaries and “edge” its vertex
boundaries, hence edge-vertex and vertex-vertex contacts are both triv-
ial subsets of edge-edge). We refer to this powerful insight as geometrical
awareness, to adopt the terminology of [Choi and Cremer 00]. This result
is entirely general for non-penetrating polyhedral objects: in particular, it
does not require convexity. One may ignore all surface-surface and surface-
edge contacts, which effectively reduces the problem’s dimensionality and
reduces computational load enormously.

Geometrical awareness can be applied to voxel sampling as follows.
Point samples are taken as the center points of surface voxels. One labels
each point as a vertex, edge, or surface, according to whether its parent
voxel inherited as a priority feature the vertex, edge, or surface attribute,
respectively, from the underlying polyhedral geometry. By “priority fea-
ture” we mean the following priority ordering of feature inheritance. If a
point’s parent voxel intersects (i.e., contains) one or more vertices in the
polyhedral geometry, then the point is labeled as a vertex, even if its voxel
also intersects edge or surface elements. Similarly, an edge point’s voxel
intersects one or more edges, but no vertex; while a surface point’s voxel
intersects one or more surfaces, but neither edge nor vertex.

To more efficiently apply geometrical awareness to point-voxel inter-
actions such as in the tangent-plane force model, three different voxel-
based distance fields are precomputed: towards the nearest surface-, edge-,
and vertex-voxel, respectively, as described below. Thus, one uses sur-
face points to sample the vertex-distance field, vertex points to sample the
surface-distance field, and edge points to sample the edge-distance field.



�

�

�

�

�

�

�

�

230 11. Voxel-Based Collision Detection for Six-DOF Rendering

4 4 4 4 4 4 4

3 3 3 3 3 3 4

3 2 2 2 2 3 4

2 2 1 2 3 3 4

2 1 1 2 3 4 4

2 1 1 2 3 3 3

2 2 1 2 2 2 3

3 2 2 2 2 3 3

4

4

3

3

3

3

3

3

5

5

5

5

4

4

4

4

4 4 4 4 4 4 4

3 3 3 3 3 3 4

3 2 3 3 2 3 4

3 3 1 2 3 3 4

4 1 1 3 3 4 4

3 1 1 3 3 3 3

2 3 1 2 3 2 3

3 2 3 2 3 3 3

4

4

3

3

3

3

3

3

5

5

5

5

4

4

4

4

Figure 11.9. (a) Edge and (b) vertex distance fields.

Figure 11.9 shows edge and vertex distance fields for an arbitrarily shaped
polygonal object.

A known limitation of geometrical awareness is that it is not effective
against manifold contact of 3D edges (e.g., a sword’s edge perfectly aligned
with another sword’s edge). In that case, geometrical awareness prescribes
testing a potentially large number of point-voxel contacts along the linear
region of overlap. It is not clear how to generalize geometrical awareness
so as to address both the common form of edge-edge contact (e.g., swords
crossed at an angle) and the exotic case of edge-edge congruency. Fortu-
nately, the latter almost never occurs in practical scenarios, not even within
the accuracy of a voxel size.

11.3.1 Optimizing Voxel/Polygonal Accuracy

Feature-based distance fields are most effective when the accuracy of the
underlying polyhedral geometry matches voxel accuracy, for the following
reason. As one increases polyhedral accuracy (holding voxel size constant),
one obtains more polygons of smaller dimensions, which increases the likeli-
hood that a given voxel will contain a vertex and/or an edge. That increases
the number of vertex-surface and edge-edge interactions at the expense of
surface-surface interactions, which tends to defeat geometrical awareness
and degrade performance. To compound matters, polyhedral accuracy is
typically much better than voxel accuracy. Often it is decided casually,
e.g., in the process of exporting it from a CAD system, oblivious to voxel
size.

For best results, therefore, polyhedral accuracy must be reduced to
voxel accuracy. We accomplish this through a process similar to decima-
tion,2 at voxelization time, as follows. First, tessellate the polyhedral facets

2Note that polygon decimation does not change an object’s voxelization.



�

�

�

�

�

�

�

�

11.4. Temporal Coherence 231

into triangles. Then, if any pair of adjacent triangles has the property that
its non-shared vertices deviate from coplanarity by less than 1/2 voxel size,
and also if their polyhedral angle is less than 90 degrees, then that pair of
triangles is treated as a single quasi-planar quadrilateral for voxelization
purposes. Otherwise, if those criteria are not met, then the pair of trian-
gles remains dissociated. This process is repeated by considering triangles
adjacent to a quasi-planar quadrilateral, which may lead to a quasi-planar
pentagon, etc. After all triangles have been so processed, distance fields are
constructed from the features of the resulting quasi-planar polygons. The
90-degree polyhedral-angle criterion prevents small curved objects (such
as a sphere with diameter less than a voxel size) from being reduced to a
single planar polygon.

11.4 Temporal Coherence
The voxel sampling method provides a natural opportunity for exploiting
spatial and temporal coherence, or temporal coherence in short. This is
done by tracking and predicting the status of points in the pointshell of
the dynamic object. A point that contacted a surface voxel in the previous
frame is likely to remain in contact in the current frame.

Whenever a point samples its appropriate voxel-based distance field, it
obtains a conservative estimate of its minimum distance from any contact.
If we also know the point’s maximum speed, then by dead reckoning we
can predict how many frames will elapse before contact can possibly occur,
which allows us to safely reduce the frequency of point sampling. Hence,
the pointshell may contain more points than could possibly all be tested
in a single haptic frame, and since the pointshell is derived from surface
voxels, this enables the use of smaller voxels and greater spatial accuracy.

This requires knowing a point’s maximum speed, but the latter is for-
mally unlimited. A more serious problem is that the known speed may be
so large that the available processing power cannot keep up with the bur-
den of predicting contact for all free-space points. To solve these problems,
we impose a speed limit that applies to all points. For this purpose we
denote the maximum distance that any point may travel in a haptic frame
as MaxTravel. In general, MaxTravel is adjusted on a frame-by-frame basis,
because it varies inversely with the number of points that require testing
during that frame. As the amount of contact and near-contact increases,
more point tests become necessary. It is mandatory to test points that
were in contact in the previous haptic frame. However, free-space points
may be scheduled for testing at a reduced frequency.

MaxTravel has an absolute upper bound of 1/2 voxel size, in order to
prevent points from skipping over the penalty-force region of surface voxels



�

�

�

�

�

�

�

�

232 11. Voxel-Based Collision Detection for Six-DOF Rendering

and penetrating into the object’s interior. Since the time duration of hap-
tic frames is constant, MaxTravel is equivalent to a speed constraint. This
expresses itself at the haptic interface as a viscous-like resistance whenever
the virtual-world speed tries to exceed MaxTravel per haptic frame. For
example, consider a scenario modeled using 2 mm voxels and a 1000 Hz
haptic refresh rate. A maximum speed of 1/2 voxel per millisecond is 1 me-
ter/second. This corresponds to user motion of roughly one arm’s length
per second, which is unrealistically fast in the context of any application
that involves manipulating objects with careful intent. In this simple ex-
ample, therefore, the MaxTravel constraint has negligible impact at the
haptic interface. However, in a more complete analysis (1) the speed con-
straint applies to every point on the object’s surface, which generates a
more complicated constraint on the object’s overall translational and ro-
tational velocities, (2) any spatial scaling between the virtual world and
the haptic interface must be considered, and (3) MaxTravel may be smaller
than its absolute upper bound of 1/2 voxel, as calculated below:

MaxTravel =
nCapacity − nMandatory∑ ni

0.5s·i
, (11.1)

where nCapacity is the number of point tests that the processor can per-
form per haptic frame, nMandatory is the number of “mandatory” tests
(for points already in contact), ni is the number of points in free space at
i voxels (i > 0) from contact, and s is voxel size. If Equation (11.1) yields
MaxTravel < 0.5s, then we limit MaxTravel to its absolute upper bound
of 0.5s. The value of 0.5s is used here because it represents the minimum
possible distance from the center of a voxel to a neighboring voxel.

The worst case is that of more mandatory tests than can be performed,
in which case MaxTravel in Equation (11.1) becomes zero or negative and
further motion becomes impossible. Whenever this happens, VPS is un-
able to meet the user-requested time constraint, in which case it tests all
mandatory points and abandons any attempt to maintain time criticality.
However, in practice, geometrical awareness (Section 11.3) so sharply re-
duces the number of points in contact that we have rarely encountered this
worst-case situation during a series of complex real-world task simulations.

Point status is tracked and updated using a mechanism called distance-
to-contact queues. All points that currently have the same distance-to-
contact value are considered to belong to the same value-specific queue.
However, those points beyond the range of the distance fields belong to the
same queue as those lying at a distance of exactly one voxel beyond that
range. Therefore, ni in Equation (11.1) is the number of points in queue i.
(With 4-bit distance fields, the number of queues is 16.) In general, there
will not be enough processing power to test the entire contents of each
queue during the current haptic frame, but it is only necessary to test the



�

�

�

�

�

�

�

�

11.4. Temporal Coherence 233

entire contents of the mandatory-point queues, plus the following number
of points mi of each free-space queue i:

mi = MaxTravel · ni

0.5s · i , (11.2)

where mi is rounded up to the nearest integer. In all mi points are tested
per frame in round-robin fashion for each queue individually. This ensures
that no point may travel into penetration undetected, i.e., before being
retested. Whenever a point is retested, its distance-to-contact value may
change, which then causes the point to migrate to a different queue. We
make the assumption, borne out by observation, that MaxTravel varies
so slowly with time that it may be considered constant while a point is
waiting for retesting. In fact, MaxTravel tends to be conservative, because
its value typically decreases with time whenever objects are approaching
contact.

The distance-to-contact queues are implemented as follows. Each queue
is a bitmapped representation of the entire pointshell. Each point is rep-
resented as a one bit in just one of the queues, and for all other queues
the bit at this same address is zero. During each haptic frame, a fraction
of each queue’s contents is traversed in order to satisfy the minimum sam-
pling frequency. Whenever a one bit is encountered, its associated point is
sampled.

Under this implementation, distance-to-contact queues become quite
sparse. To accelerate their traversal, each queue is ordered into a two-
level hierarchy. The leaf level contains individual bits of the queue, while
the upper level contains bits that are one whenever any of its 32 leaf-
level children are one. This enables the skipping of entire 32-bit runs
of zero bits. When ni is zero, the entire queue is empty and may be
skipped. While it may not be obvious that this implementation is prefer-
able to more sophisticated point-scheduling schemes that can be imagined,
in fact it yielded higher performance than several alternatives that were
explored.

Temporal coherence conveys an important, if unexpected, benefit for
haptic stability. Under virtual coupling rendering (see Section 11.5), the
most likely source of instability is large transient movements of the dy-
namic object. However, MaxTravel inherently prevents large transient
movements. Stability is a very complex topic, and there are many other
possible sources of instability (e.g., limit-cycle oscillations, overly stiff vir-
tual systems, unpredictable user-applied forces, device limitations, etc.).
See Chapter 7 for a thorough treatment. However, empirically, the stabil-
ity benefit from MaxTravel has enabled perfectly stable haptic operation
for all scenarios that were ever tested.



�

�

�

�

�

�

�

�

234 11. Voxel-Based Collision Detection for Six-DOF Rendering

11.4.1 Hierarchical Temporal Coherence

Since the pointshell is derived from the centroids of surface voxels, it in-
herits the spatial hierarchy of its parent voxel tree. All points that came
from the same “chunk” of the voxel tree (the first level above leaf level)
are assigned to contiguous bit addresses in the distance-to-contact queues.
Then, whenever the entire chunk’s worth of points is known to lie in free
space, we may remove all such points from their queues and continue track-
ing only the chunk’s distance-to-contact, e.g., by testing the chunk’s cen-
troid against the surface distance field. (Since the chunk’s contents may be
marked with a mixture of surface, edge, and vertex attributes, we must test
against the most conservative distance field, which is the surface distance
field.) This greatly reduces the point-testing burden, since in a 512-tree, a
chunk contains about 100 points on average.

One may learn whether a chunk’s entire point contents lie in free space
as follows. Chunks are marked with a discretized distance-to-contact value
in the same manner as voxels, thereby creating a chunk-level distance field.
The pointshell-object’s chunk centroid is then used to sample the static-
object’s chunk-level distance field, in precisely the same manner as point-
voxel sampling. If such a test reveals that a chunk lies beyond the space
spanned by voxel-level distance fields, then that chunk is considered to lie
entirely in free space, and chunk-level temporal coherence is applied. On
the other hand, if a previously free-space chunk enters the space spanned by
voxel-level distance fields, then its contents are disgorged and re-inserted
into the point queues. (The cost of such transitions may be greatly reduced
by exploiting the fact that the points have contiguous bit addresses.)

Point sampling and chunk-centroid sampling behave identically in all
respects except the following. Contact is re-defined to mean that the chunk
enters the space spanned by voxel-level distance fields, as described above.
Every chunk that lies in that space is considered to occupy a mandatory
chunk queue. MaxTravel is modified straightforwardly in Equation (11.1)
by augmenting nMandatory with a chunk-specific contribution and also ex-
tending the summation over queues to include the new chunk-level queues.

11.4.2 Point Drifting

As a significant performance optimization, one may reduce the frequency of
voxmap look-up during point testing, as follows. Whenever voxmap look-up
becomes necessary (as explained below), the point’s current exact spatial
position is stored, along with its current voxel-accurate distance-to-contact
(as discovered through voxmap look-up and expressed implicitly by the
point’s distance-to-contact queue number). Subsequently, whenever that
point falls due for testing under temporal coherence, one first computes
its point drift, defined as the exact distance between its current position



�

�

�

�

�

�

�

�

11.4. Temporal Coherence 235

and its previously stored position. If so much drift has occurred that the
point may be “too near contact” (as defined below), then voxmap look-
up becomes necessary and drifting begins anew. Otherwise, if the amount
of drift is not so great, then voxmap look-up is avoided, and the point is
allowed to continue drifting. The criterion for being “too near contact”
is that the point could possibly have drifted as much as two queues away
from contact. In principle, one could more aggressively wait until it was
only one queue from contact, but we elect to have a one-queue margin of
safety.

When a point begins drifting, it stays in its initial distance-to-contact
queue until the amount of drift is more than a voxel size. Whenever
re-queueing becomes necessary, we conservatively assume that the point
moved nearer to contact, i.e., to a lower-numbered queue. That incremen-
tally increases the frequency of testing, but empirically, each test suddenly
becomes about seven times faster by avoiding voxmap look-up. This seven-
fold advantage decreases as drifting proceeds, becoming minimal when the
point drifts as near as two queues from contact, but when that happens,
the point is retested subject to voxmap look-up and properly requeued,
and drifting begins anew. The net performance benefit of point drifting
depends in a complicated way on the motion scenario, but typically it is
several-fold.

11.4.3 Dynamic Pre-Fetching of Voxel Data

It may easily happen that there is insufficient system memory to hold all
voxel data for a given scenario, especially for large-scale scenarios and/or
small voxel sizes. Under 32-bit operating systems the addressing limit is
4 GB, which is often reduced further to 3 GB or 2 GB. While virtual mem-
ory is a good solution for non-time-critical applications, it is fundamen-
tally incompatible with time-critical haptics. Just-in-time memory pag-
ing causes highly distracting force discontinuities or even haptic-controller
timeouts. To avoid such adverse effects, one needs a predictive memory-
paging scheme. This is implemented in a dual-thread scheme that supports
time-critical operation at haptic rates in one thread, coupled with dynamic
pre-fetching of voxel data in the other thread.

A convenient way to implement dynamic pre-fetching is to integrate it
with chunk-level temporal coherence, as described in Section 11.4.1. The
latter includes probing the space that lies beyond the space spanned by
voxel-bearing chunks in the static distance fields. Consequently, one can
readily detect when a given chunk of the dynamic object has reached a
distance of one chunk size away from any voxel-bearing chunk(s) in the
static distance fields. Whenever that happens, one immediately switches
level-of-detail representations in the dynamic object, from using the chunk’s



�

�

�

�

�

�

�

�

236 11. Voxel-Based Collision Detection for Six-DOF Rendering

centroid, to using its constituent points. To extend that mechanism to
dynamic pre-fetching, simply treat such representation-switching events as
requests that voxel-bearing chunk(s) of the static distance fields should be
fetched into real memory, if necessary. A separate thread can then perform
such fetching in time to satisfy access by the haptic thread.

There is no way to guarantee that a pre-fetching thread can always
act fast enough to satisfy the haptics thread, depending on the speed of
the hard drives, scenario complexity, the backlog of pre-fetching requests,
size of MaxTravel compared to chunk size, etc. To cover all such con-
tingencies, we allow the haptics thread to be temporarily suspended as
needed, to allow the pre-fetching thread to catch up. During a state
of suspension, MaxTravel is set to zero, and no forces are sent to the
haptic interface. The duration of any suspension is limited to two sec-
onds, after which the simulation is terminated. Empirically, even with
the largest scenarios tested, such suspensions occur so rarely and/or have
such brief duration that they proved imperceptible. Furthermore, there
was no test scenario that was prematurely terminated by the two-second
timeout.

This mechanism was not extended to hyperchunks, nor was temporal
coherence extended to hyperchunks, on the grounds that the complexity of
such an extension seemed to outweigh its potential benefits

11.5 Rendering with Virtual Coupling

[McNeely et al. 99] integrated the voxel-based collision detection algorithm
in an impedance-type rendering algorithm, in which user motion is sensed
and a force/torque pair is produced. The algorithm adopts for stability
purposes the virtual coupling scheme, explained in Chapters 7 and 8.

The motion of the dynamic object(s) is expressed using the Newton-
Euler equation, as discussed in Section 8.4.1, and discretized with a con-
stant time step ∆t corresponding to the time between force updates, e.g.,
∆t = 1 msec for 1000 Hz haptic refresh rate. The dynamic object is
assigned a mass m equal to the apparent mass one wants to feel at the
haptic handle (in addition to the haptic device’s intrinsic friction and in-
ertia, and assuming that its forces are not yet saturated). The net force
and torque on the dynamic object are the sum of contributions from the
spring-damper virtual coupling; stiffness considerations, explained in Sec-
tion 11.5.1; and precontact braking force, explained in Section 11.5.2. [Wan
and McNeely 03] also showed how to integrate the voxel-based collision de-
tection algorithm with a quasi-static approximation of the virtual object.



�

�

�

�

�

�

�

�

11.5. Rendering with Virtual Coupling 237

11.5.1 Virtual Stiffness Considerations

When the virtual object is in resting contact with the half-voxel-deep force
field described by stiffness Kff , we want to prevent the user from stretching
the spring so far as to overcome the force field and drag the dynamic object
through it. The spring force is clamped to its value at a displacement of
s/2, where s is the voxel size. In the worst case, this contact force is
entirely due to a single point-voxel interaction, which therefore determines
an upper limit on the spring force. This can be viewed as a modification of
the god-object concept [Zilles and Salisbury 95], in which the god-object
is allowed to penetrate a surface by up to a half voxel instead of being
analytically constrained to that surface.

Whenever many point-voxel intersections occur simultaneously, the net
stiffness may become so large as to provoke haptic instabilities associated
with fixed-time-step numerical integration. To cope with this problem, we
replace the vector sum of all point-voxel forces by their average, i.e., divide
the total force by the current number of point-voxel intersections, N . This
introduces force discontinuities as N varies with time, especially for small
values of N , which degrades haptic stability. We mitigate this side effect
by deferring the averaging process until N = 10 is reached:

FNet = FTotal, if N < 10. (11.3)

FNet =
FTotal

N/10
, if N ≥ 10. (11.4)

And similarly for torque. Kff is adjusted to assure reasonably stable nu-
merical integration for the fixed time step and at least 10 simultaneous
point-voxel intersections. While this heuristic leads to relatively satis-
factory results, it is worth investigating a hybrid of constraint-based and
penalty-based approaches that formally addresses both the high-stiffness
problem and its dual of low stiffness but high mechanical advantage. Forc-
ing an object into a narrow wedge-shaped cavity is an example of the latter
problem.

Dynamic simulation is subject to the well studied problem of non-
passivity, which might be defined as the unintended generation of excessive
virtual energy [Adams and Hannaford 98, Colgate et al. 93a]. In a hap-
tic system, non-passivity manifests itself as distracting forces and motions
(notably, vibrations) with no apparent basis in the virtual scenario. Non-
passivity is inherent in the use of time-sampled penalty forces and in the
force discontinuity that is likely to occur whenever a point crosses a voxel
boundary. Another potential source of non-passivity is insufficient physical
damping in the haptic device [Colgate et al. 93a]. Even a relatively passive
dynamic simulation may become highly non-passive when placed in closed-
loop interaction with a haptic device, depending on various details of the



�

�

�

�

�

�

�

�

238 11. Voxel-Based Collision Detection for Six-DOF Rendering

haptic device’s design, its current kinematic posture, and even the user’s
motion behavior.

The most direct way to control non-passivity is to operate at the highest
possible force-torque update rate supported by the haptic device, which
was 1000 Hz in the experiments. Then, Kff can be determined empirically
using the largest value with stable operation over the entire workspace of
the haptic device. In free space, we apply zero force and torque to the haptic
device (overriding any non-zero spring values). A free-space configuration
is trivially detected as every point of the dynamic object intersecting a
free-space voxel of the environment.

11.5.2 Pre-Contact Braking Force

The treatment of spring-force clamping in Section 11.5.1 ignored the fact
that the dynamic object’s momentum may induce deeper instantaneous
point-voxel penetration than is possible under resting contact, thereby
overcoming the force field. Instead of attempting to avoid this outcome
in every instance, we generate a force in the proximity voxel layer that
acts to reduce the point’s velocity, called the pre-contact braking force. In
order to avoid a surface stickiness effect, the force must only act when the
point is approaching contact, not receding from a prior contact. To deter-
mine whether the point is approaching or receding, consult its associated
inward-pointing surface normal, n̂i, and then calculate the force:

Fi = −bvi (−n̂i · v̂i) , if n̂i · v̂i < 0. (11.5)
Fi = 0, if n̂i · v̂i ≥ 0. (11.6)

The coefficient b is a “breaking viscosity,” vi is the velocity of the ith point
in the pointshell, and v̂i is a unit vector along vi.

As a simple heuristic, therefore, adjust b so as to dissipate the ob-
ject’s translational kinetic energy along the direction of approaching con-
tact within one haptic cycle:

b =
1
2mv

2/∆t
v
∑

i vi (−n̂i · v̂i)
, (11.7)

where m and v are the dynamic object’s mass and velocity component
along

∑
Fi, respectively, and the sum over i is understood to traverse only

points for which n̂i · v̂i < 0. Calculating a braking torque would be similar
in form to the translational braking viscosity equation above.

A weakness of the braking technique is that an individual point’s veloc-
ity may become so large that the point skips over the proximity voxel in a
single haptic cycle, or even worse, over all voxels of a thin object. We call
this the tunneling problem. This is particularly likely to happen for points



�

�

�

�

�

�

�

�

11.6. Applications and Experiments 239

of a long dynamic object that is rotated with sufficient angular velocity.
One possible solution is to constrain the dynamic object’s translational and
angular velocities such that no point’s velocity ever exceeds s/∆t.

11.5.3 Multiple Moving Objects

So far we have discussed voxel-based collision detection for environments
with a single collision pair—a moving object (pointshell) and combined set
of non-moving objects (voxmap). The pair-wise collision detection tech-
nique can be extended to multiple moving objects by computing the rel-
ative motion between the two moving objects and applying it to just one
of them, while holding the other object stationary. Although both objects
are moving as far as the dynamic equations of motion are concerned, for
the collision detection step only, one object will appear to be moving and
the other stationary.

As mentioned earlier, performance of voxel-based collision detection de-
pends on the number of points in the pointshell object, which means the
“moving” object should be chosen to be the smaller of the two for each col-
lision pair. After the “moving” object and “stationary” objects have been
determined, the relative positions and velocities are computed and the in-
verse of the current transformation matrix of the larger, “stationary” object
is applied to both objects to temporarily place the larger object in its ini-
tial voxelized location and the other object in the proper relative location.
This step effectively converts the problem from two moving objects into
one with a single moving object and one stationary object, at which point
the standard voxel-based collision detection process takes place. Once the
resultant reaction force and torque vectors have been calculated, they are
transformed back into the moving object coordinate system and applied to
the smaller object, while the negative of the force and torque vectors are
applied to the larger object.

11.6 Applications and Experiments
The 6-DOF haptic rendering algorithm using voxel-based collision detection
was originally designed for engineering applications based on virtual mock-
ups at Boeing. The problem of simulating real-world engineering tasks—for
example, objectives like design-for-assembly and design-for-maintenance—
has been exacerbated by the modern transition from physical mockup to
virtual mockup. Physical mockup provides natural surface constraints that
prevent tools and parts from interpenetrating, whereas virtual mockup re-
quires the user to satisfy such constraints by receiving collision cues and
making appropriate body postural adjustments, which is usually tedious



�

�

�

�

�

�

�

�

240 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.10. User with the 6-DOF haptic device.

and may yield dubious results. In order to emulate the natural surface
constraint satisfaction of physical mockup, one must introduce force feed-
back into virtual mockup. Doing so shifts the burden of physical constraint
satisfaction onto a haptic subsystem, and the user becomes free to concen-
trate on higher-level problems such as path planning and engineering rule
satisfaction. Tool and part manipulation inherently requires 6-DOF hap-
tics, since extended objects are free to move in three translational and three
rotational directions. Figure 11.10 shows an example of the rendering sys-
tem in 1999 [McNeely et al. 99] using a PHANTOMTM Premium 6-DOF
Prototype from SensAble Technologies.

This section starts with a description of the actual system used for
experiments at Boeing, then discusses results from the experiments, and
finally gives details on other applications, like collaborative virtual envi-
ronments or haptic control of human models.

11.6.1 Implementation

The initial version of VPS [McNeely et al. 99] has been used at Boeing
for several years to analyze many types of complex, real-world engineering
problems, but it was limited by the total number of points allowed in
moving objects. The enhanced version of the VPS method described in this
chapter has been implemented in applications that now allow the analysis
of even more complex systems with increased accuracy. We will begin by
describing the haptics development environment.



�

�

�

�

�

�

�

�

11.6. Applications and Experiments 241

We have used a variety of architectures for experimentation and proto-
typing, using either one or two computers. For production use, the VPS
collision detection and force generation algorithms were implemented in a
separate computer called the Haptic Controller, using a client-server model.
Our choice for this approach was driven by the mismatch between the
computing requirements of physically based modeling and the available
workstations used by typical engineering departments. Physically based
modeling has these characteristics:

• Computationally intensive—dual CPUs are best, so one can be de-
voted to haptics and the other to secondary tasks.

• Large amounts of memory (RAM) are required.

• Large amounts of available high speed disk space are needed to save
voxel data.

Production workstations generally have these characteristics:

• A single CPU;

• Modest amounts of memory;

• Computation is already taxed by graphical rendering;

• Memory fills with data representations optimized for graphical ren-
dering;

• Local disk space may be lower speed or inaccessible;

• OS and application software installation is tightly controlled by IT
department.

The mismatch between requirements and existing hardware is solved by
putting the haptic process on a PC that is devoted to haptic processing.
The haptic device (or other type of input device) is then connected to this
PC as shown in Figure 11.11. The Haptic Controller PC is connected to
the client workstation via Ethernet and TCP/IP. If the PC is given an
IP address on the same subnet as the workstation, connecting them via a
switch minimizes bandwidth contention and allows them to communicate
at 100 Mbit/second, regardless of the production network connection speed
available to the workstation (often much slower). The Haptic Controller
PC has no visual interaction with the user and need not have an associated
monitor. The Haptic Controller supports a variety of interaction devices,
including various models of the PHANTOM haptic device, 6-DOF Space-
ball (and similar) devices with no force feedback, and a 2-DOF mouse with
no force feedback.



�

�

�

�

�

�

�

�

242 11. Voxel-Based Collision Detection for Six-DOF Rendering

C
o

m
p

u
ter 1

C
o

m
p

u
ter 2

Ethernet
Switch

Ethernet connection

Logical connection
Haptic Device

API

Interface
    App

API

Controller
     App

Figure 11.11. Haptic Controller configuration.

Within the Haptic Controller, one thread is devoted to collision de-
tection and force generation, and a second thread handles communication
tasks with the client and pre-processing. When the Spaceball is used, a
third thread receives updates from it.

The Haptic Controller provides these services to the client: voxeliza-
tion, transparently caching voxel data for later reuse, managing the haptic
device, and supplying updated positions of the goal and moving objects
on demand. An API is supplied for use by the host application. The
API is designed to minimize the intrusion into the host application. The
Haptic Controller has been used with two applications: FlyThru R© [Abar-
banel and McNeely 96], a Boeing-proprietary visualization system used for
design reviews, and a prototype application used for investigating collab-
orative haptics. The results reported here were obtained with FlyThru.
FlyThru was designed to handle large amounts of geometry and includes
rendering optimization for the special case of a fixed eye point with a small
amount of moving geometry. This optimization is important because it al-
lows the environment to be rendered in full detail during haptic interaction
at responsive frame rates.

High-speed hard drives are desirable for the Haptic Controller for the
sake of dynamically pre-fetching voxel data (Section 11.4.3). Empirically,
hard drives with higher data transfer rates (like 10K–15K RPM SCSI
drives) are more likely to meet pre-fetching demands for large-scale scenar-
ios. If lower-speed hard drives are used, then haptic force quality acquires
a rough and viscous feeling whenever two objects make contact for the first
time, due to the fact that MaxTravel is set to zero while waiting for voxel
data to appear in memory.

11.6.2 Experiments

The high-performance haptic rendering system was implemented on Linux R©,
Microsoft Windows R©, and SGI IRIX R©. The performance results in the
following discussion were obtained using a two-processor 2.8 GHz Xeon PC
with 2 GB of RAM running Windows XP. Haptic rendering is performed



�

�

�

�

�

�

�

�

11.6. Applications and Experiments 243

Figure 11.12. Models used for testing. (a) Ball and socket model. (b) 777 main
landing gear (with dynamic object).

on one processor to provide updated force and torque information to the
haptic device and read position and orientation of the haptic handle in a
closed-loop control system running at 1000 Hz. Force feedback is provided
by a PHANTOM R© Premium 1.5/6-DOF haptic interface made by Sens-
Able Technologies, Inc. The host graphics application for these experiments
was FlyThru, as discussed above.

VPS provides the capability to crudely simulate mating-surface scenar-
ios without using kinematic constraints. This is illustrated here for the
simple scenario of a ball that may be rotated in a cradle-like socket (Fig-
ure 11.12(a)). This example illustrates a worst-case scenario where a large
amount of object-to-object contact occurs. In this case, the ball is the
pointshell object, and its points are displaced by half a voxel toward the
interior of the ball, in order to allow the ball to seat fully with the socket.
For this scenario we measure VPS performance in terms of the time re-
quired for a full rotation of the ball. With a radius of 25 mm and a voxel
size of 0.35 mm, this takes 1.28 seconds on a 2.8 GHz processor. The
speed of rotation is limited by MaxTravel, which is determined by voxel
size and processor speed. In this scenario there are, on average, 250 points
in contact at all times.

Figure 11.12(b) shows the 777 Main Landing Gear used here as an
example of a large dataset for maintenance analysis tasks. The overall
dimensions of this dataset are approximately 4.1×1.9×4.8 m. The dynamic
object chosen for testing is a large hydraulic actuator near the bottom of
the scene that measures 0.9 × 0.2 × 0.2 m. For this test scenario, the user
interacts with the environment by removing the dynamic object from its
installed position. Simulation accuracy was adjusted over multiple tests by
varying the voxel size.



�

�

�

�

�

�

�

�

244 11. Voxel-Based Collision Detection for Six-DOF Rendering

Scenario Voxel Size Voxelization Loading
(mm) Time (sec) Time (sec)

Ball-Socket 0.35 5.8 1.7

Ball-Socket 0.15 21.5 7.0

Landing Gear 1.0 / 2.5 1353 333

Landing Gear 0.7 / 1.25 5861 1355

Scenario Dynamic Object Static Environment
Triangles Points Triangles Voxels

Ball-Socket 2048 23960 2176 5.91e5

Ball-Socket 2048 130688 2176 3.11e6

Landing Gear 40476 528653 2.76e6 4.59e8

Landing Gear 40476 1.14e6 2.76e6 1.78e9

Table 11.1. Virtual scenario measurements.

Table 11.1 collects the parameters of the dynamic objects and the static
environments in each of the above two scenarios, in which our goal was able
to maintain a 1000 Hz haptic refresh rate. Each scenario was evaluated
twice, once with a relatively large voxel size and once with a small voxel
size in relation to the overall dimensions of the scene. The table includes the
sampling resolution (voxel size), numbers of triangles, number of sampling
points in each dynamic object, numbers of triangles, and number of voxels
in each static environment.

Figure 11.13 shows additional voxelization data for the landing gear
model in Table 11.1. From this data we can determine that voxelization
time is inversely proportional to the square of the voxel size.

One cannot straightforwardly assess the relative performance benefits
of geometrical awareness and temporal coherence, since they depend sensi-
tively on the motion scenario. However, one may directly compare the cur-
rently attainable accuracy (as represented by voxel size) against what was
attainable before the advent of algorithmic enhancements such as geomet-
rical awareness and temporal coherence. The maximum number of points
that VPS could process in 1999 was reported as 600 [McNeely et al. 99].
Currently there is no formal limit, but up to 1M points were readily at-
tainable and usable in 2005. We must also account for the fact that CPU
speeds increased about 8-fold from 1999 to 2005. Consequently, 1M points
was equivalent to 125,000 points in 1999, which yields a 200-fold increase
due to algorithmic improvements. Since the number of points varies in-
versely as the square of voxel size, a 200-fold increase in pointshell capacity
corresponds to a 14-fold improvement in accuracy due to VPS algorithmic
enhancements alone. Combining this with the CPU-speed increase, there
was a net 40-fold improvement in accuracy from 1999 to 2005.



�

�

�

�

�

�

�

�

11.6. Applications and Experiments 245

0 1000 2000 3000 4000 5000 6000
1

1.5

2

2.5

3

3.5

4

4.5

5

Voxelization Time, s

V
ox

el
 S

iz
e,

 m
m

Figure 11.13. Voxelization time comparison.

Throughout testing, we paid particular attention to motion behavior
and quality of force and torque feedback. Artificial viscosity caused by
MaxTravel (Section 11.4) was evident, especially at smaller voxel sizes,
whenever objects were in contact, or nearly so. However, both force and
torque feedback are distinctly helpful to performing task simulations.

These results are from experiments performed in a single user environ-
ment, but the performance should be nearly identical in the multi-user
environment, since each user will be running an identical simulation (with
a small amount of communications-related overhead).

11.6.3 VPS-Based Collaborative Virtual Environments

In addition to building VPS-based applications with multiple constrained
and unconstrained moving objects, VPS has also been integrated for colli-
sion detection and response in a multi-user environment for collaborative
6-DOF haptics. The types of haptically enabled collaborations under in-
vestigation include design reviews, maintenance access, and training.

Implementing a collaborative virtual environment (CVE) with multiple
simultaneous haptic users becomes more difficult when users are located at
geographically separate sites. Haptic interaction is very sensitive to syn-
chronization delays produced by communication over large distances. In or-
der to maintain haptic stability while minimizing the impact on interactive
performance, the application needs to be designed with time delay com-
pensation in mind. We address the delay issue by using peer-to-peer com-
munication and a multiuser virtual coupling configuration. Figure 11.14



�

�

�

�

�

�

�

�

246 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.14. Haptic-enabled collaborative virtual environment.

shows the collaborative virtual environment application for maintenance
access analysis at Boeing.

The peer-to-peer architecture synchronizes the CVE without a central
server.3 Each user is running a separate simulation of the environment,
in which models and motions are synchronized with the other users. The
implementation uses TCP packets between the front-end graphical interface
and UDP packets between haptic controllers. The system supports active
users with haptics and non-haptic devices, as well as passive (visual only)
users. A user can enter and leave the simulation environment at any time
without impacting the other users.

The two main types of collaborative tasks that we have focused on are
those involving: (1) each user controlling separate objects, and (2) multiple
users controlling the same object. We will refer to these as type-1 and type-
2, respectively. Both have the same type of infrastructure with respect to
data and model synchronization, network connections, and device control.
There are some significant differences, as well.

The first type (control of different objects) has the pair-wise collision
checking requirements discussed in Section 11.1, but with the added re-
quirement that users be aware that a voxel size mismatch between users
will produce an asymmetric force response. A user with a smaller voxel
size than other users will create an imbalance in contact forces between
objects. This allows user A’s pointshell object to contact user B’s voxmap
and generate repulsive forces before B’s pointshell object makes contact
with A’s voxmap. This gives the user with the smaller voxels an enhanced
ability to push/pull other users around without being affected equally by

3The collaborative architecture is peer-to-peer and should not be confused with the
Haptic Controller architecture, which uses a client server model.



�

�

�

�

�

�

�

�

11.6. Applications and Experiments 247

Haptic Handle
            User 2Dynamic Object 1

Haptic Handle
User 1

Dynamic Object 2
Virtual
Coupling

Figure 11.15. Multi-user connection model using virtual coupling elements.

their interactions. Although the exact nature of this imbalance is probably
unique to voxel-based haptics, this type of condition is a common problem
in collaborative systems without centralized management—for example, in
a multi-player video game users can cheat by modifying the local front-
end interface to give themselves special powers. In general, collaborative
haptics applications will have asymmetric behavior if force calculation pa-
rameters are not the same for all users.

The second type of collaboration (users controlling the same object)
requires a new type of coupling connection. For the multiuser case, the
virtual coupling model was extended to connect the instances of the object
that all users control. Since each user is running an independent simula-
tion, there is an instance of the object independently calculated for each
simulation. Coupling effects from the other instances of the object act as
additional external forces on the local dynamic simulation of each object
instance. Figure 11.15 shows this connection for a two-user arrangement.

The multi-user virtual coupling effectively creates an environment for
bilateral teleoperation of multiple haptic (or robotic) devices, with the
addition of collision detection and response from objects and constraints in
a virtual environment. One of the interaction drawbacks of this method is
the potential for divergence of the multiple object instances. This can occur
when another object (like a thin wall) gets trapped between the instances
of the dynamic object.

Another interesting finding for both of these approaches to collabora-
tion is that the haptic devices and dynamics simulations remain stable
when force information from the other users is transmitted at rates be-
low 1000 Hz. The systems were functionally stable when external force
updates from the other users were received at 100 Hz. Note, each user’s
local simulation was still maintained at 1000 Hz to keep numerical integra-
tion and haptic loops stable. A combined environment that simultaneously



�

�

�

�

�

�

�

�

248 11. Voxel-Based Collision Detection for Six-DOF Rendering

allows both types of interaction presents some interesting response possi-
bilities. For example, what happens when two users are controlling one
object (type-2) and then a third user joins the environment and controls
another object (type-1)? In addition to feeling bilateral forces from each
other, the first two users will see and feel contact interaction with the third,
as expected with type-1 contact. From the third user’s point of view, he
or she will see and interact with what appears to be a single instance of a
moving object—unless the users controlling that object enter into a diver-
gent condition. One option for dealing with this situation is to allow user 3
to see and interact with both instances of that object. How well this works
from a usability standpoint is still unknown.

In addition to multiuser interaction issues, time delay compensation is
another major concern in collaborative virtual environments. Time delay
is especially problematic when users are located at geographically separate
sites. It is less critical for the type-1 collaboration, where the noncoupled
users may not be aware of the delay—at least not initially. They will still
see the other users’ objects moving and instantly feel forces when they make
contact with those objects. The delay becomes apparent when objects have
continuous contact. Although local contact forces are felt immediately, the
reaction of the other user’s object to the contact is delayed. A similar
delayed reaction occurs when the contact is removed. Fortunately, this
delay does not appear to destabilize the simulations. But that is not the
case for type-2 collaboration.

When multiple users simultaneously control the same object, time delay
can cause the haptic devices to become unstable. For this situation, we have
implemented a method for linking the current value of the time delay to the
stiffness gains in the cross-user virtual coupling. A linear reduction of the
stiffness for delays up to one second appears to keep both simulations stable.
Gain values have been determined experimentally, but a more theoretical
basis for gain selection is desirable.

11.6.4 Haptic Control of a Human Model

The voxel-based rendering framework has also been used for controlling a
simplified human model with multibody dynamics (see Figure 11.16). As
described in [Troy 00], an articulated human figure is defined by a multi-
body dynamics model, and its limb motions are interactively controlled by
a haptic device. This type of system allows more natural interaction modes
when manipulating the human figure in a virtual environment, for example
when trying to plan or assess part extraction paths.

Calculation of collision response for the multiple moving segments of the
human model was handled using the technique described in Section 11.5.3.
Since processing objects in a pair-wise method is an O(n2) operation, it is



�

�

�

�

�

�

�

�

11.7. Discussion 249

Figure 11.16. Human dynamics application with 6-DOF PHANTOM.

useful to cull the list of collision pairs prior to collision processing. For hu-
man modeling applications, the model configuration and other constraints
can be used to substantially reduce the number of collision pairs that need
to be tested at each update.

11.6.5 Other Proximity-Based Applications

Another application of distance fields (which is now part of the VPS API)
is a function that colors vertices of the dynamic object model based on its
proximity to other objects. The main benefit from proximity coloring is
that it aids haptic interaction by visually conveying distance to contact.

Applications that use static environment voxel data are also possible.
Highlighting surface voxels within a specific distance to the moving ob-
ject produces a shadow-like effect that can also aid in distance-to-contact
perception. Proximity-based distance measurement can be used to give
a reasonable approximation for quickly determining minimum distances.
The distance gradient information could also be useful for path planning,
similar to potential field-based path planning applications.

11.7 Discussion
The voxel-based approach to haptic rendering presented in this chapter
enables 6-DOF manipulation of complex rigid objects within an arbitrarily



�

�

�

�

�

�

�

�

250 11. Voxel-Based Collision Detection for Six-DOF Rendering

complex rigid environment. Geometric awareness, temporal coherence, and
dynamic pre-fetching techniques improve the speed and accuracy of the
original Voxmap PointShell collision detection method for 6-DOF haptic
rendering.

The voxel sampling method can be easily parallelized, using clones of the
environment and cyclic decomposition of the dynamic object’s pointshell.
One could take advantage of this by investigating parallel computing envi-
ronments, specifically low-latency cluster computing. This will allow haptic
simulation of larger and more complex dynamic objects. Some problematic
situations, like the wedge problem and tunneling (moving through a thin ob-
ject without detecting collision), or further reducing non-passivity, require
further investigation or different approaches, for example the constraint-
based methods discussed in Chapter 16. These methods do not provide as
high performance as voxel-based collision detection, but could yield higher
accuracy and/or stability.

A consequence of Moore’s Law is that, over time, one can use smaller
and smaller voxel sizes, given the same investment in computing resources
and the same level of model complexity. This situation is illustrated in
Section 11.6.2, where millimeter and even sub-millimeter voxel sizes are
shown to be practical for haptic simulation of large-scale models. In this
manner, the spatial accuracy that is attainable with voxels is increasingly
becoming competitive with the accuracy of polygons. Polygon models are
often called “exact,” although in most cases they are actually only approx-
imations of truly exact surface models such as NURBS. It is academically
interesting to reflect that voxels are conceptually closer to molecules than
any mathematical surface abstractions such as NURBS.

It is worth mentioning that the collision detection algorithm described
here is not the first voxel-based approach to the problem. Voxel-based
methods had been applied earlier to non-haptic collision detection [Garcia-
Alonso et al. 94, Kaufman et al. 93, Logan et al. 96] and to 3-DOF hap-
tics [Avila and Sobierajski 96,Massie and Salisbury 94]. Sclaroff and Pent-
land [Sclaroff and Pentland 91] applied surface point sampling to implicit
surfaces. Furthermore, voxel-based collision detection may be classified in
the context of more general distance-field-based techniques, discussed in
Section 9.5.1. There are also approaches that provide a smoother force
model than the one presented in Section 11.1.2, but with a higher compu-
tational cost [Renz et al. 01].

Recent developments [Barbič and James 07] show the extension of the
pointshell and voxelization approach for handling haptic rendering of the
interaction between a deformable object and a rigid object. Key to this
novel contribution is the fast update of the pointshell of the deformable ob-
ject, under the assumption that the deformation is described by a subspace
method [Barbič and James 05]. These results, together with fast methods



�

�

�

�

�

�

�

�

11.7. Discussion 251

for computing distance fields, indicate that the voxel-based collision detec-
tion approach might soon be applicable to 6-DOF haptic rendering of pairs
of deformable objects.

Acknowledgments
The authors express their thanks to colleagues Karel Zikan for the idea
of voxel sampling, Jeff A. Heisserman for the idea of normal-aligned force
direction, Robert A. Perry for creating simulated aircraft geometry, and
Elaine Chen of SensAble Technologies, Inc. for literature research and
technical information about the PHANTOM device and GHOST software
support.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

12
Continuous Collision

Detection
S. Redon

One of the fundamental components of a haptic rendering algorithm is colli-
sion detection, to determine where and when virtual objects collide. Among
collision detection methods, the continuous ones enable penetration-free
simulations of contacting objects and allow for detailed haptic interaction.
In this chapter, we provide a basic introduction to interval-based continu-
ous collision detection methods for rigid and articulated bodies. We present
time-parameterized equations for continuous collision detection between
rigid primitives, as well as methods to efficiently solve these equations.
We also describe continuous overlap tests between hierarchies of bounding
volumes, which help achieve efficient collision detection for complex mod-
els. An appendix gathers some basic template data structures to allow the
reader to easily start implementing the methods described in this chapter.

12.1 Why Continuous Collision Detection?
Collision detection methods can roughly be split into two categories. Until
recently, most collision detection methods that have been proposed are
discrete: they sample the objects’ trajectories at discrete times and report
interpenetrations.

Discrete collision detection methods are generally simpler to implement
and are used frequently in dynamics simulators, but they may cause at
least three problems:

• Visual interpenetration. The simulation may lack realism due to vi-
sual interpenetration of the virtual objects. In haptic rendering, vi-
sual interpenetration has been shown to reduce the perceived stiffness
of the objects [Srinivasan et al. 96].

253



�

�

�

�

�

�

�

�

254 12. Continuous Collision Detection

• Collision misses. Discrete methods can miss collisions when objects
are too thin or when they move too fast. Even when the objects
themselves are large and slow, details of the interactions between
contacting objects can be missed if the contacting features are too
small relative to their speed. In such a case, the objects feel smoother
than they really are.

• Instability. Performing haptic rendering based on the amount of in-
terpenetration between virtual objects may be a cause of instability.
In the classical peg-in-a-hole benchmark (see Figure 12.1), an initial
interpenetration on one side of the hole at time t (position Pt) cre-
ates a force to remove the interpenetration. This force may lead to a
greater interpenetration on the opposite side of the hole at the next
instant t + 1 (position Pt+1), which creates a greater reaction force
than the previous one. Such an increasing, unstable oscillation is of
course highly undesirable in haptic interaction.

This chapter serves as a basic introduction to continuous collision de-
tection methods, which guarantee consistent simulations by computing the
time of first contact and the contact state for colliding objects. We focus
on rigid and articulated bodies, but some of the basic principles introduced
in this chapter have been used as part of collision detection methods for
deformable bodies as well (e.g., [Govindaraju et al. 05,Otaduy et al. 07]).

The time-parameterized equations for continuous collision detection be-
tween rigid triangle primitives are presented, and techniques to efficiently
solve these equations are described. Continuous overlap tests between hier-
archies of bounding volumes, which help achieve efficient collision detection
for complex models, are presented as well. Some basic template data struc-
tures are introduced to allow the reader to easily start implementing the
methods described in this chapter.

Figure 12.1. Interpenetrations between objects may yield unstable simulations.



�

�

�

�

�

�

�

�

12.2. Arbitrary In-Between Motions 255

12.2 Arbitrary In-Between Motions

12.2.1 Introduction

Most of the time, the motion of the objects is actually not available. Indeed,
because the haptic interface only sends the user actions at discrete times,
only the user actions between these discrete times are lost. Moreover, the
dynamics equations governing the objects motions are integrated through
discretization (e.g., using an Euler or Runge-Kutta integration scheme),
and the positions, velocities and accelerations of the objects are computed
at discrete times only.1

In order to prevent any interpenetration of the objects, we are thus going
to arbitrarily generate a continuous motion, with which we will perform
collision detection. For our purpose, such an arbitrary in-between motion
must satisfy several requirements:

• Interpolation. The in-between motion must at least interpolate po-
sitions. Higher order interpolations can be used depending on the
application.

• Continuity. The interpolation must be at least C0. The motions we
are going to use in this chapter will actually be C∞.

• Rigidity. the in-between motion needs to preserve the rigidity of the
links. For consistency reasons, we cannot use a straight segment
interpolation for object vertices when the object rotates.

Depending on the application, some additional constraints might have
to be satisfied by the in-between motion. In robotics applications, for ex-
ample, some links might have a predefined, special type of motion (e.g., a
screw motion). The arbitrary in-between motion chosen for the application
needs to be able to parameterize these motions. Provided these require-
ments are satisfied, however, we can arbitrarily choose an in-between mo-
tion for each pair of successive configurations. The goal is to determine an
arbitrary in-between motion that makes it efficient to perform the various
steps in the continuous collision detection algorithm.

Note that replacing the objects’ motions by arbitrary ones between two
successive discrete instants has a consequence on the simulation only if a
collision occurs between these two instants. If no collision is detected during
the in-between time interval, the objects are placed at the final positions
determined by the dynamics solver and the haptic interface.

However, if a collision between two objects is detected, it is necessary
to use the arbitrary motions to compute the positions of all the objects

1Recall, moreover, that the discretization includes approximations, so that even the
positions, velocities, and accelerations computed at discrete times are approximations.



�

�

�

�

�

�

�

�

256 12. Continuous Collision Detection

(a) (b)

Figure 12.2. To avoid interpenetrations, it is necessary to compute the objects’
positions at the instant of collision from the in-between motion used for the
detection of collisions, and not from the interpolating motion computed by the
dynamics equations.

at the first time of contact, since these motions have been used for the
detection of collisions. Otherwise, some interpenetrations could occur, as
shown in Figure 12.2. In (a), a collision has been detected at time tc while
using the arbitrary in-between motion. In (b), the dynamics solver has
been used to compute the position of the object at time tc, which results
in an interpenetration. For the same reason, when a collision is detected,
the arbitrary motion must also be used for objects that did not enter in
contact with another object. To compute their positions at time tc using
the dynamics solver could result in interpenetrations, since these positions
have not been tested for collisions.

As a result, the use of arbitrary in-between motions to detect collisions
perturbs the course of the simulation. It is indeed very unlikely that the
actual object motion and the arbitrary in-between motion would produce
collisions at the same locations and times. It is actually not even guaran-
teed that a collision that occurs between two objects when one of the two
motions (real or arbitrary) is used would also occur when the other motion
is used. This is the price we have to pay to perform continuous collision de-
tection when the actual object motion is not known. This makes it possible,
however, to continuously detect collisions very efficiently, while preserving



�

�

�

�

�

�

�

�

12.2. Arbitrary In-Between Motions 257

the benefits of a continuous method that would use the real object motion.
Indeed, with this method, objects are permanently in a consistent state:
no interpenetration is possible, and no collision can be missed.

In summary, since the actual object motion between any two successive
discrete instants cannot be used to detect collisions, it is replaced by an
arbitrarily fixed in-between motion, which must satisfy three constraints:
this arbitrary motion must interpolate in a continuous and rigid way the
object’s configurations between successive discrete instants. Among the ar-
bitrary motions that satisfy these constraints, we choose one that allows us
to perform the various steps of the continuous collision detection algorithm
very efficiently.

12.2.2 Formalization

Before moving on to the specifics of rigid and articulated bodies, let us
formalize the constraints imposed on the arbitrary in-between motion. Let
PR(t) denote the 4 × 4 matrix describing the real position of the object
during the time interval [tn, tn+1]. Recall that this matrix allows us to
compute the real (homogeneous) coordinates xR(t) of a point of the object
in the global frame from its (homogeneous) coordinates xo in the local
frame of the object:

xR(t) = PR(t)xo. (12.1)

Vectors xR(t) and xo are homogeneous vectors in IR4, for which the last
coordinate is the real number 1. Finally, let PA(t) denote the object’s
position when the arbitrary motion is used over the same time interval
[tn, tn+1]. The three constraints can be formalized simply:

• The interpolation constraint merely imposes that PA(tn) = PR(tn)
and PA(tn+1) = PR(tn+1).

• The continuity constraint imposes that the function t �→ PA(t) is
continuous on the interval [tn, tn+1].

• The rigidity constraint imposes that the matrix PA(t) is a position
matrix at every time t between tn and tn+1. In other words, it must
not include deformation terms (scaling terms, for example), and must
be the combination of a rotation matrix and a translation vector,
according to the classic form of a homogeneous position matrix:

PA(t) =
(

RA(t) TA(t)
0 1

)
. (12.2)

12.2.3 The Rigid Body Case

Let us now describe two possible arbitrary in-between motions for rigid
bodies. Again, recall that we want to choose a simple motion.



�

�

�

�

�

�

�

�

258 12. Continuous Collision Detection

Constant-velocity translation and rotation. One possibility is to assume that
the rigid motion over the time step is a constant-velocity one, composed of a
translation along a fixed direction, and a rotation along a fixed (potentially
distinct) direction.

Let the 3-dimensional vector c0 and the 3×3 matrix R0 denote the po-
sition and orientation of the rigid body in the world frame at the beginning
of the (normalized) time interval [0, 1]. Let s denote the total translation
during the time step, and let ω and u respectively denote the total rotation
angle and the rotation axis. For a given time step, c0, R0, ω, u, and s are
constants.

The position of the rigid body at a given time t in [0, 1] is thus

T(t) = c0 + ts. (12.3)

The orientation of the rigid body is

R(t) = cos(ωt).A + sin(ωt).B + C, (12.4)

where A, B and C are 3 × 3 constant matrices that are computed at the
beginning of the time step:

A = R0 − u.uT .R0,

B = u∗.R0,

C = u.uT .R0,

(12.5)

where u∗ denotes the 3 × 3 matrix such as u∗x = u × x for every three-
dimensional vector x. If u = (ux, uy, uz)T , then

u∗ =

⎛⎝ 0 −uz uy

uz 0 −ux

−uy ux 0

⎞⎠ . (12.6)

Consequently, the motion of the rigid body is described by the following
4 × 4 homogeneous matrix:

P(t) =
(

R(t) T(t)
0 1

)
, (12.7)

in the world frame.
The motion parameters s, u and ω are easy to compute. Assume c0 and

c1 (respectively R0 and R1) are the initial and final positions (respective
orientations) of the rigid body in the world frame. Then s = c1 − c0, and
(u, ω) is the rotation extracted from the rotation matrix R1(R0)T .



�

�

�

�

�

�

�

�

12.2. Arbitrary In-Between Motions 259

Screw motions. An even simpler motion can be used, for which the rotation
axis and the translation have the same direction. Such a motion is called
a screw motion.

Precisely, a screw motion V(ω, s,O,u) is the commutative composition
of a rotation and a translation along the same axis. The real parameters ω
and s (now a real number) respectively denote the total amount of rotation
and the total amount of translation in the transformation, O is a point
on the the screw motion axis, and u is a unit vector describing the axis
orientation. Note that the total translation is now s = s.u. A screw motion
is depicted in Figure 12.3. In this example, the screw motion transforms the
point A into A′. Depending on whether the rotation or the translation is
applied first to the point A, the intermediate point is respectively A1 or A2.

Figure 12.3. A screw motion is the com-
mutative composition of a rotation and
a translation of the same axis.

The benefit of using screw motions
comes from the fact that they al-
low us to interpolate any two rigid
positions with less degrees of free-
dom and thus reduce the compu-
tational cost of evaluating the mo-
tion matrix. Whatever the ob-
ject positions at times tn and tn+1,
Chasles’ theorem states that there
exists a unique screw motion that
transforms the initial position (i.e.,
at time tn) into the final position
(i.e., at time tn+1) (when O on
the screw motion axis is fixed, and
when ω is required to be positive
[Chasles 31]). In theory, using a
screw motion to interpolate two
successive positions could lead to a
nonnatural in-between motion. In
Figure 12.4, the real object motion
(on the left) has been replaced by
the equivalent screw motion with positive angle (on the right). For appli-
cations that require a very large rotation angle over the time interval [0, 1],
it might be advisable to subdivide the time interval into several smaller
ones.

We can now build a general class of screw-motion-based arbitrary in-
between motions. Assume, without loss of generality, that the current time
interval is the interval [0, 1]. In order to get a rigid and continuous motion
that interpolates the initial and final positions, it is sufficient to make the
parameters ωand s vary continuously. This can be achieved by choosing
two functions a : IR2 × [0, 1] → IR and b : IR2 × [0, 1] → IR such as, for all



�

�

�

�

�

�

�

�

260 12. Continuous Collision Detection

(a) (b)

Figure 12.4. Using a screw motion to replace the real object motion. (a) The real
object motion is a pure translation at constant velocity (from top to bottom)
combined to a rotation at constant velocity around the object’s center of mass.
(b) The real object motion has been replaced by the equivalent (and unique)
screw motion with positive angle. For applications that require a very large
rotation angle over the time interval [0, 1], it might be advisable to subdivide the
time interval into several smaller ones.

pairs (ω, s) in IR2, the functions

aω,s :
{

[0, 1] → IR
t �→ ω(t) = a(ω, s, t) (12.8)

bω,s :
{

[0, 1] → IR
t �→ s(t) = b(ω, s, t) (12.9)

are C1 and monotonous, and respect the interpolation constraint, i.e.,
aω,s(0) = bω,s(0) = 0, and aω,s(1) = ω and bω,s(1) = s.

The class of screw-motion-based arbitrary in-between motions has the
form

M :
{

[0, 1]× IR3 → IR3

(t, A) �→ A(t) = V(aω,s(t), bω,s(t), O, �u)(A0),
(12.10)

where A0 is a point of the object at time 0 and A(t) the same point during
the arbitrary in-between motion. It is worth noticing that the two functions
a and b depend on the screw motion parameters only, and not on the object
shape or part. This guarantees that all points of the object have the same
rigid motion. Besides, thanks to the conditions imposed on the functions



�

�

�

�

�

�

�

�

12.2. Arbitrary In-Between Motions 261

aω,s and bω,s, arbitrary motions of form (Equation (12.10)) are truly rigid,
continuous and interpolating.

A motion in the class (Equation (12.10)) can be expressed simply in
matrix form. Define first a screw motion frame as a frame in which the Oz
axis is the screw motion axis. Because of axial symmetry, there exists an
infinity of such frames, and it is sufficient to choose one of them. In one of
these frames, the screw motion can be expressed simply:

V(t) =

⎛⎜⎜⎝
cos(aω,s(t)) − sin(aω,s(t)) 0 0
sin(aω,s(t)) cos(aω,s(t)) 0 0

0 0 1 bω,s(t)
0 0 0 1

⎞⎟⎟⎠ (12.11)

for t ∈ [0, 1]. In the global frame, the screw motion is then

S(t) = P−1
V V(t)PV , (12.12)

where V(t) is the screw motion with Oz axis, PV is the transformation
matrix from the global frame to the screw motion frame, and P−1

V is the
inverse of PV .

Thanks to the expression of the screw motion in the global frame (Equa-
tion (12.12)), it is possible to get the coordinates of any object point x(t)
during the arbitrary in-between motion:

x(t) = P(t)xo = P−1
V V(t)PV P0xo, (12.13)

where xo denotes the point coordinates in the object frame, and P0 is the
object’s position matrix at time 0. The object’s position matrix during the
arbitrary motion is P(t).

12.2.4 Articulated Bodies

An articulated body is defined as a set of rigid bodies, or links, connected
by bilateral constraints. Assuming there is no loop in the articulated body,
an arbitrary in-between motion can be easily defined, by expressing the
motion of each link in the reference frame of its parent link, and not in the
world frame (the motion of the root link of the articulated model is still
expressed in the world frame).

To simplify notation, let us assume that the parent of link i is i − 1.
The index denoting the world frame is 0. Let Pi−1

i (t) denote the position
matrix of link i in the reference frame of its parent link i − 1. Then the
matrix

P0
i (t) = P0

1(t).P
1
2(t)...P

i−1
i (t) (12.14)

describes the motion of link i in the world frame. The matrices Pj−1
j (t)

can then have the form suggested for rigid bodies.



�

�

�

�

�

�

�

�

262 12. Continuous Collision Detection

12.3 Interval Arithmetic
A simple way to robustly perform the computations involved in the var-
ious steps of a continuous collision detection algorithm is to use interval
arithmetic.

Interval arithmetic consists of computing with intervals instead of num-
bers. Several good introductions to interval arithmetic can be found, for
example, in [Moore 62,Snyder 92,Kearfott 96]. As is well known, the defi-
nition of a closed real interval [a, b] is

I = [a, b] = {x ∈ IR, a � x � b} . (12.15)

This definition can be generalized to vectors. A vector interval is simply a
vector whose components are intervals:

In = [a1, b1] × ... × [an, bn] (12.16)
= {x = (x1,...,xn) ∈ IRn, ai � xi � bi ∀i, 1 � i � n} . (12.17)

In IIR3, for example, a simple alternate notation can be⎛⎝ [xl, xu]
[yl, yu]
[zl, zu]

⎞⎠ . (12.18)

The set of intervals is denoted IIR, while the set of vector intervals is denoted
IIRn.

Basic operations can be transposed to intervals:

[a, b] + [c, d] = [a+ c, b+ d]
[a, b] − [c, d] = [a− d, b− c]
[a, b] × [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

1/ [a, b] = [1/b, 1/a] if a > 0 or b < 0
[a, b] / [c, d] = [a, b] × (1/ [c, d]) if c > 0 or d < 0

[a, b] � [c, d] if b � c.

(12.19)

Elementary operations in IIRn are performed component-wise. Operations
between real numbers and real intervals can be performed by identifying
IR and the set of “point” intervals {[x, x], x ∈ IR}.

Interval arithmetic can be used to bound a function over an interval
very easily, provided the analytic expression of the function is known, and
provided we can easily bound the sub-expressions in the function.

An example will make this clear. Assume we want to bound the function
t �→

√
3 cos(t) + sin(t) over the time interval [0, π/2]. This function is



�

�

�

�

�

�

�

�

12.3. Interval Arithmetic 263

very similar to the ones we obtain when we plug the arbitrary in-between
motions described above into the continuous collision detection equations.

Being able to bound the sine and cosine sub-expressions is all that is
required to bound this function. We know that

t ∈
[
0,
π

2

]
⇒
{

cos(t) ∈ [0, 1]
sin(t) ∈ [0, 1] .

Note that this is not deduced from the elementary interval operations, but
has to be known. This is what is meant by “we can bound easily the sub-
expressions in the function.” From now on, however, we only need to use
the elementary interval operations to provide some bounds on the function.
Since, by definition, √

3 ∈
[√

3,
√

3
]
,

and
cos(t) ∈ [0, 1], ∀t ∈

[
0,
π

2

]
,

we determine that
√

3 cos(t) ∈
[√

3,
√

3
]
× [0, 1] =

[
0,
√

3
]
, ∀t ∈

[
0,
π

2

]
,

by performing a simple interval multiplication.
Similarly, using the interval addition, we know that
√

3 cos(t) + sin(t) ∈
[
0,
√

3
]

+ [0, 1] =
[
0,
√

3 + 1
]
, ∀t ∈

[
0,
π

2

]
,

and we have thus bounded the function.
Note that the bounds we have obtained are not exact, since the tightest

bounding interval is actually [1, 2]. In this example, the reason for the
looseness of the bounds is that the sine function is increasing while the
cosine function is decreasing.2 Provided we know exact bounds on these
sub-expressions, however, it can be shown that the bounds on the function
tend to be exact when the size of the time interval tends towards zero.

Exact bounds on the sub-expressions we encounter in this chapter are
actually very easy to obtain. For example, since the cosine function is
decreasing over [0, π/2], we know that

a, b ∈
[
0,
π

2

]
, a < b⇒ cos(t) ∈ [cos(b), cos(a)], ∀t ∈ [a, b].

The power of interval arithmetic for our purpose comes from the fact
that efficient interval operations can be simply implemented (see the ap-
pendix for the implementation of a basic interval class in C++).

2One way to improve the quality of the bounds is to use higher-order approximations
of the elementary functions, called Taylor models (see e.g., [Zhang et al. 07c]), but this
is beyond the scope of this introductory chapter.



�

�

�

�

�

�

�

�

264 12. Continuous Collision Detection

We can now describe how interval arithmetic can be used to perform
continuous collision detection between elementary features and bounding
volumes.

12.4 Elementary Continuous Collision Detection
Continuous collision detection methods for polyhedral objects must only
detect three types of contact. Indeed, all contacts between two polyhedral
objects A and B include at least one of these three elementary contact
types:

• An edge of A contacts an edge of B;

• A vertex of A contacts a face of B;

• A face of A contacts a point of B.

These contact types are easily expressed geometrically. For the edge/edge
case, we only have to detect a collision between the lines containing the
edges. If a(t)b(t) is the first edge and c(t)d(t) is the second edge, then the
lines intersect when

a(t)c(t) · (a(t)b(t) ∧ c(t)d(t)) = 0, (12.20)

i.e., when the vector a(t)c(t) is in the plane defined by the two edges
(cf Figure 12.5(left)). Once an intersection has been detected at some
instant between the two lines, we check whether it belongs to the edges or,
equivalently, if the edges intersect at that time (and not only the supporting
lines). This can be robustly performed, thanks to a discrete edge/edge
proximity test (in general, due to finite precision computations, the edges
do not exactly touch at the collision time). We then keep the earliest valid
collision. The contact time is the earliest valid collision time. The contact
position is the position of the vertex at that time, and the contact normal
is the (normalized) cross-product of the edges at that time.

For the vertex/face and face/vertex, a collision is first detected be-
tween the point and the plane containing the face. If a(t) is the point and
b(t)c(t)d(t) is the triangle, a collision occurs when

a(t)b(t) · (b(t)c(t) ∧ b(t)d(t)) = 0, (12.21)

that is when the vector a(t)b(t) is in the vector plane defined by the face
normal b(t)c(t)∧b(t)d(t) (cf Figure 12.5(right)). When such a collision is
detected, we check whether the point belongs to the face at that time. This
can be robustly performed thanks to a vertex/triangle proximity test (in



�

�

�

�

�

�

�

�

12.4. Elementary Continuous Collision Detection 265

Figure 12.5. Elementary continuous collision detection. Collision detection be-
tween two edges (left). Collision detection between a vertex and a face (right).

general, due to finite precision computations, the vertex is not exactly in
the plane at the collision time). We then keep the earliest valid collision.
The contact time is the earliest valid collision time. The contact position
is the position of the vertex at that time, and the contact normal is the
normal to the triangle at that time.

In practice, interval arithmetic can be used to solve Equations (12.20)
and (12.21). Formally, these equations have the form

f(t) = 0, t ∈ [0, 1],

and we want to determine the smallest root tc. Assume we are able to
bound the function f over the time interval [0, 1]. If these bounds do
not contain zero, meaning that the function is strictly positive or strictly
negative over the time interval [0, 1], then f cannot have any root in [0, 1].

However, if these bounds do contain zero, then the function f might
have a root in [0, 1] (might only, if the bounds are not tight or if the function
is not continuous3). In this case, we refine the time interval and repeat the
process: we bound the function f on the time intervals [0, 1/2] and [1/2, 1],
and we examine these bounds (first [0, 1/2] and then [1/2, 1], since we are
looking for the earliest collision). This process is recursively performed
until the examined bounds do not contain zero (meaning that the function
does not have any root on the time sub-interval), or until the size of the
examined time sub-interval is smaller than a user-defined threshold (which
characterizes the temporal precision of the collision detection).

The C++ code for this interval recursive root-finding method is

bool computeCollisionTime(cInterval I, double &tc) {

// I is the time interval currently examined.

// (Initially, I=[0,1])

//

// tc is the time of earliest collision.

3Of course, the functions involved in this chapter are all continuous.



�

�

�

�

�

�

�

�

266 12. Continuous Collision Detection

//

// Return true if and only if a collision has been found in I

cInterval boundsF=boundFunctionF(I); // bound f over I

if (boundsF.i[0]>0) return false; // no root in I

if (boundsF.i[1]<0) return false; // no root in I

// from here, the bounds contain 0: potential collision

if ((I.i[1]-I.i[0])<timeThreshold) { // sufficient precision

bool valid=checkRootValidityF(I); // check the root

if (valid) tc=I.i[0]; // tc is a conservative collision time

return valid;

}

// insufficient time precision, refine the time interval

double m=0.5*(I.i[0]+I.i[1]); // mid-time

bool rootFound=computeCollisionTime(cInterval(I.i[0],m),tc);

if (rootFound) return true;

// no root of the first time sub-interval, check the second one

return computeCollisionTime(cInterval(m,I.i[1]),tc);

}

The bounds on the function f are computed using interval arithmetic, as
explained in Section 12.3. Assume, for example, that we want to bound the
function in the edge/edge continuous collision detection Equation (12.20)
over the time interval I. Assume, first, that we know some bounds on
the coordinates of the vertices involved in the test. Precisely, let boundsA,
boundsB, boundsC, and boundsD denote the three-dimensional interval vec-
tors (cIAVector3 objects) that bound the coordinates of a, b, c, and d
over the time interval I, respectively. Let | denote the interval dot prod-
uct, and ^ denote the interval cross product. The bounds boundsF on the
function f are easily determined, since the computation of the bounds is
simply the interval counterpart of the evaluation of the function involved
in the edge/edge test:

cInterval boundsF=(boundsC-boundsA)|

((boundsB-boundsA)^(boundsD-boundsC));



�

�

�

�

�

�

�

�

12.4. Elementary Continuous Collision Detection 267

The bounds on the coordinates of the vertices are computed in a sim-
ilar way. Assume for example that the vertex a belongs to a rigid body
that moves according to the linear interpolation characterized by Equations
(12.3) and (12.4). The coordinates of the position vector T(t) are linear
functions of time, and we can easily determine bounds for them over any
time interval I. Similarly, the components of the orientation matrix R(t)
are simple trigonometric functions, which can be easily bounded (these
functions are actually very similar to the one given in the example in Sec-
tion 12.3). Let aLocal denote the coordinates of a in the local frame of
the rigid body. The variable aLocal is a point vector interval stored in a
cIAVector3 object:

cIAVector3 aLocal(xA,xA,yA,yA,zA,zA);

Note that, for optimization purposes, a cVector3 class can be imple-
mented to contain point interval vectors, as well as a multiplication between
a cIAMatrix33 object and a cVector3 object. This special multiplication
can perform more efficiently than the regular interval matrix vector multi-
plication, since fewer branching operations are required.

Denoting by boundsT the cIAVector3 object that bounds the coordi-
nates of T(t), and by boundsR the cIAMatrix33 object that bounds the
components of R(t), over the time interval I, the bounds boundsA on a are
simply

cIAvector3 boundsA=boundsR*aLocal+boundsT;

For articulated bodies, the bounds are computed in a similar way. As-
sume we have a cIAMatrix44 class that can contain 4×4 interval matrices.
The cIAMatrix44 objects are designed to contain 4 × 4 interval homoge-
neous position matrices. Assume also that right-multiplying them by a
cIAVector3 object produces the interval counterpart of the expected real
multiplication, which applies a rotation and a translation to a vector. Note
that these 4× 4 interval matrices are introduced to simplify the expression
of the computation of boundsA, but the equivalent interval operations can
be performed using cIAMatrix33 and cIAVector3 objects.

Let the cIAMatrix44 objects boundsP1, boundsP2, ..., boundsPi re-
spectively denote the bounds on the position matrices P0

1(t), P1
2(t), ...,

Pi−1
i (t) over the time interval I. Assume aLocal is a point interval vector

which contains the coordinates of the vertex a in the local frame of link i.
The bounds boundsA on the coordinates of a in the world frame, over the
time interval I, are

cIAVector3 boundsA=boundsP1*boundsP2*...*boundsPi*aLocal;



�

�

�

�

�

�

�

�

268 12. Continuous Collision Detection

Note that, for efficiency purposes, it is preferable to perform the mul-
tiplications from right to left, so that only matrix-vector multiplications
have to be computed. In general, in order to further reduce the complexity
of the evaluation of interval position matrices, a simultaneous resolution
scheme can be used [Redon et al. 04b].

It should now be clear why the choice of the arbitrary in-between motion
has a huge impact on the overall efficiency of the continuous collision detec-
tion algorithm. The arbitrary in-between motion is going to be evaluated
several times whenever some bounds on a continuous collision detection
function are needed. If acceptable in the application, it can be advised, for
example, to use an in-between motion that reduces the collision detection
equations to polynomial equations [Canny 86,Redon et al. 00].

12.5 Continuous Overlap Tests for Bounding
Volumes

In order to avoid performing all possible elementary tests for any object
pair, many collision detection algorithms rely on bounding-volume hierar-
chies. Basically, if two objects are enclosed in bounding volumes that don’t
overlap, then it is known for sure that they don’t collide. Hierarchies of
bounding volumes are used to recursively perform such overlap tests, which
can conservatively cull away large parts of the objects when testing for a
collision. Some typical bounding volumes used for collision detection in-
clude spheres (e.g., [Quinlan 94,Hubbard 94,Ruspini et al. 97, Bradshaw
and O’Sullivan 02]), axis-aligned bounding boxes (AABBs) (e.g., [van den
Bergen 97]), oriented bounding boxes (OBBs) [Gottschalk 99,Gottschalk
et al. 96], and k-dops [Klosowski et al. 98].

Since we want to perform continuous collision detection between ob-
jects, we need to design a continuous overlap test between two bounding
volumes. Precisely, we need to determine whether two bounding volumes
will overlap during the time step.

What makes the task easier is that it is not necessary to perform an
exact test. We need to be sure that we do not miss an overlap between
two bounding volumes during the time step, but it is acceptable to declare
that two bounding volumes overlap when they don’t. The error will be
captured later by smaller bounding volumes in the hierarchy, or ultimately
by the elementary continuous collision detection tests. Such a test is called
conservative.

In the following, we describe continuous overlap tests between spheres,
axis-aligned bounding boxes, and oriented bounding boxes.



�

�

�

�

�

�

�

�

12.5. Continuous Overlap Tests for Bounding Volumes 269

12.5.1 Spheres

Assume spheres are used as bounding volumes. Let c1 and c2 denote the
centers of the spheres, and let r1 and r2 denote the radii of the spheres.

The spheres overlap if and only if the distance between their centers is
smaller than the sum of their radii:

||c1c2|| � r1 + r2,

or, equivalently, if and only if

(c2 − c1)
2 � (r1 + r2)

2
. (12.22)

Using interval arithmetic, we can design a conservative test to bound
the left member of Inequality (12.22) on any time interval I. If the lower
bound of the left member is greater than the right member, then we know
for sure that the distance between the centers is greater than the sum of
the radii during the whole time interval I, in which case it is safe to declare
that the spheres won’t overlap during this time interval.

If the lower bound of the left member is smaller than the right mem-
ber, however, there might be an overlap during the time interval, and we
conservatively declare so.

The bounds on the left member are obtained as previously, by first
bounding the coordinates of the center of the spheres, and then perform-
ing the interval counterpart of the function in the left member. Assum-
ing the bounds on the centers are two cIAVector3 objects, boundsC1 and
boundsC2, some bounds boundsLeft on the left member are

cInterval boundsLeft=(boundsC2-boundsC1)|(boundsC2-boundsC1);

12.5.2 Axis-Aligned Bounding Boxes

Axis-aligned bounding volumes are typically recomputed at the beginning
of each time step in discrete methods. Assuming these boxes are attached
to the bodies during the time step, they simply become oriented bounding
boxes, as they lose their axis-aligned characteristic while the objects move.
Consequently, the appropriate continuous overlap test in that case is the
one between two oriented bounding boxes, described in the next section.

However, it is simple to obtain axis-aligned boxes that bound an object
during a whole time interval. Indeed, any three-dimensional vector interval
is actually an axis-aligned bounding box. Assume we determine bounds on
a vertex motion during a time interval. By definition, since the bounds
are computed coordinate per coordinate, we have actually obtained an
axis-aligned box which bounds the moving vertex during the whole time



�

�

�

�

�

�

�

�

270 12. Continuous Collision Detection

interval. We can thus easily determine AABBs that bound the moving
object during the whole time interval.

Note that the AABBs can be obtained from a simplified version of
the object geometry, provided this simplified version contains the original
object. Assume, for example, that the object is included in a sphere. Using
interval arithmetic, the bounds on the coordinates of the center of the
sphere can be obtained easily. These bounds are in fact an AABB that
encloses the moving center of the sphere during the time interval. Enlarging
this AABB by the radius of the sphere results in an AABB that contains
the sphere, and thus the object, during the whole time interval.

More generally, assume the object is enclosed in the convex hull of
a set of points. An AABB can be obtained for each of these points using
interval arithmetic. An AABB that contains all these AABBs is guaranteed
to contain the object during the whole time interval.

When these dynamically generated AABBs have been computed, the
traditional discrete AABB/AABB test can be used to conservatively de-
termine whether the objects are going to overlap or not during the time
interval.

12.5.3 Oriented Bounding Boxes

Let us now proceed to the case of oriented bounding boxes (OBBs). For a
rigid object, a hierarchy of OBBs can be computed offline. Similarly, for
an articulated model composed of rigid links, a hierarchy of OBBs can be
computed offline for each link.

The goal is thus to (conservatively) determine whether the boxes are
going to overlap during the time interval.

A well-known overlap test for oriented bounding boxes is the one that
relies upon the separating axis theorem [Gottschalk et al. 96]. Let’s assume
that the first OBB is described by three axes e1, e2, and e3, a center TA,
and its half-sizes along its axes a1, a2, and a3. Similarly, assume the second
OBB is described by its axes f1, f2, and f3, its center TB , and its half-sizes
along its axes b1, b2, and b3. The separating axis theorem states that two
static OBBs overlap if and only if all of fifteen separating axes tests fail. A
separating test is simple: an axis a separates the OBBs if and only if

|a ·TATB| >
3∑

i=1

ai|a · ei| +
3∑

i=1

bi|a · fi|. (12.23)

This test is performed for fifteen axes at most. The sufficient set of fifteen
axes is

{ei, fj , ei ∧ fj , 1 � i � 3, 1 � j � 3}. (12.24)



�

�

�

�

�

�

�

�

12.5. Continuous Overlap Tests for Bounding Volumes 271

Figure 12.6. The axis e1 separates the two oriented bounding boxes since, in the
axis direction, the projected distance between the centers of the boxes |e1 ·TATB|
is larger than the sum of the projected radii of the boxes (a1|e1 · e1| + a2|e1 ·
e2|) + (b1|e1 · f1| + b2|e1 · f2|).

Intuitively, the left member of Inequality (12.23) is the projected distance
between the two centers of the boxes in the direction of a, while the right
member is the sum of the projected radiuses of the boxes, in the same
direction (cf. Figure 12.6).

We can extend the discrete OBB/OBB overlap test to the continuous
domain using interval arithmetic [Redon et al. 02b]. Since each member of
Inequality (12.23) is a function of time depending on the specific arbitrary
in-between motion, we can use interval arithmetic to bound both mem-
bers over a time interval I. When the lower bound on the left member is
larger than the upper bound on the right member, the axis a separates the
boxes during the entire time interval I, and the pair of boxes is discarded,
since we know for sure that the boxes will not overlap during the time
interval.

As before, once the bounds on the elements involved in the test have
been computed, the bounds on the two members are determined easily. De-
noting by boundsA, boundsE1, boundsE2, boundsE3, boundsF1, boundsF2,
boundsF3, boundsTA, and boundsTB the cIAVector3 objects that contain
the bounds on a, e1, e2, e3, f1, f2, f3, TA, and TB, respectively, the lower
bound on the left member is

double lBoundLeft=(boundsA|(boundsTB-boundsTA)).getAbsLower();



�

�

�

�

�

�

�

�

272 12. Continuous Collision Detection

where the function getAbsLower() returns the lower bound on the absolute
value of an interval.

Similarly, the upper bound on the right member is

double uBoundRight=a1*(boundsA|boundsE1).getAbsUpper()+

a2*(boundsA|boundsE2).getAbsUpper()+

a3*(boundsA|boundsE3).getAbsUpper()+

b1*(boundsA|boundsF1).getAbsUpper()+

b2*(boundsA|boundsF2).getAbsUpper()+

b3*(boundsA|boundsF3).getAbsUpper();

where the function getAbsUpper() returns the upper bound on the abso-
lute value of an interval (cf. Section 12.3).

Note that, due to the special form of the axis a, this last computation
can actually be simplified, as in the original discrete test (cf. [Gottschalk 99]).
For example, when a = e1, we know that

a.e1 = 1,

and
a.e2 = a.e2 = 0.

Since this holds at all times, it is not necessary to actually compute the first
three interval dot products in this case (this would produce conservative
but loose bounds).

Recall also that, since the axes of the boxes are vectors and not ver-
tices, the translation component must not be included when computing the
bounds on their coordinates. Assume, for example, that the axis e1 belongs
to a box attached to a rigid body that moves according to the linear interpo-
lation characterized by Equations (12.3) and (12.4). Let eLocal denote the
cIAVector3 object that contains the components of the axis e1 in the local
frame of the rigid body, and let boundsR denote the cIAMatrix33 object
that contains the bounds on the orientation matrix R(t). The cIAVector3
object boundsE1 is computed as follows

cIAVector3 boundsE=boundsR*eLocal;

12.5.4 Remarks

Again, we have used interval arithmetic to perform the continuous tests.
As opposed to what happens with the elementary tests, though, the inter-
val computations that occur during the continuous overlap tests between
bounding volumes are generally performed once only, over the full time
interval [0, 1]. The bounds on the functions involved in the tests are com-
puted once and for all on the time interval [0, 1], and these bounds are



�

�

�

�

�

�

�

�

12.6. Conclusion 273

used to conservatively determine the overlap status of the bounding vol-
umes during this time interval. This comes from the fact that we do not
really need to know when the bounding volumes will begin to overlap (al-
though that might be a useful information), but only if they are going to
overlap during the given time interval.

However, we have noted in Section 12.3 that the bounds obtained using
interval arithmetic are generally not tight. This is especially the case when
the total amount of rotation is very large over one single time step.4 In
order to reduce the conservativeness of the test, which would lead to de-
clare that the bounding volumes overlap too often and would make us lose
the benefit of using bounding-volume hierarchies, it is best to subdivide
the time interval one or several times when the total amount of rotation is
very large. The cost of replacing the single test by several tests on smaller
time sub-intervals is usually compensated by the early culling, which pre-
vents the need to unnecessarily go further down the hierarchies of bounding
volumes.

For articulated bodies, an intermediate culling step, based on graphics
hardware, can be added in order to prevent the increased conservativeness
of interval arithmetic when the depth of the articulated bodies increases
[Redon et al. 04b]. A recent, more efficient solution consists of switching
to a combination of Taylor models and temporal culling [Zhang et al. 07c].

12.6 Conclusion

This chapter has presented a basic introduction to interval-based continu-
ous collision detection, which helps provide consistent haptic rendering by
computing the time of first contact and the contact state for colliding ob-
jects. We have described basic techniques to perform continuous collision
detection for rigid and articulated bodies. Continuous collision detection
has already been successfully applied in various settings, including rigid
body dynamics [Redon et al. 02a], virtual prototyping [Redon et al. 02b],
contact-space motion planning [Redon and Lin 05], and interactive avatar
animation in virtual environments [Redon et al. 04a]. We refer the reader
to the chapter by Ortega et al. for an application to six-degree-of-freedom
haptic rendering, in which continuous collision detection helps provide the
user with high quality visual and haptic rendering between contacting,
polyhedral rigid bodies.

4Interval arithmetic produces tight bounds when the motion is a pure linear transla-
tion, thanks to the monotonicity of the functions involved.



�

�

�

�

�

�

�

�

274 12. Continuous Collision Detection

Appendix
Here is a basic class cInterval to describe an interval. For clarity, the
overloaded operators are not optimized (e.g., branching can be reduced in
the interval multiplication). Similarly, no measure is taken to make sure
the computations are effectively conservative (i.e., switching the rounding
mode [Snyder 92]). However, we provide two functions, getAbsLower and
getAbsUpper, which are used later for continuous overlap tests between
bounding volumes (cf. Section 12.5.2).

class cInterval {

public:

double i[2];

cInterval() { ; }

cInterval(double v) { i[0]=i[1]=v; }

cInterval (double ll, double rr) { i[0]=ll;i[1]=rr; }

cInterval operator+(const cInterval &in) {

return cInterval(i[0]+in.i[0],i[1]+in.i[1]);

}

cInterval operator-(const cInterval &in) {

return cInterval(i[0]-in.i[1],i[1]-in.i[0]);

}

cInterval& operator+=(const cInterval &in) {

i[0]+=in.i[0];i[1]+=in.i[1];return *this;

}

cInterval& operator-=(const cInterval &in) {

i[0]-=in.i[1];i[1]-=in.i[0];return *this;

}

cInterval operator*(const cInterval &in) {

register double temp,vmin,vmax;

vmin=vmax=i[0]*in.i[0];

temp=i[0]*in.i[1];

if (temp<vmin) vmin=temp;



�

�

�

�

�

�

�

�

12.6. Conclusion 275

else if (temp>vmax) vmax=temp;

temp=i[1]*in.i[0];

if (temp<vmin) vmin=temp;

else if (temp>vmax) vmax=temp;

temp=i[1]*in.i[1];

if (temp<vmin) vmin=temp;

else if (temp>vmax) vmax=temp;

return cInterval(vmin,vmax);

}

cInterval operator/(const cInterval &in) {

// assumes that the interval does not contain 0

return *this*cInterval(1.0/in.i[1],1.0/in.i[0]);

}

double getAbsLower() {

// returns the lower bound on the absolute value

// of the interval (used for OBB/OBB overlap tests)

if (i[0]>=0) return i[0];

if (i[1]>=0) return 0;

return -i[1];

}

double getAbsUpper() {

// returns the upper bound on the absolute value

// of the interval (used for OBB/OBB overlap tests)

if (i[0]+i[1]>=0) return i[1];

return -i[0];

}

};

Using this interval, we can easily build an interval three-dimensional
vector class cIAVector3 and an interval 3 × 3 matrix cIAMatrix33 (not
shown here).



�

�

�

�

�

�

�

�

276 12. Continuous Collision Detection

Coming back to the example of Section 12.3, and denoting by cosBounds
and sinBounds the intervals respectively bounding the cosine and sine func-
tions on the time interval [0, π/2], the interval bound previously computed
is simply

// result: bounds=[0,sqrt(3)+1]

cInterval bounds=cInterval(sqrt(3))*cosBounds+sinBounds;



�

�

�

�

�

�

�

�

13
Contact Levels of Detail

M. A. Otaduy and M. C. Lin

Collision detection is the first step in displaying force and torque between
two 3D virtual objects in 6-DOF haptic rendering. As presented in Chap-
ter 9, the problem of collision detection has been largely explored in the
fields of computational geometry, robotics, or physically-based animation.
However, it remains a challenge to detect intersections or compute prox-
imity and distance information between geometrically complex models in
complex contact configurations at the update rates required by haptic ren-
dering.

The techniques described in this chapter stem from the idea of using
level-of-detail representations of the objects for performing multiresolution
collision detection, with the goal of satisfying real-time constraints while
maximizing the accuracy of the computed proximity information. Model
simplification and level-of-detail generation have been active research areas
since the early 90s, but the synergy of multiresolution representations and
the data structures and algorithms traditionally employed in collision de-
tection is not a straightforward objective. This chapter describes contact
levels of detail (CLODs), a multiresolution collision detection algorithm
that integrates bounding volume hierarchies (BVHs) and levels of detail
(LODs) in one single dual hierarchy. Based on findings from psychophysics
studies of touch, we describe the design of effective data structures and
algorithms for multiresolution collision detection in the context of 6-DOF
haptic rendering. The chapter focuses on work and results previously pub-
lished in [Otaduy and Lin 03b] and [Otaduy and Lin 03a]. A discussion on
the CLODs in the larger context of sensation-preserving haptic rendering
can be found in [Lin and Otaduy 05], while further details on the design,
experiments and results can be found in [Otaduy 04]. The rest of the
chapter is organized as follows. Section 13.1 discusses the psychophysical
motivation for using multiresolution representations for collision detection
in haptic rendering, and Section 13.2 describes the concept of multires-
olution collision detection and early approaches. Section 13.3 defines the
data structure and the representation of CLODs, Section 13.4 describes the

277



�

�

�

�

�

�

�

�

278 13. Contact Levels of Detail

algorithm for their construction, and Section 13.5 describes the run-time
collision detection algorithm. The chapter concludes with experiments and
discussion of generalizations and extensions of the concept.

13.1 Psychophysical Foundations
Chapter 1 discusses haptic perception through a rigid link, in other words,
the perception of contact through a manipulated tool. The findings of
psychophysicists on this topic serve as the basis for the design of contact
levels of detail. Here we focus on some of the most relevant findings, but
please refer to Chapter 1 for a more elaborate discussion.

13.1.1 Perception of Surface Features through
a Haptic Glance

Klatzky and Lederman describe two different exploratory procedures fol-
lowed by subjects in order to capture shape attributes and identify features
and objects. In haptic glance [Klatzky and Lederman 95], subjects extract
information from a brief haptic exposure of the object surface. Then they
perform higher-level processing for determining the identity of the object
or other attributes. In contour following [Klatzky and Lederman 03], sub-
jects create a spatiotemporal map of surface attributes, such as curvature,
that serves as the pattern for feature identification. Contact determination
algorithms attempt to describe the geometric interaction between virtual
objects. The instantaneous nature of haptic glance [Klatzky and Leder-
man 95] makes it strongly dependent on purely geometric attributes, unlike
the temporal dependency of contour following.

[Klatzky and Lederman 95] conducted experiments in which subjects
were instructed to identify objects from brief cutaneous exposures (i.e.,
haptic glances). Subjects had an advance hypothesis of the nature of the
object. The purpose of the study was to discover how, and how well,
subjects identify objects from brief contact. According to Klatzky and
Lederman, during haptic glance a subject has access to three pieces of
information: roughness, compliance, and local features. Roughness and
compliance are material properties that can be extracted from lower-level
processing, while local features can lead to object identification by feature
matching during higher-level processing. In the experiments, highest iden-
tification accuracy was achieved with small objects, whose shapes fit on a
fingertip. Klatzky and Lederman concluded that large contact area helped
in the identification of textures or patterns, although it was better to have
a stimulus of a size comparable to, or just slightly smaller than that of the
contact area for the identification of geometric surface features. The exper-



�

�

�

�

�

�

�

�

13.1. Psychophysical Foundations 279

iments conducted by Klatzky and Lederman posit an interesting relation
between feature size and contact area during cutaneous perception.

[Okamura and Cutkosky 99,Okamura et al. 01] analyzed feature detec-
tion in robotic exploration, which can be regarded as a case of object-object
interaction. They characterized geometric surface features based on the ra-
tios of their curvatures to the radii of the robotic fingertips acquiring the
surface data. They observed that a larger fingertip, which provides a larger
contact area, can miss small geometric features. To summarize, the stud-
ies by Klatzky and Lederman [Klatzky and Lederman 95] and Okamura
and Cutkosky [Okamura and Cutkosky 99,Okamura et al. 01] lead to the
observation that human haptic perception of the existence of a geometric
surface feature depends on the ratio between the contact area and the size
of the feature, not the absolute size of the feature itself.

13.1.2 Implications on Multiresolution Collision Detection

The size of a feature can be broadly defined as width × length × height,
where the width and length can be intuitively considered as the inverse of
resolution (formally defined in Section 13.3.1) of a polygonal model. That
is, higher resolution around a local area implies that the width and length
of the geometric surface features in that neighborhood are smaller, and
vice versa. The concept of “height” is extended to describe the amount of
surface deviation between polygonal representations of a model at different
resolutions.

Figure 13.1 illustrates the observation that relates contact area and
perceptibility of features. The contact between two objects typically occurs
along a certain contact area. With polygonal models, the contact area may
be described by multiple contact points. The number of contact points
grows if the objects are described at a higher resolution.

Increasing the resolution beyond a sufficiently large value, however, may
have little effect on the forces computed between the objects, because these

Figure 13.1. Contact area and resolution: (a) High-resolution model with large
contact area. (b) Low-resolution model with large contact area. (c) High-
resolution model with small contact area.



�

�

�

�

�

�

�

�

280 13. Contact Levels of Detail

forces are computed as a sum of contact forces arising from a net of contact
points. One can argue that, intuitively, a larger contact area allows the
objects to be described at a coarser resolution.

The conclusions drawn from perceptual studies set the basis for er-
ror metrics in haptic rendering. The minimum acceptable resolution to
represent an object will be governed by the relationship between surface
deviation and contact area. Haptic error metrics differ notably from visual
error metrics in the mesh simplification literature [Hoppe 97, Luebke and
Erikson 97] and from metrics of visual collision perception [O’Sullivan and
Dingliana 01]. In visual rendering, the resolution required to represent an
object is based on a combination of surface deviation (or Hausdorff dis-
tance) and the viewing distance to the object. In Section 13.4, we show
how haptic error metrics drive the offline construction of CLODs, and in
Section 13.5, we show how they are used in runtime contact queries.

13.2 Approaches to Multiresolution
Collision Detection

Multiresolution collision detection refers to the execution of approximate
collision detection queries using adaptive object representations. Hub-
bard [Hubbard 94] introduced the idea of using sphere-trees [Quinlan 94]
for multiresolution collision detection, refining the BVHs in a breadth-first
manner until the time allocated for collision detection has expired. In a
sphere-tree, each level of the BVH can be regarded as an implicit approx-
imation of the given mesh, by defining the surface as a union of spheres.
Unlike LOD techniques, in which simplification operations minimize sur-
face deviation, sphere-trees add extraneous “bumpiness” to the surface,
and this characteristic can adversely affect collision response.

O’Sullivan and Dingliana [O’Sullivan and Dingliana 01] incorporated
perceptual parameters into the refinement of sphere-trees. Pairs of spheres
that test positive for collision are inserted in a priority queue, sorted ac-
cording to perceptual metrics (e.g., local relative velocity, distance to the
viewer, etc.). In this way, the adaptive refinement focuses on areas of the
objects where errors are most noticeable.

The use of multiresolution representations for haptic rendering has also
been investigated by several researchers. Pai and Reissel [Pai and Reis-
sel 97] investigated the use of multiresolution image curves for 2D hap-
tic interaction. El-Sana and Varshney [El-Sana and Varshney 00] applied
LOD techniques to 3-DOF haptic rendering. They created a multireso-
lution representation of the haptically rendered object as a preprocessing
step. At runtime, they represented the object at a high resolution near



�

�

�

�

�

�

�

�

13.3. Data Structure of CLODs 281

the probe point and at a low resolution further away. Their approach does
not extend naturally to the interaction between two objects, since multi-
ple disjoint contacts can occur simultaneously at widely varying locations
without much spatial coherence.

CLODs, as described in this chapter, employ BVHs as the basis for mul-
tiresolution collision detection. However, the principles of the multiresolu-
tion collision detection framework and the criteria for adaptively selecting
the resolution of the colliding objects can be applied to other methods as
well. Recently, [Barbič and James 07] have applied multiresolution collision
detection concepts to methods based on distance fields similar to the ones
described in Chapter 11.

13.3 Data Structure of CLODs
Efficient multiresolution collision detection depends on two main objec-
tives: (1) create accurate multiresolution representations, and (2) embed
the multiresolution representations in effective bounding volume hierar-
chies. Multiresolution representations are often created by decimating the
given polyhedral models, but difficulties arise when trying to embed these
representations in BVHs. Considering each LOD of the given object as one
whole model, each LOD would require a distinct BVH for collision detec-
tion. This requirement would then result in inefficient collision queries.

13.3.1 Definition of CLODs

Instead of considering each LOD as one whole model, CLODs constitute
a unique dual hierarchical representation, which serves as both a multires-
olution representation and a BVH. On one hand, this dual hierarchy con-
stitutes a multiresolution representation built according to haptic error
metrics. This feature enables reporting results of contact queries accurate
up to some haptic tolerance value. On the other hand, the dual hierarchy
constitutes a BVH that enables effective collision detection. Thanks to the
dual nature of the data structure, using CLODs in haptic rendering helps
to speed up contact queries, while maintaining haptic error tolerances. Fig-
ure 13.2 shows several of the CLODs obtained when processing a model of
a lower jaw, as well as a more detailed view of the combination of mesh
simplification and BVH creation (color-coded).

Assuming that an input model is described as a triangle mesh M0, the
data structure for CLODs is composed of

• A sequence of LODs {M0,M1, ...,Mn−1}, where Mi+1 is obtained by
applying simplification operations to, and removing high-resolution
geometric detail from, Mi;



�

�

�

�

�

�

�

�

282 13. Contact Levels of Detail

Figure 13.2. CLODs of a lower jaw. Original mesh and some of the CLODs,
with the different BVs color coded (top). Detailed view of the model (bottom).
Notice the combination of simplification with merging of BVs to construct the
BVH [Otaduy and Lin 03b]. ( c© 2003 ACM.)

• For each LOD Mi, a partition of the triangles of Mi into disjoint
clusters {ci,0, ci,1, ..., ci,m};

• For each cluster ci,j , a bounding volume Ci,j ;

• A tree T formed by all the BVs of clusters, where BVs of clusters in
Mi are children of BVs of clusters in Mi+1, and all the BVs except
the ones corresponding to M0 have at least one child;

• For every BV, Ci,j , the maximum directed Hausdorff distance h(Ci,j)
from its descendant BVs.

The tree T of BVs, together with the Hausdorff distances, serves as the
BVH for culling purposes in collision detection. Directed Hausdorff dis-
tances are necessary because, in the definition of CLODs, the set of BVs
associated with one particular LOD may not bound the surface of previous
LODs. Hausdorff distances are used to perform conservative collision tests.

An additional constraint is added to the data structure, such that the
coarsest LOD, Mn−1, is partitioned into one single cluster cn−1,0. There-
fore, the root of the BVH will be the BV of the coarsest LOD. Descending
to the next level of the hierarchy will yield the children BVs, whose union
encloses the next LOD. At the end of the hierarchy, the leaf BVs will enclose
the original surface M0.



�

�

�

�

�

�

�

�

13.4. Sensation-Preserving Simplification 283

Figure 13.3. Construction of CLODs: (a) Initial surface. (b) Clusters of triangles.
(c) BVs for each cluster. (d) Mesh simplification. (e) BV of the union of clusters
after some conditions are met [Otaduy and Lin 03a]. ( c© 2003 ACM.)

13.4 Sensation-Preserving Simplification
In a general case, the process of creating the CLODs, depicted in Fig-
ure 13.3, starts by grouping the triangles of the original surface into clus-
ters. The sizes and properties of these clusters depend on the type of BV
that is used for the BVH, and will be such that the performance of the
collision query between two BVs is optimized. The next step in the cre-
ation of CLODs is to compute the BV of each cluster. This initialization is
followed by a mesh-decimation process, along with bottom-up construction
of the BVH, carried out by merging clusters and computing the BV of their
union.

Otaduy and Lin [Otaduy and Lin 03b] implemented CLODs using con-
vex hulls as BVs because, if the clusters are themselves convex surface
patches, contact information at triangle level is obtained practically for
free when performing the query between BVs. Otaduy and Lin [Otaduy
and Lin 03b] followed the definition of convex surface patches by Ehmann
and Lin [Ehmann and Lin 01], which imposes local and global convexity
constraints on the process of creating CLODs: (1) interior edges of convex
patches must remain convex after simplification operations are applied, and
(2) the enclosing convex hulls cannot protrude the surface of the object.

The construction of CLODs of convex hulls is initialized by perform-
ing a convex surface decomposition of the input object and computing the
convex hulls of the resulting convex patches. This is followed by a simpli-
fication loop, in which atomic simplification operations are combined with
merging of convex hulls. Note that the data structure of CLODs imposes no
limitations on the input models, but convex surface decomposition requires
the models to be described as two-manifold, oriented triangle meshes.

After each atomic simplification operation, the union of every pair of
neighboring convex patches is tested for convexity. If the union is a valid
convex patch itself, the involved patches are merged and the convex hull
of the union is computed. All the BVs in LOD Mj that are merged to a



�

�

�

�

�

�

�

�

284 13. Contact Levels of Detail

common BV Cj+1 ∈ Mj+1 during sensation-preserving simplification will
have Cj+1 as their parent in the BVH. A new LOD is output every time
that the number of convex patches is halved.

Ideally, the process will end with one single convex patch, which serves
as the root for the BVH. However, this result is rarely achieved in prac-
tice, due to topological and geometric constraints that limit the amount
of simplification, and which cannot be removed by local operations. In
such cases, the hierarchy is completed by unconstrained pairwise merging
of patches [Ehmann and Lin 01].

13.4.1 LOD Resolution and Simplification Priority

In sensation-preserving simplification for haptic rendering, the goal is to
maximize the resolution at which LODs are generated. As explained later
in Section 13.5, the perceptual error for haptic rendering is measured by
taking into account the resolution of the surface detail that is culled away.
Multiresolution contact queries will terminate faster as a result of maxi-
mizing the resolution at which LODs are generated. From this observation,
the edge with highest resolution is selected for collapse at each sensation-
preserving simplification step. If the edge collapse is successful, the affected
edges update their resolutions and priorities, and they are reset as valid for
collapse.

The definition of sampling resolution for irregular meshes is inspired
by the 1D setting. For a 1D function F (x), the sampling resolution r is
the inverse of the distance between two subsequent samples on the real
line. This distance can also be interpreted as the projection of the segment
between two samples of the function, v1 and v2, onto the average value
of the function. The average value is the low-resolution representation of
the function itself and can be obtained by low-pass filtering. Extending
this idea to irregular meshes, the sampling resolution of an edge (v1,v2)
of the mesh M at resolution rj , Mj, can be estimated as the inverse of
the projected length of the edge onto a low-resolution representation of the
mesh, Mj+1.

Each LOD Mj is also assigned an associated resolution rj . This value
is the coarsest resolution of all edges collapsed before Mj is generated.
Geometrically, it means that the LOD Mj preserves all the detail of the
original mesh at resolutions coarser than rj .

13.4.2 Filtered Edge Collapse

The atomic simplification operations in the sensation-preserving simplifi-
cation process must take into account the convexity constraints. For this
purpose, Otaduy and Lin [Otaduy and Lin 03b] suggested the local simpli-
fication operation filtered edge collapse, inspired by multiresolution analysis



�

�

�

�

�

�

�

�

13.5. Multiresolution Contact Queries 285

Figure 13.4. Filtered edge collapse with convexity constraints. The figure illus-
trates the process of a filtered edge collapse operation. Areas G and L represent
feasible regions of global and local constraints, respectively. ( c© 2003 ACM.)

and signal processing of meshes. This operation, schematically illustrated
in Figure 13.4, is composed of the following steps:

1. A topological edge collapse. An edge (v1,v2) is first topologically
collapsed to a vertex v̂3. This step provides down-sampling.

2. An initialization process that sets the position of v̂3 using quadric
error metrics [Garland and Heckbert 97].

3. Unconstrained relaxation to a position ṽ3, using Guskov’s minimiza-
tion of second order divided differences [Guskov et al. 99].

4. The solution of an optimization problem in order to minimize the
distance of the vertex to its unconstrained position, while taking into
account the local convexity constraints.

5. A bisection search between the initial position of the vertex and the
position that meets the local constraints, in order to find a location
where self-intersection constraints and global convexity constraints
are also met.

13.5 Multiresolution Contact Queries
Using CLODs, multiresolution collision detection can be implemented by
slightly modifying the typical collision detection procedures based on BVHs.
The decision of splitting a node ab of the bounding volume test tree (BVTT)
is made as a combination of the contact query and a selective refinement
query. First, the distance query is performed. If the query returns false,
there is no need to descend to the child nodes. If the result of the distance
query is true, the query for selective refinement is performed on ab. If the



�

�

�

�

�

�

�

�

286 13. Contact Levels of Detail

Figure 13.5. Multiresolution Collision Detection Using CLODs. Left: Moving
jaws in contact, rendered at their highest resolution. Right: The appropriate ob-
ject resolution (flat-shaded) is adaptively selected at each contact location, while
the finest resolution is displayed in wireframe [Otaduy and Lin 03b]. ( c©2003
ACM.)

node ab must be refined, the traversal continues with the children of ab in
the BVTT. Otherwise, contact information can directly be computed for
ab.

Descending to children BVTT nodes involves descending to the children
BVs, as occurs in any BVH, but it also involves refining the surface repre-
sentation, due to the duality of CLODs. Selective refinement of nodes of
the BVTT activates varying contact resolutions across the surfaces of the
interacting objects, as shown in Figure 13.5. In other words, every contact
is treated independently and its resolution is selected in order to cull away
negligible local surface detail.

13.5.1 Modification of the Contact Query

A collision detection algorithm based on BVHs must ensure that, if a leaf
node ab of the BVTT returns true to the contact query, then all its ancestors
must return true as well. This is usually achieved by ensuring that the union
of the BVs at every level of a BVH fully contains the surface of the object.
In CLODs this containment property may not hold, but the correctness of
the collision detection can be ensured by modifying the collision distance
dab between two BVs a and b. Given a contact query between objects A
and B with distance tolerance d, the distance tolerance dab for the contact
query between BVs a and b may be computed as

dab = d+ h(a) + h(b), (13.1)

where h(a) and h(b) are maximum directed Hausdorff distances from the
descendant BVs of a and b to a and b respectively. The Hausdorff distances



�

�

�

�

�

�

�

�

13.5. Multiresolution Contact Queries 287

Figure 13.6. CLODs on the BVTT. BVTT in which levels are sorted according to
increasing CLOD resolution (left). The front of the BVTT for an exact contact
query, F, is raised up to the new front F

′ using CLODs (right). ( c© 2003 ACM.)

can be precomputed during the process of sensation-preserving simplifica-
tion.

13.5.2 Effects on the Front of the BVTT

Due to the addition of selective refinement, with CLODs, the active front of
the BVTT, F

′, is above the original front F that separates nodes that test
positive to distance queries q from nodes that test negative, as depicted
in Figure 13.6. The front does not need to reach the leaves of the BVTT,
as long as the error is smaller than a predefined tolerance. This approach
results in a much faster processing of contact queries and, ultimately, it
enables 6-DOF haptic rendering of complex objects.

As pointed out in Section 13.4, the top levels of the BVHs are ob-
tained by unconstrained pairwise merging of convex patches. These top
levels of the BVTT, indicated by the line λ in Figure 13.6, have no as-
sociated metric of resolution, and they always test positive for selective
refinement.

13.5.3 Resolution-Based Ordering of CLODs

When both the contact query and the selective refinement test return true
for a node ab of the BVTT, the BV whose children have coarser resolution is
split. This splitting policy yields a BVTT in which the levels of the tree are
sorted according to their resolution, as shown in Figure 13.6. A resolution-
based ordering of the BVTT is a key factor for maximizing the perfor-
mance of runtime collision detection, because CLODs with lower resolution
and larger error are stored closer to the root of the BVTT. Descending
along the BVTT has the effect of refining the CLODs. The resolution-
based ordering of CLODs of two different objects is possible because the
definition of resolution described in Section 13.4 is an object-independent



�

�

�

�

�

�

�

�

288 13. Contact Levels of Detail

absolute metric. If objects are scaled, the value of resolution must be scaled
accordingly.

13.5.4 Selective Refinement and Error Metrics

As discussed in Section 13.1, the perceptibility of surface features depends
on the ratio between their size and the contact area. This observation
leads to the design of error metrics for the selective refinement test. Given
a node ab of the BVTT, the idea behind the selective refinement test is
to evaluate whether a weighted surface deviation s∗ab, computed based on
the size of filtered features and the contact area, is larger than a prede-
fined error tolerance s0. If s∗ab is above the threshold, the node ab must
be refined. Otherwise, the filtered features are considered to be imper-
ceptible.

The weighted surface deviation s∗ is computed by averaging over an
estimated contact area D the volume estimates φa and φb of the filtered
features:

s∗ab =
max(φa, φb)

D
,

D = max(Da, Db), φa =
sa

r2a
, φb =

sb

r2b
, (13.2)

where sa is the surface deviation from the convex patch bounded by a to the
original surface, and ra is the resolution of the current CLOD. Note that
both values can be precomputed during sensation-preserving simplification.

Similarly, the online computation of the contact area between a pair
of convex patches is too expensive, given the runtime constraint of haptic
rendering. Therefore, the contact area D is estimated by selecting the
maximum support area of the contact primitives, which can be computed
as a preprocess.

Ideally, the surface deviation tolerance s0 should be a distance defined
based on human perceptibility thresholds. However, such a metric would
be independent of object size and polygon count, and it might result in
excessively large, intractable CLOD resolutions. Instead, s0 can be defined
as a metric relative to the size of the interacting objects, under the assump-
tion that the range of motion of the virtual tool covers approximately the
space occupied by the objects in the virtual workspace. As a consequence,
the required CLOD resolutions are independent of the scale of the objects,
and the contact queries run in nearly constant time, as demonstrated by
Otaduy and Lin [Otaduy and Lin 03b]. Based on informal user studies,
they estimated values of s0 between 2.5 to 5% of the radii of the interact-
ing objects. Note that the error metrics, computed for every node in the



�

�

�

�

�

�

�

�

13.6. Experiments 289

front of the BVTT, can also be used to prioritize the refinement, enabling
time-critical collision detection.

13.6 Experiments
In this section we discuss some experiments conducted to test and ana-
lyze CLODs. We first describe implementation details and the benchmark
models used in the experiments, and present statistics of the CLOD data
structures for those models. Then we discuss the selection of tolerance
values for multiresolution 6-DOF haptic rendering using CLODs, based
on experimental analysis. Last, we present performance results on 6-DOF
haptic rendering.

13.6.1 Implementation Details

The haptic demonstrations were performed using a 6-DOF PHANTOM
haptic device, a dual Pentium-4 2.4 GHz processor PC with 2.0 GB of
memory and Windows 2000 OS. The implementation, both for preprocess-
ing and for the haptic rendering, was developed using C++. The imple-
mentation of multiresolution collision detection based on CLODs uses dis-
tance and penetration depth queries between convex patches from the pub-
licly available libraries SWIFT++ [Ehmann and Lin 01] and DEEP [Kim
et al. 02c]. (See Chapter 9 for a description of the original collision detec-
tion algorithms.)

To validate CLODs in haptic rendering, the results of the contact
queries must be used to compute collision response and output force and
torque in haptic simulations. The experiments employed the direct haptic
rendering pipeline described in [Kim et al. 03] (see also Section 8.3 for a
discussion). In this rendering pipeline, contacts computed in the contact
query are clustered, and then a penalty force proportional to penetration
depth is computed for each cluster. The net penalty force is output directly
to the user, without a stabilizing intermediate representation. In this way,
the experiments do not get distorted by the use of intermediate represen-
tations, and the analysis can focus on the fidelity of the contact forces.
For higher stability, the output of collision response may be integrated in a
more stable haptic rendering pipeline, such as the one presented in [Otaduy
and Lin 05].

Following the approach developed by Kim et al. [Kim et al. 03], in
the experiments, penalty forces are applied if the interacting objects came
closer than a contact tolerance d. The value of d is chosen so that the
maximum force of the haptic device is exerted for a zero contact distance
with the optimal value of stiffness.



�

�

�

�

�

�

�

�

290 13. Contact Levels of Detail

Models Orig. Orig. Simp. Simp. r1 rλ

Tris BVs Tris BVs

Lower Jaw 40,180 11,323 386 64 144.5 12.23

Upper Jaw 47,339 14,240 1,038 222 117.5 19.21

Ball Joint 137,060 41,913 122 8 169.9 6.75

Golf Club 104,888 27,586 1,468 256 157.6 8.31

Golf Ball 177,876 67,704 826 64 216.3 7.16

Table 13.1. Benchmark models for clods and associated statistics. The numbers of
triangles (Orig. Tris) and the numbers of convex patches (Orig. BVs) of the initial
meshes of the models; the numbers of triangles (Simp. Tris) and the numbers
of convex patches (Simp. BVs) of the coarsest CLODs obtained by sensation-
preserving simplification; and resolution (r1 and rλ) of the finest and coarsest
CLODs.

13.6.2 Benchmark Models

Table 13.1 shows statistics of CLOD representations for a list of models.
This table shows the original complexity of the models (Orig. Tris and
Orig. BVs), the complexity of the coarsest CLOD obtained by sensation-
preserving simplification (Simp. Tris and Simp. BVs), and the normalized
resolution (for unit object radius) of the finest and coarsest CLODs.

Note that the models are simplified to the coarsest CLODs ranging from
122 to 1, 468 triangles. The number of BVs in the coarsest CLODs ranges
from an extreme case of 8 BVs, for the ball joint model, to 256 BVs. As a
result, the sensation-preserving selective refinement can be applied at early
stages in the contact query, and this allows more aggressive culling of parts
of the BVTT whenever the perceptible error is small. The visual complexity
and surface detail of the benchmark models is reflected in Figure 13.8.

13.6.3 Experiments on Perceptible Contact Information

The performance of CLODs in haptic rendering is heavily determined by
the selection of the threshold of weighted surface deviation s0. If the chosen
value is too high, the perceived contact information will deviate too much
from the exact contact information. On the other hand, if the value is too
low and the selected CLODs are moderately complex (i.e., consisting of
more than a thousand convex patches), the contact query will no longer
be executable at the required rate. This severely degrades the realism of
haptic perception.

Otaduy and Lin [Otaduy and Lin 03b] conducted an experiment to test
the validity of CLODs for haptic rendering, and also to identify what are
the error tolerances for which the missing surface detail is not perceptible
to users of the system. The scenario of the experiment consists of a golf



�

�

�

�

�

�

�

�

13.6. Experiments 291

Figure 13.7. Exploration of a multiresolution golf ball with an ellipsoid. Scenario
of the experiments for identifying haptic error tolerances with CLODs.

s0 ≥ 10% 5% 2.5% 1% ≤ 0.5%

No. users 0 4 7 1 0

Table 13.2. Experiments on error metrics. A majority of subjects reported a
threshold of 2.5% to 5% of the radius of the golf ball for the haptic error metric.

ball (please refer to Table 13.1 for statistics of the model) that is explored
with an ellipsoid, as shown in Figure 13.7. The ellipsoid consists of 2, 000
triangles, and it is fully convex. The ellipsoid has varying curvature, im-
plying a wide range of contact scenarios, and the selective refinement will
stop at varying CLODs.

For simplicity, a CLOD representation is created only for the golf ball,
and the ellipsoid is left invariant. Thus, the fidelity of the contact forces
relies only on the adequacy of the resolution of the golf ball that is se-
lected at each contact. Twelve users were asked to identify the value of the
threshold s0 of the haptic error metric at which the perception of surface
detail of the golf ball started deviating. The values of s0 were in the range
from 0.05% to 20% of the radius of the ball.

Table 13.2 indicates how many subjects picked each threshold value.
Based on the results of the experiments, the value of s0 for haptic simu-
lations should be in the range of 2.5% to 5% of the radii of the models.
The users also reported that the main characteristic they explored was the
perceptibility of the dimples of the golf ball.

13.6.4 Performance Experiments in 6-DOF Haptic Rendering

CLODs have successfully been applied to 6-DOF haptic rendering on the
benchmark scenarios shown in Figure 13.8.



�

�

�

�

�

�

�

�

292 13. Contact Levels of Detail

Figure 13.8. Upper and lower jaws, ball joints, and golf club and ball; benchmark
scenarios for 6-DOF haptic rendering using CLODs. ( c© 2003 ACM.)

Contact forces and running time are analyzed on the benchmark of the
moving jaws. In particular, force profiles and statistics of the contact query
are compared between interactive haptic simulations and more accurate of-
fline simulations. The interactive haptic simulations were executed using
CLODs and error tolerances of s0 < 5% of the radii of the models. The
motions of the upper jaw and the golf club were controlled using a haptic
device, which also displayed the contact forces to the user. The trajectories
were recorded in the interactive simulations, and played back to perform
more accurate simulations offline. The full accuracy corresponds to offline
simulations in which the contact queries were computed using the pub-
licly available libraries SWIFT++ [Ehmann and Lin 01] and DEEP [Kim
et al. 02c]. In the graphs shown later, these simulations are referred to as
exact. In the exact and low-error simulations, collision detection runs at
update rates of tens of Hz, which are too low for interactive haptic ren-
dering of stiff contacts. Next, we describe implementation details and the
performance results.

Figure 13.9 shows the contact profile, including the force profile, the
query time, and the size of the front of the BVTT, for 200 frames of the
moving jaws simulation. The profiles of contact forces are similar for all
error tolerances up to 2.5% of the radii of the jaws. There are some devia-



�

�

�

�

�

�

�

�

13.6. Experiments 293

0  20 40 60 80 100 120 140 160 180 200
1e3

1e4

1e5

1e6
CONTACT QUERY (µs) 2.5%

0.25%
0.025%
0.0025%
exact

0  20 40 60 80 100 120 140 160 180 200
1e2

1e3

1e4

1e5
BVTT FRONT (no. nodes)

0  20 40 60 80 100 120 140 160 180 200
1

2

3

4

CONTACT FORCE (N)

Figure 13.9. Contact profile for moving jaws. Top: the profiles of the contact
forces displayed using CLODs, with varying error tolerances up to 2.5% of the
radii of the jaws, all show very similar patterns. This similarity implies that the
sensations of shape provided to the user are nearly identical. Middle: a log plot
of contact query time using CLODs with various error tolerances shows up to
two orders of performance improvement. Bottom: the number of nodes in the
front of the BVTT is also reduced by more than a factor of 10.

tions on the average force, but the patterns are similar. With different error
tolerances, and using penalty-based rendering methods, the perception of
shape properties is almost invariant; only the perceived surface location
varies in a noticeable way. Second derivatives of the force profiles are al-
most identical in all cases, and shape properties such as curvature depend
on second derivatives of the surface.

The time spent by the contact queries goes down from more than 100 ms
using exact contact queries, to slightly more than 2ms with CLODs and an
error tolerance of 2.5% of the radii of the jaws. This drastic decrease of
the query times enables interactive 6-DOF haptic rendering. Note that the
spikes in the contact query time present in Figure 13.9 are due to context
switching in the CPU.

The size of the BVTT front varies monotonically with the contact force.
Due to the use of penalty methods, the force is higher when the objects are
closer. That explains the increase in the size of the BVTT front, because
larger areas of the objects are in close proximity. As reflected in the graphs,
however, the size of the BVTT front (and therefore the query time) is more
susceptible to lack of coherence when the error tolerance is lower. As a



�

�

�

�

�

�

�

�

294 13. Contact Levels of Detail

result, CLODs with acceptable error tolerances provide almost constant-
time contact queries.

From the analysis of the contact profiles, one can draw two main con-
clusions regarding the validity of CLODs for 6-DOF haptic rendering:

• The contact information obtained with error tolerances derived from
perceptual experiments provides shape cues that are nearly identical
to those provided by exact collision detection methods. This resem-
blance supports the observation that perception of features depends
on the ratio between their size and the contact area.

• With the same error tolerances, the running time of the contact
queries is almost two orders of magnitude faster than the running
time of exact collision detection methods. For the complex scenarios
presented in the benchmarks, our multiresolution approach enables
force update rates suitable for interactive haptic rendering.

13.7 Discussion
One of the main properties of CLODs is their generality, from various
perspectives. The data structure defined in Section 13.3 is independent of
the type of bounding volume used in the BVH; many of the concepts for
selecting an adaptive resolution based on contact area information can be
applied to other data structures and algorithms; and the collision detection
algorithm is even useful in more general rigid body simulations, with other
error metrics, as demonstrated by [Otaduy and Lin 03a].

However, CLODs also present some limitations. For example, CLODs
are static LODs, which may lead to discontinuities (i.e., “popping effects”)
when the active LODs switch. If CLODs are combined with penalty-based
collision response, discontinuities can be tackled by interpolating contact
information from two LODs. If CLODs are used along with collision re-
sponse methods that require accurate detection of the time of collision,
special treatment is necessary so that switching LODs does not generate
inconsistencies or deadlock situations in the time-stepping algorithm.

Yoon et al. [Yoon et al. 04] extended the definition of CLODs to handle
dynamic LODs, by performing multiresolution collision detection with a
cluster hierarchy of progressive meshes [Hoppe 96]. They employed OBBs
as BVs, which relax some of the geometric constraints in the construction
of CLODs and are better suited for creating dynamic LODs, but they lose
the benefits of CLODs for obtaining contact information at almost no cost.

Another limitation of CLODs is related to their psychophysical foun-
dation, which relies on perceiving features through haptic glance [Klatzky



�

�

�

�

�

�

�

�

13.7. Discussion 295

and Lederman 95]. In situations of sliding, rolling and/or twisting contact
between textured surfaces, the observation that perceptibility of features
decreases with larger contact area does not hold. Small but highly corre-
lated features appearing in textured surfaces may provide important haptic
cues that are erroneously filtered away using CLODs (or any other mul-
tiresolution collision detection algorithm based on local refinement). This
type of situation is problematic for all collision detection methods, because
of the high sampling density (i.e., object resolution) required, and it is
discussed in the context of texture rendering in Chapter 18.

Acknowledgments
The work presented here was supported in part by a fellowship of the
Government of the Basque Country, National Science Foundation, Office
of Naval Research, U.S. Army Research Office, and Intel Corporation. The
authors would also like to thank Stephen Ehmann, Young Kim, Dinesh
Manocha, and the UNC Gamma group.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

14
Physically Based Haptic

Synthesis
V. Hayward

The phrase haptic rendering was introduced by Salisbury et al. [1995] to
designate a set of “algorithms for generating the force of interaction with
virtual objects.” In this seminal paper, many of the key issues associated
with the implementation of virtual environments were first described. In
contrast, here we discuss the concept of “haptic synthesis,” i.e. a set of al-
gorithms designed to reduce the amount of online computations to a small
and predictable amount, and yet able to synthesize signals that are phys-
ically accurate. The desire for a fixed, reduced amount of computation is
not primarily motivated by the limitations of today’s microprocessors, but
rather by basic facts about the physics of mechanical interaction between
the macroscopic objects of interest in virtual reality simulations.1

This chapter discusses a set of algorithms to reconstruct interaction
forces between virtual objects in a physically accurate manner. They must
be fast enough to minimize the creation of spurious energy resulting from
the discrete-time realization of displacement-to-force relationships. The
most fundamental is an algorithm to compute the force of friction. An-
other algorithm is then described for sharp cutting, a close cousin of friction
because of its dissipative nature. Synthesis of the nonlinear deformation
response of arbitrary bodies is then considered. Textural effects are dis-
cussed in terms of small perturbations to the nominal signal. Finally, a
simple shock synthesis technique based on Hertzian contacts is described.
The haptic synthesis algorithms described in this chapter can be regarded
as building blocks for a complete rendering system, and used together with
other algorithms presented in this book.

1The four first sections of this chapter are adapted from a paper published in the
Proceedings of the 8th International IFAC Symposium on Robot Control, SYROCO
2006 Bologna (Italy) (Keynote paper). This material is used with permission of the
International Federation of Automatic Control.

297



�

�

�

�

�

�

�

�

298 14. Physically Based Haptic Synthesis

14.1 Haptic Synthesis as a Means for Passivity

Chapter 7 gives an extensive analysis of passivity and stability in haptic
rendering. Here, we focus on a low-level analysis of passivity, tied closely
to the sampling rate of the haptic rendering algorithm.

Long ago it was noticed that when simulating an elastic element with
a haptic device where the manipulandum position is measured and the
returned force is commanded, the interaction has a tendency to break into
a limit cycle. A limit cycle rather than a divergence generally occurs,
since, typically, there are nonlinear elements in the system. Colgate and
Schenkel [1994] attributed this to delay introduced by the sampling and
computation of the virtual environment. By elegant application of the
small gain theorem, they found a condition for passivity: B > (σT /2) + b.
In this expression, B is the device viscous damping, T the delay equated
to one sample period, and σ and b are the simulated stiffness and damping
coefficients respectively. They concluded that achievable damping is not
dependent on the sampling rate: nevertheless, achievable stiffness is.

A commonly adopted approach to deal with this problem is the virtual
coupling method described by Adams and Hannaford [1999] that limits the
interaction impedance to an achievable value. Other approaches include
deadbeat control ideas [Gillespie and Cutkosky 96] or predictive-sample-
hold [Ellis et al. 97], methods which invariably increase the complexity and
the amount of computations required from sample to sample.

Suppose that the virtual environment to be simulated is a spring de-
flected by d. We may view sampling and reconstruction as a form of gen-
erative hysteresis where the force response of the computer simulation lags
behind displacement. For a zero-order hold, we can evaluate the energy
gained from sample to sample as the area described by the force trajectory
branching off from the displacement trajectory until they meet again after
one sample period (see Figure 14.1), that is, 1/2 ∆f ∆d ≈ 1/2 σ(∆d)2.

For energy to decrease at all times, the incremental potential energy
gained by delaying the simulation of the spring by one period should be
smaller than the energy lost in viscosity by the manipulandum moving at
average velocity v during the same period, that is, Bv∆d ≈ B(∆d)2/T
which gives B � 1/2 σT . This is equivalent to Colgate’s expression. What

Figure 14.1. Response branching.



�

�

�

�

�

�

�

�

14.2. Friction 299

is more, this reasoning does not require any particular assumption about
the simulated environment so we can generalize this to B(t) � 1/2 σ(d, t)T .2

In fact in [Mahvash and Hayward 05] a theorem is indicated that guarantees
the existence of T for the passive synthesis of a wide class of nonlinear,
multidimensional virtual environments.

Recently, a similar expression was obtained to relate the dissipation
due to dry friction with position measurement quantization. Limit cycles
can be prevented if there is sufficient friction, namely, if ff ≥ 1/2 σ δ,
where δ is the position quantum and ff the friction force [Abbott and
Okamura 05,Diolaiti et al. 06]. To derive this expression, consider that the
effect of quantization is to offset the force update by at most δ. As in the
previous paragraph, we require friction to dissipate the energy gained from
an error of at least one position quantum. The area under the branching
triangle is 1/2 σ δ2. The energy lost to friction between two updates must
be greater, ff δ ≥ 1/2 σ δ2, yielding the same expression.

With haptic synthesis, the objective is to minimize the creation of spu-
rious energy by increasing the sampling rate as much as required by the
device used to produce force and read position. Of course, one special case
is when the virtual environment is passive to start with, but it is also pos-
sible to consider environments which are not. In any case, what is needed
is reduced complexity of the calculations in the closed loop. In the rest of
this chapter, we will discuss how a number of basic mechanical interactions
can be synthesized at little cost. For consistency, the notation may differ
substantially from that used in original papers.

14.2 Friction
In its most basic aspect, friction relates a displacement to a force that
tends to oppose it and has at least two distinct states: sticking or slip-
ping. There are velocity-dependent effects such as lubrication-related ef-
fects [Armstrong-Hélouvry et al. 94], but these can be ignored. The relation
between displacement and force, up to a factor, can be written in differen-
tial form using the original Dahl’s [1976] model:

dd
dp

= 1 − ζ sgn(dp) d. (14.1)

This expression is particularly suitable for haptic synthesis, since once
Equation (14.1) is discretized, for each measured displacement p̄ it is easy

2Many similar conditions can be found, depending on the assumptions made. For
example, in Bonneton (1994) approximating e−T s using the Padé approximation, it was
found that conditions for stability were B < b + 2M/T and σT < b + B, among others.



�

�

�

�

�

�

�

�

300 14. Physically Based Haptic Synthesis

Figure 14.2. Adhesion functions. (1) Adequate for haptics. (2) Better for control
of machines [Dupont et al. 02]. (3) Arbitrary mix of elasticity and plasticity. For
(1), (2), and (3), we normally select dmax = dstick. If dmax < dstick, additional
solutions arise. (4) Dahl: an equal mix of elasticity and plasticity.

to find an updated d. The “time free” governing dynamics make it explicit
that velocity is not required, and, like real friction, gives a well defined value
even if velocity is zero [Hayward and Armstrong 00]. The state d repre-
sents an actual physical quantity: the elastic tangential deflection seen in
any real contact. The tangential friction force is then a function of d, say
proportionally to the normal force and to a coefficient µ that embodies the
properties of a contact (contact geometry, materials, and other considera-
tions; see Section 14.4). That the normal force also results from a deflection
will allow us to realize haptic synthesis in general cases without ever having
to worry about interaction forces, as further discussed in Section 14.4.

However, in the course of implementation, we realized that this model
gave an unphysical behavior: small movements caused the simulated con-
tact to drift, that is, some bounded inputs under the breakaway threshold
gave unbounded net displacement [Hayward and Armstrong 00]. As a mat-
ter of fact, Dahl’s model does not admit a sticking phase, as commented
in [Dupont et al. 00]. An improved model that retains much of the original
simplicity is written

dd
dp

= 1 − ζ(d) sgn(dp) d, (14.2)

where ζ(d) now is a function that governs the transition from stick to slip,
according to the deflection. Referring to Figure 14.2, if ζ(d) = 0 for a range
of values, then dd = dp, and hence the contact is stuck. For any other case
there will be a mix of elasticity (stick) and plasticity (slip).

This model has many interesting properties, but for haptic synthesis,
attractive features are easy to specify a vectorial extension and a noise-
robust solution. Using boldface to designate vectorial quantities, calling
p̄k the manipulandum’s measured position, dk the elastic component of



�

�

�

�

�

�

�

�

14.2. Friction 301

a b

Figure 14.3. (a) Sliding state. (b) Sticking state.

the displacement, and ck the plastic component, the online solution is

ck =

⎧⎪⎪⎨⎪⎪⎩
p̄k − p̄k−ck−1

|p̄k−ck−1|dmax,

if |p̄k − ck−1| > dmax;
ck−1,

otherwise,

(14.3)

dk = p̄k − ck

for the simplest version of ζ(d), the adhesion function 1 in Figure 14.2.
Figure 14.3 illustrates this computation graphically.

For any adhesion function, the solution can be found by Euler integra-
tion:

ck =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p̄k − p̄k−ck−1

|p̄k−ck−1|dmax,

if ζ(p̄k − ck−1)|p̄k − ck−1| > 1;
ck−1+
|p̄k − p̄k−1|ζ(p̄k − ck−1)(p̄k − ck−1),

otherwise.

(14.4)

The solution can also be vizualized by plotting the vector d while tracing
a trajectory with p as input; see Figure 14.4.

From the perspective of haptic synthesis, this makes it clear that the
simulation of realistic friction is a considerable challenge, since the charac-
teristic distance dmax—the presliding distance—is measured in micrometers
for hard objects. The resolution of the haptic device should be higher than
this number to simulate hard contact. Another challenge is related to the
passivity of the simulation. During sliding, the model is dissipative by con-
struction, but in the stick phase it is purely elastic. One might think of
adding viscosity, but we know that this approach has only limited value.
To fix ideas, let’s asume that dmax = 10−5 m and that the tangential slid-
ing force is 1 N; thus the contact’s σ is 105 N/m. Therefore, viscosity, real
or virtual, for a sampling frequency of 104 Hz should be of the order of
σT = 10 N·s/m, a large value indeed. This limits how small dmax can be
for a given device.



�

�

�

�

�

�

�

�

302 14. Physically Based Haptic Synthesis

Figure 14.4. Vector friction d plotted with its origin at p. Multiplying by a nega-
tive factor proportional to the normal force gives a friction force. The trajectory
terminates at the upper right corner in a stuck state, where c is invariant, yet d
exists.

14.3 Damage
For haptic synthesis, damage is defined as the simulation of the creation
of new surfaces in a solid. This may have many forms, but we first looked
at sharp cutting, basing our model, like that of friction, on basic physical
properties [Mahvash and Hayward 01]. Fracture mechanics indicates that
the creation of new surfaces corresponds to the irreversible dissipation of
energy proportionally to the area of a crack extension. Cutting is also pre-
ceded with storage of elastic energy. In that, it is quite similar to friction.
Referring to Figure 14.5, consider an infinitesimal section of a solid of width
dl cut by a sharp blade. As the blade moves by ∆dz , the crack surface is
increased by ∆s while the crack length extends from c to c + ∆c. If the
solid deforms, the solid element surrounding the crack changes from shape

Figure 14.5. Quantities defined for sharp cutting. A blade move in an elementary
block of width dl with a force fz.



�

�

�

�

�

�

�

�

14.3. Damage 303

Figure 14.6. Possible response branches.

Rs to shape Rs+∆s. In the course of a complete cut, our model predicts a
number of distinct events.

These events can be described by reference to Figure 14.6. As the
blade first touches the object, deformation occurs and the response follows
path 1, where elastic energy is stored. Deflection continues until the cutting
force fz

rupture is sufficient to initiate a crack. Almost instantly, the stored
energy is released, 2, to create a crack whose size can be deduced from the
energy stored during initial loading and from the fracture toughness of the
material, Jc. If the blade retreats, the response follows another unloading
curve 3, owing to the existence of the crack. If the blade moves forward,
sharp cutting occurs. The cutting force fz

cut along 4 can be found from Jc,
the movement of the blade and the width of the cut. If at any momen, the
blade retreats, as in 5 or 6, a new unloading/loading curve is created.

In all cases, the force response can be determined from energy conserva-
tion considerations involving the work lost in extending a crack, Jc a(∆s),
and the work made by the moving blade, fz∆dz [Mahvash and Hay-
ward 01].

Experiments carried out with liver and potato samples indicated good
agreement between the model and experiments; see Figure 14.7. This was
further applied to model cutting forces with scissors and other forms of
cutting [Mahvash and Okamura 05,Mahvash 06b]. Please see Chapter 21
in this collection for further detail.

1 N

Figure 14.7. Three overlaid responses from cutting a 20 mm wide potato prism
with a sharp razor blade, where the response branches are visible (left). Synthe-
sized response (right).



�

�

�

�

�

�

�

�

304 14. Physically Based Haptic Synthesis

14.4 Elastic Deformation
When a tool is used to interact with a body without causing damage, defor-
mation occurs. Synthesizing the full, detailed response requires accounting
for the tool used, the body’s shape, material, inhomogeneity, nonlinearity,
small and large deformations, support, and so on. These requirements seem
to be in opposition with the fact that the fully detailed computational simu-
lation of contact is a formidable computational problem. Experiments were
carried out to highlight this [Mahvash and Hayward 02]. Figure 14.8 shows
a tool ready to indent a sample of liver that is well supported by a rigid
plate. In this condition, the details of the contact mechanics dominate the
response. Figure 14.8 shows the response for two different tools. Changing
the tool size (same shape) by a factor of four modifies the response by
orders of magnitude for the same indentation.

Similar significant differences would be observed in bodies that are ho-
mogenous or not, isotropic or not, whether deformation is small or large,
local or global, etc. [Mahvash and Hayward 04]. In this reference, we list
four requirements for high-fidelity haptic simulation:

1. Resemblance of virtual force responses with actual responses;

2. Force continuity under all allowed maneuvers;

3. Passivity of the virtual environment; and

4. High update rate.

Haptic synthesis techniques, however, allow one to account for the full com-
plexity of mechanical interactions with deformable bodies, while meeting

0 2 4 6
Deflection (mm)

Ø 12.7 mm 

Ø 3.2 mm 

Fo
rc

e 
(N

)

0

4

2

3

1

Figure 14.8. Testing a well-supported sample of liver, and response to local de-
formation of biological tissue with two different tools. After a few millimeters of
deflection, the responses differ by orders of magnitude.



�

�

�

�

�

�

�

�

14.4. Elastic Deformation 305

Figure 14.9. Local response encoded as force deflection curves at each node. If
the projection of point p is within a set bound, the contact is stuck.

these requirements. The basic observation is that when a given tool en-
counters a given body, no matter how complicated the interaction is, the
subsequent response is entirely determined by the initial point of contact.
If we consider that for a given tool, each point of the surface determines
a different response—a vector function of a deflection vector—, then the
entire response is nothing but a continuous field of functions. From physics,
we know that each of these functions should be conservative, and so must
be the field. This observation allowed us to establish a synthesis method
to reconstruct this field passively from a finite set of samples [Mahvash and
Hayward 05].

Briefly, the method consists of interpolating a finite set of vector func-
tions determined from first principles, from measurements, or from offline
simulations. Referring to Figure 14.9, one approach is to store one func-
tion at each surface node of the synthesized body and interpolate a new
response function for initial contact point c given a deflection d.

Because these functions are nonlinear, the choice of coordinates is cru-
cial and a new set must be interpolated at c from the coordinates used
for each node. For the case indicated in Figure 14.9, there are three co-
ordinates, ν ∈ {x, y, z}. For any patch m, with the interpolation weights
mni(c), the interpolation formulae are

uν
c =

3∑
i=1

mni(c) muν
i , (14.5)

fν
c (dν) =

3∑
i=1

mni(c) mfν
i (dν). (14.6)



�

�

�

�

�

�

�

�

306 14. Physically Based Haptic Synthesis

The synthesis of the nonlinear response is a simple process that can be
decoupled from the other processes in a complete simulation system. In
particular, interference detection which reduces to the determination of an
active patch, can be performed asynchronously. The algorithmic details are
in [Mahvash and Hayward 05]. Moreover, the storage required for many
cases of practical interest is quite modest, owing to the necessity to store
data proportionally to the surface of the body, but not to its volume. Now,
if the interaction has a lateral component, then slip can occur, and therefore
the point c could be moving.

In Section 14.2, we developed a synthesis model for the dynamics of
sliding contacts. Following this model, the movement of point c can be gov-
erned by the algorithm described there. In effect, the projection of point p
on the envelope of the undeformed body should remain within bounded
lateral deflections. We have seen earlier that for hard objects, this lat-
eral deflection could be as small as a few micrometers, but for deformable
bodies such as organs, it can be as large as centimeters. The basic phe-
nomenon is nevertheless the same, so the synthesis method outlined here
can be viewed as an extension of the simple model of Section 14.2, but
accounting for shape, normal deflection, and tool and material properties.
The dependence of the tangential friction force as a function of the normal
component can be expressed by a friction coefficient defined as

µc =
dz

c√
dx

c
2 + dy

c
2
. (14.7)

Coefficient µc may be known at only a finite number of places on the surface
of the body and may be interpolated to be defined everywhere. Moreover,
if µc is made to be invariant with the contact surface, that is, with the
normal deflection, then it is equivalent to assuming that Amontons’ Law
holds [Mahvash and Hayward 05].

It is is also possible to synthesize a difference response for different
manners in which a tool can contact a body. If m is a patch on the body
and j a specific response,

uν
c =

∑
i

jni(c)

(∑
l

mnl(c) jmuν
il

)
, (14.8)

fν
c (dν) =

∑
i

jni(c)

(∑
l

mnl(c) jmfν
il(d

ν)

)
. (14.9)

The techniques described up to now can be combined in a unified framework
for the haptic synthesis of a wide range of effects [Mahvash 06b].



�

�

�

�

�

�

�

�

14.5. Texture 307

14.5 Texture

Texture refers to small-scale modifications of mechanical interaction re-
sponse during scanning or during penetration. In Campion and Hay-
ward [2005] we observed that textural synthesis could be viewed as a
small oscillatory component superposed to a low frequency nominal re-
sponse component; see Figure 14.10. This small oscillatory component can
be combined with any synthesized signal; for example, adding it to the
synthesized response of Figure 14.7 would increase realism. Thus, texture
synthesis is amenable to “small signal analysis.” Using the analogy between
scanning a texture and a wave traveling at a variable speed, we used the
Nyquist and the Courant conditions to derive relationships that state the
conditions under which a texture can possibly be synthesized by a haptic
device—a mechanical system which no longer should be approximated by
a rigid body.

The summary of these derivations is given here. Given k, the spatial
frequency of a grating; T , the system sampling period; v, the scanning
velocity; δ, the device resolution; b, the force resolution; α, a temporal
safety factor (at least 2, better 10); β, a spatial safety factor (at least
2, better 10); γ, a force reconstruction safety factor (at least 10); A, the
desired force amplitude the synthesized grating; A0, the maximum control
stiffness; and F0, the first mode of the device; then Table 14.1 summarizes
the limits that cannot be exceeded in order to make it possible to render a
given grating with a given device. These limits do not guarantee that the
grating question will be synthesized correctly, but if one of these limits is
exceeded it is highly likely that it will not be the case. We also found that
the limit A0 was proportional to the slope of the texture function, or more
generally to the norm of the Jacobian matrix of the texture generating
function if it is multidimensional.

As an example, the phantom which, in principle, has enough resolution
in time and space to render correctly textures up to 1 mm in spatial fre-
quency, was experimentally found to incorrectly render textures as coarse as
10 mm because of mechanical resonances, with a first anti-resonance as low
as 30 Hz. With another device, the Pantograph, which has a much higher

Figure 14.10. Acceleration of a stylus dragged on a wooden surface.



�

�

�

�

�

�

�

�

308 14. Physically Based Haptic Synthesis

Scanning velocity limit . . . . . . . . αk v T < 1
Low speed reconstruction limit β k δ < 1
High speed reconstruction limit αk δ < 1
Force reconstruction limit . . . . . γ b<A
Gain limit . . . . . . . . . . . . . . . . . . . . . Ak< A0

Device structural limit . . . . . . . . v k< F0

Table 14.1. Summary of limits.

structural bandwidth, 400 Hz, it was possible to find a reconstruction fil-
ter that robustified the system under all reasonable operating conditions,
although finding optimal filters that can take into account the open loop
and the closed loop behavior of a given haptic system remains an open
question.

14.6 Shocks
When a tool meets an object with significant initial velocity, a shock occurs.
The response is an important part of the feel. In this section we look at a
synthesis model that accounts for a transient response. For more realism
decaying oscillatory components may be added [Okamura et al. 98]. Shocks
have the particularity that they can be synthesized in “open-loop,” that
is, momentarily ignoring the measured position of the device during the
duration of the event [Kuchenbecker et al. 06]. For more detail, the reader
should refer to Chapter 21 in this collection.

The model adopted is a simplified version of Hertz’ contact theory. It
says that when objects are in contact, there is a finite contact area that
increases with mutual, or one-sided, local deformation. At the same time,
some energy is lost during the brief moment of a collision. Some of it is
lost through internal dissipation, and some is lost in acoustic propagation.
It is clearly very difficult to predict exactly these effects; however, a good
phenomenological description is captured by this force response equation,
known as the Hunt-Crossley collision model [Hunt and Crossley 75]:

fshock = K(dz) −D(dz)ḋz , (14.10)

where dz is, as before, the penetration depth at the contacting surface,
and K(·) can be a response of the form k0 d

zi, where i may represent the
growth rate of the surfaces in contact. The function D(·) is meant to
represent the details of dissipation. For example, if we take the simplest
case of D(dz) = B0 d

z , it expresses the fact that when the area in the
contact increases with dz, the dissipative coefficient also increases. It also



�

�

�

�

�

�

�

�

14.7. Conclusion 309

expresses the fact that when dz = 0, just at the beginning of a collision,
fshock = 0 also, because there is no dissipation. This guarantees force
continuity, since the force is also zero just before the collision. Various
profiles for K(·) and D(·) provide for different collision “feels.” An open-
loop implementation can be accomplished by equating Equation (14.10) to
−md̈z, where m is a virtual mass that can be selected to be close to the
effective end-point inertia of the device. Solving the resulting differential
equation inexpensively using Euler integration for a short time interval,
from the instant the collision is detected to the time dz is again zero, gives
a force trajectory that can be played in open-loop and that necessarily
terminates with a value of the force equal to zero. Even a crude estimate
of the initial value of ḋz will give a realistic sensation.

Methods exist for identifying K(·) and D(·) but their description is be-
yond the scope of this paper. In any case an important model matching
condition is established when the loop areas are equal between measure-
ments and simulation, that is, when the dissipation is the same. This
model-matching condition appears to be more important than attempting
to reproduce the details of the loop shapes.

As mentioned earlier, on impact, objects can have a structural response
that can be synthesized by a sum of decaying sinusoidal vibrations, that
is, by modal synthesis fvib =

∑
i e

bitai sin(ωit). A structural shock can be
initiated as a response to an event. Computationally, the response may
be generated from a wave table. Other methods can be used to specify a
waveform that is played during the duration of a simulated shock. In any
case, the magnitude of the shock is modulated by a factor that depends on
the initial contact velocity.

14.7 Conclusion
Haptic synthesis bears some analogy with real-time audio synthesis, where a
computational loop must be able to reconstruct physically and perceptually
relevant aspects of the original signal. What our experience has shown is
that in many cases, unlike the case of audio synthesis, the limits due to
the performance characteristics of currently available devices far exceed the
limits due to computation [Hayward and Astley 96].

This state of affairs calls for new approaches in the design of devices,
e.g., [Harwin and Wall 99, Gosline et al. 06] among others, with signifi-
cantly improved performance characteristics that can take full advantage
of the currently available computational techniques of haptic synthesis, in
addition to those presently under development. In our laboratory, these
are specifically targeted at accurately synthesizing dynamics effects such
as impact, viscosity, and others.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

15
Three-Degree-of-Freedom

Rendering
C. Basdogan, S. D. Laycock, A. M. Day,

V. Patoglu, and R. B. Gillespie

This chapter will introduce the fundamental metaphor for haptic interac-
tion: single-point contact or three-degree-of-freedom haptic rendering. Due
to its fundamental aspect, we first review some of the introductory concepts
about human-computer interaction through a haptic display.

Then, we describe the basic techniques for rendering contact between
a single point and a 3D object in a virtual environment. This interaction
metaphor corresponds to feeling and exploring the same 3D object through
the tip of a stylus in the real world. Throughout the chapter, we refer to
the single contact point as a haptic interface point (HIP), as shown in
Figure 15.1. Three-DOF haptic rendering should be distinguished from
6-DOF rendering, which involves object-object interaction and is covered
in later chapters in this book.

15.1 Human-Machine Coupling
Some may consider haptic rendering as significantly more complex (and
interesting) than visual rendering, since it is a bilateral process : display
(rendering) cannot be divorced from manipulation. Thus any haptic ren-
dering algorithm is intimately concerned with tracking the inputs of the
user, as well as displaying the haptic response. Also, note that haptic
rendering is computationally demanding, due to the high sampling rates
required. While the visual system perceives seamless motion when flipping
through 30 images per second, the haptic system requires signals that are
refreshed at least once every millisecond. These requirements are driven
by human haptic ability to detect vibrations that peaks at about 300 Hz
but ranges all the way up to 1000 Hz. Note that vibrations up to 1000 Hz
might be required to simulate fast motion over fine texture, but also might
be required for sharp, impulsive rendering of a changing contact condition.

311



�

�

�

�

�

�

�

�

312 15. Three-Degree-of-Freedom Rendering

Figure 15.1. Point-based haptic interactions with 3D objects in virtual environ-
ments.

Haptic rendering requires a haptic interface, a computationally medi-
ated virtual environment, and a control law, according to which the two are
linked. Figure 15.2 presents a schematic view of a haptic interface and the
manner in which it is most commonly linked to a virtual environment. On
the left portion of the figure, mechanical interaction takes place between a
human and the haptic interface device, or more specifically, between a fin-
gertip and the device end-effector. In the computational domain depicted
on the right, an image of the device end-effector E is connected to a proxy
P through what is called the virtual coupler. The proxy P in turn interacts
with objects such as A and B in the virtual environment. Proxy P might
take on the shape of the fingertip or a tool in the user’s grasp.

The virtual coupler is depicted as a spring and damper in parallel, which
is a model of its most common computational implementation, though gen-
eralizations to 3D involve additional linear and rotary spring-damper pairs
not shown. The purpose of the virtual coupler is twofold. First, it links
a forward-dynamics model of the virtual environment with a haptic inter-
face designed for impedance-display.1 Relative motion (displacement and
velocity) of the two ends of the virtual coupler determines, through the

1Impedance display describes a haptic interface that senses motion and sources forces
and moments. An admittance display sources motion and senses forces and moments.
Most haptic interface devices are controlled using impedance display, which may be im-
plemented using low-inertia motors and encoders connected to the mechanism through
low-friction, zero-backlash, direct-drive or near-unity mechanical advantage transmis-
sions. Impedance display does not require force or torque sensors.



�

�

�

�

�

�

�

�

15.1. Human-Machine Coupling 313

Figure 15.2. This two-part figure presents a schematic representation of haptic
rendering. The left figure corresponds to the physical world, where a human inter-
acts with the haptic device. The figure on the right depicts the computationally
implemented virtual environment.

applicable spring and damper constants, the forces and moments to be ap-
plied to the forward dynamics model and the equal and opposite forces and
moments to be displayed by the haptic interface. Note that the motion of
P is determined by the forward dynamics solution, while the motion of
E is specified by sensors on the haptic interface. The second role of the
virtual coupler is to filter the dynamics of the virtual environment so as
to guarantee stability when display takes place through a particular hap-
tic device. The parameters of the virtual coupler can be set to guarantee
stability when parameters of the haptic device hardware are known and
certain input-output properties of the virtual environment are met. Thus
the virtual coupler is most appropriately considered part of the haptic
interface, rather than part of the virtual environment [Adams and Han-
naford 99,Adams and Hannaford 02]. If an admittance-display architecture
is used, an alternate interpretation of the virtual coupler exists, though it
plays the same two basic roles. For further discussion of the virtual coupler
in performance/stability tradeoffs in either the impedance or admittance-
display cases, see the work done by [Adams and Hannaford 99,Adams and
Hannaford 02,Miller et al. 00].

One final note can be made with reference to Figure 15.2: rigid bodies in
the virtual environment, including P , have both configuration and shape—
they interact with one another according to their dynamic and geometric
models. Configuration (including orientation and position) is indicated in
Figure 15.2 using reference frames (three mutually orthogonal unit vectors)
and reference points fixed in each rigid body. Shape is indicated by a surface
patch. Note that the image of the device end-effector E has configuration,
but no shape. Its interaction with P takes place through the virtual coupler
and requires only the configuration of E and P .



�

�

�

�

�

�

�

�

314 15. Three-Degree-of-Freedom Rendering

Figure 15.3. A block diagram of haptic rendering according to an impedance
display architecture. There are three major blocks in the diagram modeling,
input/output characteristics of the human, the haptic interface, and the virtual
environment.

The various components in Figure 15.2, including the human user, hap-
tic device, virtual coupler, and virtual environment, form a coupled dy-
namical system whose behavior depends on the force/motion relationship
established by the interconnection of the components. Figure 15.3 shows
these components interconnected in a block diagram, where the additional
indication of causality has been made. Causality expresses which force and
motion variables are inputs and which are outputs for each component. For
example, the human operates on the velocity vh (common to the finger and
end-effector) to produce the force Fh imposed on the haptic device. The
haptic device is a two-port that operates on the force Fh imposed by the
human and the force Fm produced by its motors to produce the velocities
vh and vm. Usually, by careful haptic device transmission design, vh and vm

are the same, and are measured with a single encoder. Intervening between
the human and haptic device, which live in the continuous, physical world
and the virtual coupler and virtual environment, which live in the discrete,
computed world, are a sampling operator T and zero-order hold (ZOH).
The virtual coupler is shown as a two-port that operates on velocities vm

and ve to produce the motor command force Fm and force Fe imposed on
the virtual environment. Forces Fm and Fe are usually equal and opposite.
Finally, the virtual environment is shown in its forward dynamics form,
operating on applied forces Fe to produce response motion ve. Naturally,



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 315

the haptic device may use motors on its joints, so the task-space command
forces Fm must first be mapped through the manipulator Jacobian before
being applied to the motors.

Note that the causality assumption for the human is by itself rather arbi-
trary. However, causality for the haptic device is essentially determined by
electro-mechanical design, and causality for the virtual coupler and virtual
environment is established by the implementation of a discrete algorithm.
The causality assumptions in Figure 15.3 correspond to impedance display.
Impedance display is the most common, but certainly not the only, possi-
ble implementation. See [Adams and Hannaford 99] for a framework and
analysis using network diagrams (that do not indicate causality), which is
more general.

15.2 Single-Point Rendering of 3D Rigid Objects
Typically, a haptic rendering algorithm is made of two parts: (a) collision
detection and (b) collision response (see Figure 15.4). As the user manip-
ulates the probe of the haptic device, the new position and orientation of
the haptic probe are acquired, and collisions with the virtual objects are
detected (i.e., collision detection). If a collision is detected, the interaction

Figure 15.4. A haptic interaction algorithm is typically made of two parts. (a)
Collision detection. (b) Collision response. The haptic loop seen in the figure
requires an update rate of around 1 kHz for stable force interactions. Com-
putationally fast collision detection and response techniques are necessary to
accommodate this requirement.



�

�

�

�

�

�

�

�

316 15. Three-Degree-of-Freedom Rendering

void calculate force (Vector &force)
 {
  float X, Y, Z, distance;
  float R = 20.0;

  X = HIP[0]; Y = HIP[1]; Z = HIP[2];
  distance = sqrt(X*X + Y*Y + Z*Z;

  if (distance < R) // collision check
  {
   force[0] = X/distance * (R-distance);
   force[1] = Y/distance * (R-distance);
   force[2] = Z/distance * (R-distance);

  }

 }

Figure 15.5. Haptic rendering of a 3D sphere in virtual environments. The soft-
ware code presented on the right-hand side calculates the direction and the mag-
nitude of the reaction force for the sphere discussed in the example. The sphere
has a radius of 20 units and is located at the origin.

forces are computed using preprogrammed rules for collision response and
conveyed to the user through the haptic device to provide him/her with
the tactual representation of 3D objects and their surface details. Hence, a
haptic loop, which updates forces around 1 kHz (otherwise, virtual surfaces
feel softer, or, at worst, instead of a surface, it feels as if the haptic device
is vibrating), include at least the following function calls:

• Position and/or orientation of the end-effector
get position (Vector &position);

• User-defined function to calculate forces
calculate force (Vector &force);

• Calculate joint torques and reflect forces back to the user
send force (Vector force);

To describe the basic concepts of haptic rendering, let us consider a
simple example: haptic rendering of a 3D frictionless sphere, located at the
origin of a 3D virtual space (see Figure 15.5). Let us assume that the user
can only interact with the virtual sphere through a single point that is the
end point of the haptic probe, also known as the Haptic Interaction Point
(HIP). In the real world, this is analogous to feeling the sphere with the
tip of a stick. As we freely explore the 3D space with the haptic probe,
the haptic device will not reflect any force to the user until a contact oc-
curs. Since our virtual sphere has a finite stiffness, the HIP will penetrate
into the sphere at the contact point. Once the penetration into the virtual
sphere is detected and appropriate forces to be reflected back to the user
are computed, the device will reflect opposing forces to our hand, to resist



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 317

Figure 15.6. Force-displacement curves for touch interactions with real and virtual
walls. In the case of a real wall, the force-displacement curve is continuous.
However, we see the “staircase” effect when simulating touch interactions with
a virtual wall. This is due to the fact that a haptic device can only sample
position information with a finite frequency. The difference in the areas enclosed
by the curves that correspond to penetrating into and out of the virtual wall
is a manifestation of energy gain. This energy gain leads to instabilities as the
stiffness coefficient is increased (compare the energy gains for stiffness coefficients
k1and k2). On the other hand, a low value of the stiffness coefficient generates a
soft wall, which is not desirable, either.

further penetration. We can easily compute the magnitude of the reac-
tion force by assuming that it is proportional to the depth of penetration.
Assuming no friction, the direction of this force will be along the surface
normal, as shown in Figure 15.5.

As it can be seen from the example given above, a rigid virtual surface
can be modeled as an elastic element. Then, the opposing force acting on
the user during the interaction will be

⇀

F = k∆⇀
x (15.1)

where k is the stiffness coefficient and |∆⇀
x| is the depth of penetration.

While keeping the stiffness coefficient low would make the surface feel soft,
setting a high value can make the interactions unstable by causing un-
desirable vibrations. Figure 15.6 depicts the changes in force profile with
respect to position for real and virtual walls. Since the position of the probe
tip is sampled digitally with certain frequency during the simulation of a
virtual wall, a “staircase” effect is observed. This staircase effect leads to



�

�

�

�

�

�

�

�

318 15. Three-Degree-of-Freedom Rendering

energy generation (see the discussions and suggested solutions in [Colgate
and Brown 94,Ellis et al. 96,Gillespie and Cutkosky 96]).

Although the basic recipe for haptic rendering of virtual objects seems
easy to follow, rendering complex 3D surfaces and volumetric objects re-
quires more sophisticated algorithms than the one presented for the sphere.
The stringent requirement of updating forces around 1 kHz leaves us very
little CPU time for computing the collisions and reflecting the forces back
to the user in real time when interacting with complex shaped objects. In
addition, the algorithm given above for rendering of a sphere considered
only “point-based” interactions (as if interacting with objects through the
tip of a stick in real world), which is far from what our hands are capable
of in the real world. However, several haptic rendering techniques have
been developed to simulate complex touch interactions in virtual environ-
ments. The existing techniques for haptic rendering with force display
can be distinguished based on the way the probing object is modeled: (1) a
point [Zilles and Salisbury 95,Adachi et al. 95,Avila and Sobierajski 96,Rus-
pini et al. 97, Ho et al. 99], (2) a line segment [Basdogan et al. 97, Ho
et al. 00], or (3) a 3D object made of group of points, line segments, and
polygons [McNeely et al. 99, Nelson et al. 99, Gregory et al. 00b, Johnson
and Willemsen 03,Laycock and Day 05,Otaduy and Lin 05]. The type of
interaction method used in simulations depends on the application.

In point-based haptic interactions, only the end point of the haptic
device interacts with virtual objects. Each time the user moves the generic
probe of the haptic device, the collision detection algorithm checks to see if
the end point is inside the virtual object. If so, the depth of indentation is
calculated as the distance between the current HIP and the corresponding
surface point, also known as the ideal haptic interface point (IHIP), god-
object, proxy point, or surface contact point. For exploring the shape and
surface properties of objects in VEs, point-based methods are probably
sufficient and could provide the users with force feedback similar to that
experienced when exploring the objects in real environments with the tip
of a stylus.

An important component of any haptic rendering algorithm is the colli-
sion response. Merely detecting collisions between 3D objects is not enough
for simulating haptic interactions. How the collision occurs and how it
evolves over time (i.e., contact history) are crucial factors in haptic ren-
dering to accurately compute the interaction forces that will be reflected
to the user through the haptic device [Ho et al. 99, Basdogan and Srini-
vasan 02]. In other words, the computation of IHIP relies on the contact
history. Ignoring contact history and always choosing the closest point on
the object surface as our new IHIP for a given HIP would make the user
feel as if he or she is pushed out of the object. For example, Figure 15.7(a)
shows a thin object with the HIP positioned at three successive time steps.



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 319

Figure 15.7. (a) The Haptic Interface Point can be forced out of the wrong side
of thin objects. (b) The Haptic Interface Point is equidistant to both faces. The
algorithm is unable to decide which face is intersected first by looking at a single
time step.

Step 1 shows the HIP on the left hand side just coming into contact with
the thin object. At Step 2, the HIP has penetrated the thin object and
is now closer to the right face of the object. The HIP will be forced out
the other side, producing an undesired result. A similar problem will oc-
cur if the HIP is located equidistant to two faces of the virtual object.
Figure 15.7(b) illustrates this case, and it is unclear which face normal to
choose by looking at a single time step. The HIP could easily be forced
out of the object in the incorrect direction. To overcome these problems,
an approach is required to keep a contact history of the position of the
HIP. The next section discusses techniques that, among other advantages,
overcome these problems.

The algorithms developed for 3-DOF point-based haptic interaction de-
pend on the geometric model of the object being touched: (1) surface mod-
els and 2) volumetric models. The surface models can be also grouped as
1) polygonal surfaces, (2) parametric surfaces, and (3) implicit surfaces.

15.2.1 Polygonal Surfaces

Virtual objects have been modeled using polygonal models in the field of
computer graphics for decades, due to their simple construction and effi-
cient graphical rendering. For similar reasons, haptic rendering algorithms
were developed for polygonal models and triangular meshes in particular.
Motivating this work was the ability to directly augment the existing visual
cues with haptic feedback, utilizing the same representations.

The first method to solve the problems of single point haptic render-
ing for polygonal models was developed at the Massachusetts Institute of
Technology (MIT) [Zilles and Salisbury 95]. The method enabled a con-



�

�

�

�

�

�

�

�

320 15. Three-Degree-of-Freedom Rendering

tact history to be kept, and at the time it was able to provide stable force
feedback interactions with polygonal models of 616 triangular faces on a
computer with a 66 MHz Pentium processor. A second point known as the
“god-object” was employed to keep the contact history. It would always be
collocated with the HIP if the haptic device and the virtual object were in-
finitely stiff. In practice, the god-object and the HIP are collocated when
the HIP is moving in free space. As the HIP penetrates the virtual ob-
jects, the god-object is constrained to the surface of the virtual object. An
approach is subsequently required to keep the god-object on the surface
of the virtual object as the HIP moves around inside. Constraint based
approaches that keep a point on the surface sometimes refer to this point
as the surface contact point (SCP). The position of the god-object can be
determined by minimizing the energy of a spring between the god-object
and the HIP, taking into account constraints represented by the faces of the
virtual object. By minimizing L in Equation (15.2) the new position can be
obtained. The first line of the equation represents the energy in the spring
and the remaining three lines represent the equations of three constraining
planes. The values x, y, and z are the coordinates of the god-object, and
xp, yp, and zp represent the coordinates of the HIP:

L =
1
2
(x− xp)2 +

1
2
(y − yp)2 +

1
2
(z − zp)2

+ l1(A1x+B1y + C1z −D1)
+ l2(A2x+B2y + C2z −D2)
+ l3(A3x+B3y + C3z −D3),

(15.2)

where, L = value to be minimized, l1, l2, l3 = Lagrange multipliers, and
A,B,C,D = coefficients for the constraint plane equations.

To efficiently solve this problem, a matrix can be constructed and used
in Equation (15.3) to obtain the new position of the god-object, as given by
x, y, and z. When there are three constraining planes limiting the motion
of the god-object, the method only requires 65 multiplications to obtain
the new coordinates. The problem is reduced as the number of constraint
planes is reduced:

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 A1 A2 A3

0 1 0 B1 B2 B3

0 0 1 C1 C2 C3

A1 B1 C1 0 0 0
A2 B2 C2 0 0 0
A3 B3 C3 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x
y
z
l1
l2
l3

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
xp

yp

zp

D1

D2

D3

⎞⎟⎟⎟⎟⎟⎟⎠ (15.3)

It was noted by [Ruspini et al. 97] that small numerical inconsistencies
can cause gaps in polygonal models, which enable the god-object to slip



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 321

(a) (b)

(c) (d)

Figure 15.8. (a) The HIP and IHIP illustrated moving down towards the top of
the two-dimensional slice of the virtual object. (b) The line segment between the
P HIP and the HIP intersects with the virtual objects. The contact face is shown
with the dotted line and the IHIP is constrained to the surface. (c) The IHIP is
tracked along the surface of the virtual object. (d) The HIP is now closer to a
new feature of the virtual object, and so the contact face is updated.

into the virtual objects. To overcome this, the topology of the surface
must be reconstructed. To avoid this reconstruction phase, a strategy
similar in style to the previous approach was developed, which permitted
the constrained point to have finite size [Ruspini et al. 97]. The algorithms
employed by Ruspini et al. were originally developed for the robotics field.
The term virtual proxy is used to refer to the spherical object constrained
to the surface of the virtual objects. Its motion is akin to the motion
of a robot greedily attempting to move towards a goal, in this case the
HIP. Configuration space obstacles are constructed by wrapping the virtual
object by a zone equal to the radius of the virtual proxy. Doing this enables
a single point to be incorporated as the haptic probe once more. Lagrange
multipliers can then be used, as described by [Zilles and Salisbury 95], to
obtain the new position of the virtual proxy.

A more procedural constraint-based approach was developed by [Ho
et al. 99] for single-point rendering. They state that it increases the servo-
rate, facilitates stable haptic interactions, and importantly enables the
servo rate to be independent of the number of polygons. They refer to
their constrained point as the ideal haptic interface point (IHIP), with
a force being sent to the haptic device, based on a spring between the



�

�

�

�

�

�

�

�

322 15. Three-Degree-of-Freedom Rendering

IHIP and HIP. Figure 15.8 illustrates an overview of the algorithm. A
two-dimensional slice of a three-dimensional object has been included to
represent the virtual object. Initially, the IHIP and the HIP are set at the
same position, identical to the god-object and virtual proxy approaches.
At each time step, a line segment is constructed from the previous HIP,
P HIP, to the current HIP. If there exists an intersection point between
this line segment and the virtual object, then the IHIP is constrained to
the closest point to the current HIP on the face nearest to the P HIP. This
is depicted in Figure 15.8(b). As the HIP moves, the IHIP is tracked over
the surface of the mesh by choosing the closest feature to the HIP. For
efficiency, only those features (edge, vertex, face) that bound the current
feature are tested, as is depicted in Figures 15.8(c) and 15.8(d). When
the vector from the IHIP to the HIP points in the direction of the current
feature normal, then there is no contact with the surface, and the HIP and
IHIP are once again collocated.

15.2.2 Parametric Surfaces

Polygonal representations are perfect for displaying simple objects, partic-
ularly those with sharp corners, but are limited when it comes to represent-
ing highly curved objects. In such case a large number of polygons would
be required to approximate the curved surface, resulting in higher memory
requirements. To overcome this, parametric surfaces have been used and
are very important in 3D modeling packages and computer aided design
(CAD) packages.

To directly render parametric models without performing a difficult con-
version into a polygonal representation, haptic rendering algorithms have
been developed to allow direct interaction with NURBS surfaces. In 1997,
at the University of Utah [Thompson et al. 97] developed a technique for
the haptic rendering of NURBS surfaces. The motivation was to be able
to interact with a CAD modeling system using the Sarcos force-reflecting
exoskeleton arm. The algorithm is broken into two phases. Firstly, the
collision detection between the HIP and the surfaces is undertaken, and
secondly they employ a direct parametric tracing algorithm to constrain
a point to the surface as the HIP is permitted to penetrate the surface.
The constrained point will be referred to as the surface contact point,
SCP. The first stage of the collision detection uses bounding boxes en-
compassing the surfaces to aid in trivial rejection. If the HIP is inside
the bounding box, then the HIP is projected onto the control mesh. The
parameters (u, v) are defined for each vertex of the control mesh. The
(u, v) parameters for the projected point can be obtained by interpolat-
ing the parameter values at the vertices. The distance between the HIP
and the point on the surface can then be obtained. The direct paramet-



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 323

ric tracing method tracks the position of the HIP on the surface. As
the HIP moves, it is projected onto the surface tangent plane, tangen-
tial to the gradient of the surface at the previous location of the SCP.
The new SCP and tangent plane are then found by parametric projec-
tion, using the projected HIP [Thompson et al. 97]. The force returned to
the device is based on a spring damper model between the HIP and the
surface.

Alternatively, the minimum distance between convex parametric sur-
faces may be determined by formulating a nonlinear control problem and
solving it with the design of a switching feedback controller [Patoglu and
Gillespie 04,Patoglu and Gillespie 05]. The controller simply has the job of
stabilizing the integration of the differential kinematics of the error vector
that connects two candidate points, one drawn from each of two interact-
ing surfaces. The controller manipulates the parameters (u, v) and (r, s) of
the candidate points until the projections of the error vector onto all four
surface tangents are driven to zero. With the design of a suitable feed-
back control law, the simulation of the differential kinematics produces an
asymptotically convergent algorithm. While algorithms based on Newton’s
Iteration have a limited region of attraction, the algorithm built around the
control formulation guarantees global uniform asymptotic stability, hence
dictates that any pair of initial points belonging to the convex surface
patches will converge to the closest point solution without ever leaving the
patches [Patoglu and Gillespie 05]. Global convergence for a narrow phase
algorithm greatly simplifies the design of a multi-phase algorithm with
global convergence. The algorithm may be run as the surface patches move,
where it becomes a tracking algorithm. Other notable features include no
requirement for matrix inversion, high computational efficiency, and the
availability of analytic limits of performance. Together with a top-level
switching algorithm based on Voronoi diagrams, this closest point algo-
rithm can treat parametric models formed by tiling together surface patches
[Patoglu and Gillespie 05].

One of the most promising applications of rendering parametric sur-
faces is in free-form design. Free-form surfaces are defined by paramet-
ric functions, and the conventional methods of design using these sur-
faces require tedious manipulation of control points and careful specifi-
cation of constraints. However, the integration of haptics into free form
design improves the bandwidth of interactions and shortens the design
cycle. [Dachille et al. 99] developed a method that permits users to interac-
tively sculpt virtual B-spline objects with force feedback. In this approach,
point, normal, and curvature constraints can be specified interactively and
modified naturally using forces. Nowadays, commercial packages based on
the free-form design concept (FreeForm Concept and FreeForm Modeling
Plus from Sensable Tech.) offer alternative solutions to the design of jew-



�

�

�

�

�

�

�

�

324 15. Three-Degree-of-Freedom Rendering

elry, sport shoes, animation characters, and many other products. Using
these software solutions and a haptic device, the user can carve, sculpt,
push, and pull instead of sketching, extruding, revolving, and sweeping as
in traditional design.

15.2.3 Implicit Surfaces

An early approach for the haptic rendering of implicit surfaces was devel-
oped by [Salisbury and Tarr 97]. Their approach used implicit surfaces de-
fined by analytic functions. Later, [Kim et al. 02a] developed a technique
where an implicit surface is constructed that wraps around a geometric
model to be graphically rendered. To ensure the surface can be accurately
felt, a virtual contact point is incorporated. This point is constrained to
the surface, as shown in Figure 15.9.

The method was used for virtual sculpting. The space occupied by the
object is divided into a three-dimensional grid of boxes, in a similar strat-
egy to the volume rendering techniques that will be discussed in the next
section. Collision detection using implicit surfaces can be performed effi-
ciently, since by using implicit surfaces it is possible to determine whether
a point is interior, exterior, or on the surface by evaluating the implicit
function with a point. The potential value is determined for each grid
point, and then it can be used with an interpolation scheme to return the
appropriate force. The surface normal at each grid point is calculated from
the gradient of the implicit function. The surface normal for any point can
then be determined by interpolating the values of the surface normals at
the eight neighbors.

The previous two methods permit only one side of the surface to be
touched. For many applications this is not sufficient, since users often re-
quire both sides of a virtual object to be touched. [Maneewarn et al. 99]
developed a technique using implicit surfaces that enabled the user to inter-

(a) (b)

Figure 15.9. Computing the force magnitude. (a) Shows an approximate method.
(b) Illustrates the approach by Kim et al. (Adapted from [Kim et al. 02a].)



�

�

�

�

�

�

�

�

15.2. Single-Point Rendering of 3D Rigid Objects 325

act with the exterior and interior of objects. The user’s probe is restricted
by the surface when approached from both sides.

15.2.4 Volumetric Models

Volumetric objects constructed from individual voxels can store signifi-
cantly more information than a surface representation. The ability to
visualize volume data directly is particularly important for medical and
scientific applications. There are a variety of techniques for visualizing the
volume data, such as the one proposed by [Lacroute and Levoy 94] for
shearing, warping, and compositing two-dimensional image slices. In con-
trast, a method termed splatting can be used where a circular object can
be rendered in each voxel [Laur and Hanrahan 91]. Each circular object is
aligned to the screen and rendered to form the final image. Volume data
can also be visualized indirectly by extracting a surface representation us-
ing methods such as Marching Cubes. Once the surface is extracted, haptic
interaction can then take place using the surface-based methods discussed
earlier [Eriksson et al. 05,Körner et al. 99]. However, the process of surface
extraction introduces a number of problems. As it requires a preprocessing
step, the user is prevented from modifying the data during the simulation,
and it also can generate a large number of polygons. Furthermore, by only
considering the surface, it is not possible to incorporate all the structures
present in a complex volume. To create a complete haptic examination
of volume data, a direct approach is required. [Iwata and Noma 93] were
the first to enable haptic feedback in conjunction with volume data using
a direct volume rendering approach, which they termed volume haptiza-
tion. The approach illustrated ways of mapping 3D vector or scalar data
to forces and torque. The mapping must determine the forces at interactive
rates, and typically the forces must directly relate to the visualization of
the data. This form of direct volume rendering is particularly useful for sci-
entific visualization [Lawrence et al. 00a]. [Iwata and Noma 93] used their
approach for the haptic interaction of data produced in computational fluid
dynamics simulations. In this case, force could be mapped to the velocity
and torque mapped to vorticity.

Utilizing computed tomography (CT) or magnetic resonance imaging
(MRI) as a basis for volume rendering enables a three-dimensional view of
patient specific data to be obtained. Enabling the user to interact with
the patient data directly is useful for the medical field, particularly since
surgeons commonly examine patients through their sense of touch. [Gib-
son 95] developed a prototype for the haptic exploration of a 3D CT scan
of a human hip. The CT data is converted to voxels, with each voxel in-
corporating information for both haptic rendering and graphical rendering.
The human hip is then inserted into an occupancy map, detailing where



�

�

�

�

�

�

�

�

326 15. Three-Degree-of-Freedom Rendering

the model is located in the voxel grid. The occupancy map consists of a
regularly spaced grid of cells. Each cell either contains a null pointer or an
address of one of the voxels representing an object in the environment. The
size of the occupancy map is set to encompass the entire virtual environ-
ment. The fingertip position controlled by the haptic device is represented
by a single voxel. Collision detection between the fingertip and the vox-
els representing the human hip are determined by simply comparing the
fingertip voxel with the occupancy map for the environment.

[Avila and Sobierajski 96] developed a technique for the haptic render-
ing of volume data, where the surface normals were obtained analytically.
The method works by decomposing the object into a three-dimensional grid
of voxels. Each voxel contains information such as density, stiffness, and
viscosity. An interpolation function is used to produce a continuous scalar
field for each property. They present one example of interacting with a set
of dendrites emanating from a lateral geniculate nucleus cell. The data was
obtained by scanning with a confocal microscope. The additional function-
ality was developed to enable the user to visualize and interact with the
internal structure. [Bartz and Gürvit 00] used distance fields to enable the
direct volume rendering of a segment of an arterial blood vessel derived
from rotational angiography. The first distance field is generated by first
computing a path from a given starting voxel to a specified target voxel in
the blood vessel. This path is computed using Dijkstra’s Algorithm. This
creates a distance field that details the cost of traveling to the target voxel.
A second field is based on the Euclidean distance between each voxel and
the surface boundary. A repulsive force can then be rendered, based on
the distance between the haptic probe and the surface. The effects of the
two distance fields are controlled using constant coefficients. A local gra-
dient at a point can then be obtained using trilinear interpolation of the
surrounding voxels. The coefficients of the distance fields must be chosen
carefully to avoid oscillations.

Several researchers have investigated cutting and deforming volumetric
data representing anatomical structures [Agus et al. 02,Eriksson et al. 05,
Kusumoto et al. 06,Petersik et al. 02,Gibson et al. 97]. [Gibson et al. 97]
segmented a series of MRI images by hand for the simulation of arthro-
scopic knee surgery. The deformation of the model was calculated using
an approach that permits a volume to stretch and contract in accordance
to set distances [Gibson 97]. The physical properties of the material are
also useful for sculpting material represented by volume data. [Chen and
Sun 02] created a system for sculpting both synthetic volume data and
data obtained from CT, MRI, and ultrasound sources. The direct haptic
rendering approach utilized an intermediate representation of the volume
data [Chen et al. 00]. The intermediate representation approach to haptic
rendering was inspired from its use in rendering geometric models [Mark



�

�

�

�

�

�

�

�

15.3. Surface Details: Smoothing, Friction, and Texture 327

et al. 96]. The sculpting tools developed by Chen and Sun were treated as
volumes, allowing each position in the tool volume to affect the object vol-
ume data. They simulated a variety of sculpting effects including melting,
burning, peeling, and painting.

When interacting with the volume data directly, an approach is re-
quired to provide stiff and stable contacts in a similar fashion to the ren-
dering achieved with geometric representations. This is not easily accom-
plished when using the techniques based on mapping volume data directly
to forces and torques. One strategy is to use a proxy constrained by the
volume data instead of utilizing an intermediate representation, as in the
previous example [Ikits et al. 03, Lundin et al. 02,Palmerius 07]. [Lundin
et al. 02] presented an approach aimed at creating natural haptic feedback
from density data with solid content (CT scans). To update the move-
ments of the proxy point, the vector between the proxy and the HIP was
split into components: one along the gradient vector (fn) and the other
perpendicular to it (ft). The proxy could then be moved in small incre-
ments along ft. Material properties such as friction, viscosity, and surface
penetratability could be controlled by varying how the proxy position was
updated. [Palmerius 07] developed an efficient volume rendering technique
to encompass a constraint-based approach with a numerical solver and
importantly a fast analytical solver. The proxy position is updated by
balancing the virtual coupler force, �f , against the sum of the forces from
the constraints, �Fi. The constraints are represented by points, lines, and
planes. The balancing is achieved by minimizing the residual term, �ε, in
the following equation:

�ε = −�f(�xproxy) +
∑

i

�Fi(�xproxy). (15.4)

By modifying the effects of the constraints in the above equation, different
modes of volume exploration can take place, such as surface-like feedback
and 3D friction. Linear combinations of the constraint effects can be used
to obtain the combined residual term. An analytical solver may then be
used to balance the equation and hence find the position of the proxy.
The analytical solver is attempted first for situations where the constraints
are orthogonal, however, if this fails, a numerical solver is utilized. This
combination of techniques is available in the open-source software titled
Volume Haptics Toolkit (VHTK).

15.3 Surface Details: Smoothing, Friction,
and Texture

Haptic simulation of surface details such as friction and texture signifi-
cantly improves the realism of virtual worlds. For example, friction is



�

�

�

�

�

�

�

�

328 15. Three-Degree-of-Freedom Rendering

Figure 15.10. Forces acting on the user (Fuser = Fn + Ft + Ff ) during haptic
simulation of friction and textures. The normal force can be computed using a
simple physics-based model such as Hooke’s law (Fn = k ∆x, where ∆x is the
depth of penetration of the haptic probe into the virtual surface). To simulate
Coulomb friction, we need to create a force (Ff = µFn, where µ is the coefficient
of friction) that is opposite to the direction of the movement. To simulate texture,
we change the magnitude and direction of the normal vector (Fn) using the
gradient of the texture field at the contact point.

almost impossible to avoid in real life, and virtual surfaces without friction
feel “icy-smooth” when they are explored with a haptic device. Similarly,
most surfaces in nature are covered with some type of texture that is sensed
and distinguished quite well by our tactile system. Haptic texture is a com-
bination of small-scale variations in surface geometry and its adhesive and
frictional characteristics. Oftentimes, displaying the detailed geometry of
textures is computationally too expensive. As an alternative, both friction
and texture can be simulated by appropriate perturbations of the reaction
force vector computed using nominal object geometry and material proper-
ties. The major difference between the friction and the texture simulation
via a haptic device is that the friction model creates only forces tangential
to the nominal surface in a direction opposite to the probe motion, while
the texture model can generate both tangential and normal forces in any
direction (see Figure 15.10).

15.3.1 Smoothing

A rapid change in surface normals associated with sharp edges between
joining surfaces or between faces in a polygonal model causes force dis-
continuities that may prove problematic during haptic rendering. Incor-
porating techniques to blend between the surface normals can alleviate
these problems. Without this type of technique, high numbers of poly-
gons would be required to simulate surfaces with smooth curved areas.
Strategies analogous to Gouraud or Phong shading, used for interpolating



�

�

�

�

�

�

�

�

15.3. Surface Details: Smoothing, Friction, and Texture 329

normals for lighting, can be developed for haptic rendering. The paper
by [Morgenbesser and Srinivasan 96] was the first to demonstrate the use
of force shading for haptic rendering. Using a similar technique to Phong
shading [Salisbury et al. 95] found that a smooth model could be per-
ceived from a coarse three-dimensional model. This is akin to visualizing
a smooth three-dimensional object using Phong shading when a relatively
low number of triangles are used in the underlying geometry.

[Ruspini et al. 97] also incorporated a force shading model, which in-
terpolated the normals similar to Phong shading. A two-pass technique
was utilized to modify the position of the virtual proxy. The first stage
computes the closest point, CP, between the HIP and a plane that runs
through the previous virtual proxy position. The plane’s normal is in the
same direction as the interpolated normal. The second stage proceeds by
using the CP as the position of the HIP in the usual haptic rendering algo-
rithm described in the previous section. They state that the advantages of
this method are that it deals with the issue of force shading multiple inter-
secting shaded surfaces, and that by modifying the position of the virtual
proxy, the solution is more stable.

In some approaches, changes in contact information, penetration dis-
tance, and normals can affect the force feedback significantly between suc-
cessive steps of the haptic update loop. These changes can cause large force
discontinuities, producing undesirable force feedback. [Gregory et al. 00b]
encountered this problem and employed a simple strategy to interpolate
between two force normals. Their strategy prevents the difference between
previous and current forces becoming larger than a pre-defined value, Fmax.
This simple approach provides a means of stabilizing forces.

15.3.2 Friction

In Section 15.2 the methods for computing forces that act to restore the
HIP to the surface of the virtual object have been discussed. If this force
is the only one incorporated, then the result is a frictionless contact, where
the sensation perceived is analogous to moving an ice cube along a glassy
surface [Salisbury et al. 95]. However, this interaction is not very realistic
in most cases, and can even hinder the interaction as the user slips off
surfaces accidentally. Several approaches have been developed to simulate
both static and dynamic friction to alleviate this problem [Salcudean and
Vlaar 94,Salisbury et al. 95,Mark et al. 96,Ruspini et al. 97,Kim et al. 02a].
By changing the mean value of friction coefficient and its variation, more
sophisticated frictional surfaces, such as periodic ones [Ho et al. 99], and
various grades of sandpaper [Green and Salisbury 97], can be simulated as
well.



�

�

�

�

�

�

�

�

330 15. Three-Degree-of-Freedom Rendering

[Salisbury et al. 95] developed a stick-slip friction model enhancing the
feedback from their god-object approach. The model utilizes Coulomb
friction and records a stiction point. The stiction point remains static until
an offset between the stiction point and the user’s position is exceeded. At
this stage the stiction point is moved to a new location along a line that
connects the previous stiction point and the user’s position. [Kim et al. 02a]
enabled friction to be incorporated with their implicit surface rendering
technique. By adjusting the position of the contact point on the surface, a
component of force tangential to the surface could be integrated. To achieve
this, a vector, V , is obtained between the previous and new positions of
the contact point on the surface. A friction coefficient can be integrated to
determine a point, P , along V . The surface point that is intersected by a
ray emanating from the HIP position passing through P is chosen as the
new contact point.

At the University of North Carolina, Chapel Hill, [Mark et al. 96] devel-
oped a model for static and dynamic friction. The surfaces of the objects
are populated by snags, which hold the position of the user until they push
sufficiently to leave the snag. When the probe moves further than a certain
distance from the center of the snag, the probe is released. While stuck
in a snag, a force tangential to the surface pulls the user to the center of
the snag, and when released, a friction force proportional to the normal
force is applied. It is easily envisaged that this technique is appropriate
for representing surface texture by varying the distribution of the snags.
Surface texture will be described in the next section.

15.3.3 Texture

Perception and display of textures in virtual environments require a thor-
ough investigation, primarily because the textures in nature come in various
forms. Luckily, graphics texturing has been studied extensively, and we can
draw from that experience to simulate haptic textures in virtual environ-
ments. There exists a strong correlation between the friction of a surface
and its surface roughness, or texture. However, texture enriches the user’s
perception of a surface to a higher extent than friction, as extra details
about the surface can be perceived. Integrating texture into haptic ren-
dering algorithms presents more information to the user about the virtual
object than applying images to the surface of objects for graphical render-
ing, using texture mapping. Surface texture is important when humans
interact with objects, and therefore it is important for the haptic rendering
of virtual objects. Many researchers have investigated the psychophysics of
tactile texture perception. [Klatzky et al. 03] investigated haptic textures
perceived through the bare finger and through a rigid probe. [Choi and
Tan 04] investigated the perceived instabilities in haptic texture rendering



�

�

�

�

�

�

�

�

15.4. Summary and Future 331

and concluded that the instabilities may come from many sources, includ-
ing the traditional control instability of haptic interfaces, as well as inac-
curate modeling of environment dynamics, and the difference in sensitivity
to force and position changes of the human somatosensory system. [Minsky
et al. 90] simulated the roughness of varying degrees of sandpaper. Users
were then asked to order the pieces of simulated sandpaper according to
their roughness. A texture depth map was created, utilized by the hap-
tic device by pulling the user’s hand into low regions and away from high
regions.

A strategy similar to that of bump mapping objects, utilized in graph-
ical rendering, was employed by [Ho et al. 99] to render haptic textures.
Statistical approaches have been also used to generate haptic textures [Siira
and Pai 96,Fritz and Barner 96a,Basdogan et al. 97]. [Fritz and Barner 96a]
developed two methods for rendering stochastic-based haptic textures. The
lattice texture approach works by constructing a 2D or 3D grid where a
force is associated to each point. The second method, labeled local space
approach, also uses a lattice defined in the texture space coordinate sys-
tem. In this case the forces are determined for the centers of the grid cells.
For implicit surfaces, [Kim et al. 02a] enabled Gaussian noise and texture
patterns to directly alter the potential values stored in the points forming
three-dimensional grids. The three-dimensional grids encompass the vir-
tual objects. The adaptation could be incorporated without increasing the
overall complexity of the haptic rendering algorithm. Fractals are also ap-
propriate for modeling natural textures, since many objects seem to exhibit
self-similarity. [Ho et al. 99] have used the fractal concept in combination
with the other texturing functions, such as Fourier series and pink noise
in various frequency and amplitude scales to generate more sophisticated
surface details.

Recently, haptic texturing has also been employed between two polyg-
onal models. This approach can be applied to the haptic rendering tech-
niques for object-object interactions. [Otaduy et al. 04] developed a tech-
nique to estimate the penetration depth between two objects described by
low resolution geometric representations and haptic textures created from
images that encapsulate the surface properties.

15.4 Summary and Future
The goal of 3-DOF haptic rendering is to develop software algorithms that
enable a user to touch, feel, and manipulate objects in virtual environments
through a haptic interface. Three-DOF haptic rendering views the haptic
cursor as a point in computing point-object interaction forces. However,
this does not restrict us to simulate tool-object or multifinger interactions.



�

�

�

�

�

�

�

�

332 15. Three-Degree-of-Freedom Rendering

For example, a 3D tool interacting with a 3D object can be modeled as
dense cloud of points around the contact region to simulate tool-object
interactions. Many of the point-based rendering algorithms have been al-
ready incorporated into commercial software products such as the Reachin
API,2 GHOST SDK, and OpenHaptics.3 Using these algorithms, real-time
haptic display of shapes, textures, and friction of rigid and deformable
objects has been achieved. Haptic rendering of dynamically moving rigid
objects, and to a lesser extent, linear dynamics of deformable objects, have
also been accomplished. Methods for recording and playing back haptic
stimuli, as well as algorithms for haptic interactions between multiple users
in shared virtual environments, are emerging.

In the future, the capabilities of haptic interface devices are expected
to improve primarily in two ways: (1) improvements in both desktop
and wearable interface devices in terms of factors such as inertia, friction,
workspace volume, resolution, force range, and bandwidth; and (2) devel-
opment of tactile displays to simulate direct contact with objects, including
temperature patterns. These are expected to result in multifinger, multi-
hand, and even whole body displays, with heterogeneous devices connected
across networks. Even with the current rapid expansion of the capabilities
of affordable computers, the needs of haptic rendering with more complex
interface devices will continue to stretch computational resources. Cur-
rently, even with point-based rendering, the computational complexity of
simulating the nonlinear dynamics of physical contact between an organ
and a surgical tool, as well as surrounding tissues is very high (see the
review in [Basdogan et al. 04]). Thus there will be continued demand for
efficient algorithms, especially when the haptic display needs to be synchro-
nized with the display of visual, auditory, and other modalities. Similar to
graphics accelerator cards used today, it is quite likely that much of the
repetitive computations will need to be done through specialized electronic
hardware, perhaps through parallel processing. Given all the complexity
and need for efficiency, in any given application, the central question will
be how good does the simulation need to be to achieve a desired goal.

2http://www.reachin.se
3http://www.sensable.com



�

�

�

�

�

�

�

�

16
Six-Degree-of-Freedom

Rendering of Rigid
Environments

M. Ortega, S. Redon, and S. Coquillart

Chapter 15 describes three-degree-of-freedom methods for haptic display of
the interaction of a point and a virtual object, such as the one introduced
by Zilles and Salisbury [Zilles and Salisbury 95]. Three-DOF rendering
methods are effective for single-point interaction, but designing similarly
effective methods for object-object interaction becomes a remarkable chal-
lenge, due to the high computational requirements. The approach of Zilles
and Salisbury for 3-DOF rendering presents two main benefits: (1) a non-
penetrating simulation of the motion of the point as it slides on the surface
of the obstacles; (2) a constraint-based computation of the force applied
to the user, which results in a force orthogonal to the constraints. These
features are highly desirable, in that non-interpenetration of virtual ob-
jects is known to increase their perceived stiffness [Srinivasan et al. 96],
and that an incorrect orientation of the force has been shown to perturb
the perceived orientation of the virtual surfaces [Sachtler et al. 00].

However, early 6-DOF haptic rendering methods [McNeely et al. 99,
Johnson et al. 03,Gregory et al. 00b,Kim et al. 03,Otaduy and Lin 03b,
Hasegawa and Sato 04,Constantinescu et al. 04,Wan and McNeely 03,Nel-
son et al. 99] do not preserve all of the properties of the initial 3-DOF ap-
proach introduced by Zilles and Salisbury [Zilles and Salisbury 95]: these
methods might use penalty-based response (See Section 8.3) and allow the
virtual objects to interpenetrate, or they use some form of virtual cou-
pling [Colgate et al. 95] (see Section 8.3.2) which can lead to disturbing
force artifacts by modifying the orientation of the force applied to the user.
This chapter presents a 6-DOF constraint-based method that prevents both
these visual and haptic artifacts. This method has three essential charac-
teristics:

333



�

�

�

�

�

�

�

�

334 16. Six-Degree-of-Freedom Rendering of Rigid Environments

Figure 16.1. Haptic interaction with Stanford bunnies. The approach described
in this chapter allows us to provide a user with high-quality haptic display of
contacting rigid bodies (here, two Stanford bunnies containing about 27,000 tri-
angles each). The constraint-based force computation method presented in this
chapter allows the manipulated object to come in contact with and slide on the
environment obstacles without penetrating them, while providing the user with
precise haptic display, where each vertex, edge, and face can potentially be felt.

• Six-degree-of-freedom god-object method. The presented method is
an extension of the three-degree-of-freedom god-object method pro-
posed by Zilles andSalisbury [Zilles and Salisbury 95] to six-degree-
of-freedom haptic interaction between rigid bodies.

• High-quality god-object simulation. The god-object simulation method
prevents any interpenetration between the virtual objects, while al-
lowing the god-object to precisely contact and slide on the surface of
the obstacles. This results in highly detailed haptic rendering of the
object’s geometries and increases the perceived stiffness of the virtual
objects [Srinivasan et al. 96].

• Constraint-based force computation. A novel constraint-based quasi-
static approach is presented to compute the motion of the god-object
and the force applied to the user. The constraint-based approach is
physically based, handles any number of simultaneous contact points,
and yields constraint forces that are orthogonal to the constraints,
thereby rendering correct surface orientations to the user.



�

�

�

�

�

�

�

�

16.1. Overview 335

This chapter is organized as follows. After an overview of the constraint-
based approach in Section 16.1, Section 16.2 describes how the motion of
the god-object is computed, in order to ensure realistic haptic interaction
with rigid bodies. Section 16.3 presents the constraint-based quasi-static
approach to computing the force applied to the user. Section 16.4 discusses
methods for producing haptic effects for surface perception, such as force
shading and textures. Section 16.5 demonstrates the approach described
in this chapter on several benchmarks and shows how it provides the user
with high-quality haptic display of contacting rigid bodies. This section
also discusses the benefits and limitations of the current approach. Finally,
Section 16.6 concludes and details several future research directions.

16.1 Overview
The method described here extends the classical three-degree-of-freedom
constraint-based method by Zilles and Salisbury [Zilles and Salisbury 95]
by employing a six-degree-of-freedom god-object, i.e., an idealized represen-
tation of the haptic device that is constrained to remain on the surface
of the environment obstacles when the haptic device penetrates the en-
vironment obstacles (see Figure 16.2). At each time step, the god-object
simulation algorithm attempts to reduce the discrepancy between two rigid
reference frames: one attached to the haptic device, and one attached to
the virtual object. The origin of the virtual reference frame is positioned
at the center of gravity of the virtual object, although any point can be
chosen.

Only the god-object is displayed (and not the actual configuration of the
haptic device), so that even when the haptic device penetrates the environ-
ment obstacles, the user only sees the rigid body that he or she manipulates

Figure 16.2. Six-degree-of-freedom god-object. Although the haptic device pene-
trates the environment obstacles (configuration xh), the god-object is constrained
to remain on the surface of the obstacles (configuration xs). The algorithms pre-
sented in this chapter compute the motion of the god-object and the force applied
to the user, based on the discrepancy between these two configurations.



�

�

�

�

�

�

�

�

336 16. Six-Degree-of-Freedom Rendering of Rigid Environments

Figure 16.3. Schematic representation of the constraint-based approach. This
haptic display method is divided in three asynchronous blocks.

in a realistic, contacting-only configuration. As a result, the user feels that
the rigid body he or she is manipulating is correctly sliding on the surface
of the obstacles. The motion of the god-object and the force applied to
the user are computed from the discrepancy between the configurations of
the god-object and the haptic device, thanks to a novel constraint-based
quasi-static approach that suppresses visual and haptic artifacts typically
found in previous approaches. The haptic rendering method is divided in
three asynchronous loops: (1) the god-object simulation loop, which up-
dates the configuration of the god-object based on the configuration of the
haptic device and the environment obstacles; (2) the constraint-based cou-
pling loop, which determines the constraint-based force applied to the user
based on the configurations of the god-object and the haptic device, as
well as the current set of contact points and normals; (3) the haptics loop,
which controls an impedance-like haptic device that reads the force that
has to be applied to the user and writes the current configuration of the
haptic device (see Figure 16.3). The haptics loop is considered as a generic
black box, and this chapter focuses on the two other processes, i.e., the
god-object simulation loop and the constraint-based coupling loop.

16.2 Six-Degree-of-Freedom God-Object
Simulation

16.2.1 Overview

The motion of the god-object is computed based on the relative configura-
tions of the haptic device and the god-object, as well as the current set of
contact points. Precisely, the quasi-statics of the god-object are simulated
according to the following god-object simulation algorithm:



�

�

�

�

�

�

�

�

16.2. Six-Degree-of-Freedom God-Object Simulation 337

1. Data retrieval. The six-dimensional configuration xh of the haptic
device is retrieved from the shared data (see Figure 16.3).

2. Unconstrained acceleration computation. The unconstrained six-di-
mensional acceleration au of the god-object is computed from xh and
the six-dimensional configuration xs of the god-object:

au = ks(xh − xs),

where ks is a coupling constant (ks = 0.5 in our implementation).
This is similar to the virtual coupling method [Colgate et al. 95],
except that the coupling is performed on the acceleration of the god-
object. Because the motion of the god-object is quasi-static, this
amounts to directly control of the displacement of the god-object.

3. Constraint-based quasi-static computations. The constrained acceler-
ation ac of the god-object is computed based on the current contact
information (i.e., the one resulting from the previous god-object sim-
ulation step) and the unconstrained acceleration au. This involves
forming the 6 × 6 god-object mass matrix M and the 6 ×m contact
Jacobian J, where m is the number of contact points (see details
below).

4. Collision detection. The target configuration of the god-object is
computed from its constrained acceleration using an explicit Euler
integration step. The continuous collision detection algorithm intro-
duced by Redon et al. [Redon et al. 02b] is used to detect collisions
on a path interpolating the current and target god-object configura-
tions. If the interpolating path is free of collisions, the god-object
is placed in the target configuration. If a new contact occurs, how-
ever, the continuous collision detection algorithm determines the first
contacting configuration along the interpolating path, as well as the
new contact positions and normals. The configuration reached by the
god-object at the end of this step is the new god-object configuration.

5. Constraints transmission. The matrices M and J corresponding to
the new god-object configuration are written to the shared data, so
that they can be retrieved by the constraint-based coupling loop to
compute the constraint-based force applied to the user.

The god-object simulation loop ensures that the god-object attempts
to reach the same configuration (position and orientation) as the haptic
device. Continuous collision detection and constraint-based quasi-statics
allow the god-object to slide on virtual obstacles without penetrating them
as it tries to reach the haptic device. The following section describes
how Gauss’ least constraint principle is used to derive the constraint-based
quasi-statics of the god-object.



�

�

�

�

�

�

�

�

338 16. Six-Degree-of-Freedom Rendering of Rigid Environments

16.2.2 Constraint-Based God-Object Quasi-Statics

Let a = (aG, α)T denote the generalized (six-dimensional) acceleration of
the god-object, where aG and α are respectively the linear acceleration and
the angular acceleration of the god-object. The set of possible accelerations
is easily determined from the contact positions and normals provided by
the continuous collision detection algorithms. Let Ik and nk respectively
denote the position and normal of the k-th contact point, 1 � k � m.
Assuming the normal nk is directed towards the exterior of the environment
obstacle, the acceleration of the god-object must satisfy the following non-
penetration constraint [Baraff 89]: aT

Gnk +αT (GIk ×nk) � 0, where GIk is
the vector from the center of inertiaG of the god-object to the contact point
Ik. Note the absence of a velocity-dependent term in the non-penetration
constraint, as the quasi-static assumption implies that the velocity of the
god-object is zero at all times. These m non-penetration constraints can
be concatenated to form a single constraint on the generalized acceleration
of the god-object: Ja � 0, where J is a m× 6 Jacobian.

Gauss’ principle states that the constrained generalized acceleration
ac = (ac

G, α
c)T of the god-object minimizes the following function [Gauss 29]:

G(a) =
1
2
(a − au)TM(a − au) =

1
2
||a − au||2M, (16.1)

that is, the kinetic distance ||ac − au||M between the constrained accel-
eration ac and the unconstrained acceleration au, over the set of possible
accelerations {a : Ja � 0}. In other words, the constrained acceleration
ac is the (non-euclidean) projection of the unconstrained acceleration au

onto the set of possible accelerations. This projection problem is solved
using Wilhelmsen’s projection algorithm [Wilhelmsen 76]. Note that the
matrices M and J contain all the necessary and sufficient information to
compute the constrained motion of the god-object.

16.3 Constraint-Based Force Computation
The constraint-based coupling loop determines the forces applied to the
user based on the configuration of the haptic device and the contact infor-
mation sent by the god-object simulation loop. Essentially, the constraint-
based coupling loop performs the same constraint-based quasi-static com-
putations as in the god-object simulation loop, but assuming the config-
uration of the god-object is fixed. This suppresses the need for collision
detection in the constraint-based coupling loop and allows us to compute
the constraint-based force applied to the user within a few microseconds
(see Section 16.5). Precisely, the constraint-based force applied to the user



�

�

�

�

�

�

�

�

16.3. Constraint-Based Force Computation 339

is computed according to the following constraint-based force computation
algorithm:

1. Data retrieval. The configuration xh of the haptic device and the
configuration xs of the god-object are read from the shared data, as
well as the matrices M and J, computed in the god-object simulation
loop, which describe the local quasi-statics of the god-object.

2. Unconstrained acceleration computation. As in the god-object simu-
lation loop, the unconstrained six-dimensional acceleration au of the
god-object is computed from xh and the six-dimensional configura-
tion xs of the god-object (au = ks(xh − xs)).

3. Constraint-based force computation. The constrained acceleration ac

of the god-object is computed from the unconstrained acceleration
au and the matrices M and J retrieved from the shared data, by
solving Gauss’ projection problem. The constraint-based force to be
applied to the user is then Fc = khM(ac−au), where kh is a coupling
constant.1

4. Force transmission. the constraint-based force Fc is written to the
shared data. It will be read by the haptic loop, for application to the
user.

Figure 16.4 demonstrates this algorithm in the case of a god-object in
contact with an obstacle. For clarity, only two degrees of freedom are al-
lowed: a vertical translation and a rotation whose axis is orthogonal to
the plane of the figure. Figure 16.4(a) shows the god-object contacting the
obstacle (in dark gray), and four successive configurations of the haptic de-
vice (in light gray), as well as the resulting unconstrained accelerations au

1 ,
. . . , au

4 . Figure 16.4(b) shows the corresponding two-dimensional motion-
space, i.e., the space of accelerations, and the linearized non-penetration
constraint resulting from the contact point (the diagonal line). The possi-
ble accelerations are above this diagonal line. Projecting the unconstrained
accelerations au

1 , . . . , au
4 on the set of possible accelerations yields the con-

strained accelerations ac
1, . . . , ac

4, as well as the corresponding constraint
forces Fc

1, . . . , Fc
4 applied to the user. Haptic configurations 1 and 2 result

in a force and a torque, which attempt to bring the haptic device back
to a configuration reachable by the god-object, while haptic configurations
3 and 4, which correspond to accelerations satisfying the non-penetration
constraint, do not generate any force.

1Different constants can be used for the translational and rotational parts, but this
might lead to constraint forces that are not orthogonal to the non-penetration constraints
(see Section 16.5).



�

�

�

�

�

�

�

�

340 16. Six-Degree-of-Freedom Rendering of Rigid Environments

Figure 16.4. Constraint-based force computation. The method presented in this
chapter uses Gauss’ least constraints principle to compute the constrained motion
of the god-object and the constraint-based force applied to the user (see Sections
16.2 and 16.3).

Note that because the configuration xs of the god-object is not updated
in the constraint-based coupling loop, the matrices M and J do not have
to be updated either.2 Hence, only the configuration of the haptic device
changes, and the main computation involved is the determination of the
constrained acceleration ac, which can be performed very efficiently (see
Section 16.5).

Figure 16.5. Haptic interaction with Stanford bunnies. The user manipulates the
light gray bunny. (a) the ear of the light gray bunny slides in a ridge of the dark
gray bunny. (b) continuous collision detection and constraint-based quasi-statics
allows the manipulated object to precisely contact and slide on the obstacles. (c)–
(d) the user can precisely feel the contact between pairs of triangles, resulting in
highly detailed haptic display of contacting rigid bodies.

2In our implementation, a flag is used to signal the arrival of a new set of constraints
to the constraint-based coupling loop. This flag, written to the shared data by the
god-object simulation loop, allows us to avoid rereading the matrices M, J, and the
god-object configuration xs, which further speeds up the constraint-based coupling loop.



�

�

�

�

�

�

�

�

16.4. Haptic Surface Properties 341

Figure 16.6. Constraints adaptation. When a new constraint (here a vertical
plane) appears which would create too large a constraint force, it is first translated
so that the constraint is satisfied by the current haptic device configuration, then
progressively returned to its initial position. This helps us smooth the force felt
by the user, while ensuring that small discontinuities signaling new contact points
are felt.

When a new set of constraints is available, some of the new non-
penetration constraints might not be satisfied by the current configuration
of the haptic device (see Figure 16.6(a). This might create a large con-
straint force if the user has largely penetrated those new constraints. In
order to smooth the constraint-based force applied to the user and reduce
potentially large forces created by delays in the update of the set of con-
straints, a generalization of the method introduced by Mark et al. [Mark
et al. 96] can be used. Assume a new constraint Jka � 0 on the acceleration
a of the god-object occurs, where Jk is a six-dimensional row vector (a row
of the Jacobian). Assume that this constraint is not satisfied at time 0,
when the new set of constraints becomes available, i.e., that the configura-
tion of the haptic device is such that Jkau = dk < 0. Initially, an offset is
added to this constraint: the constraint becomes Jkau � fk(t), where fk is
a monotonously increasing time-dependent function such that fk(0) = dk

and fk(∆t) = 0. This constraint is thus satisfied when the set of con-
straints is progressively turned into the constraint that should be enforced
(i.e., after a time ∆t; see Figure 16.6(b)–(d). In order 16.6(b)–(d). In order
to provide the user with a slight force discontinuity and improve the per-
ception of new constraints, however, this interpolation is performed only if
dk � ε, where ε acts as a user-defined discontinuity threshold (ε < 0).

The combination of the god-object simulation loop and the constraint-
based coupling loop results in the perception of six-degree-of-freedom con-
straint forces as the user manipulates the virtual object and slides on the
virtual obstacles.

16.4 Haptic Surface Properties
The six-degree-of-freedom constraint-based method presented here provides
a force orthogonal to the non-penetration constraints. No force artifacts



�

�

�

�

�

�

�

�

342 16. Six-Degree-of-Freedom Rendering of Rigid Environments

are felt by the user, such as artificial friction or a sticking effect. The
force vector direction can now be controlled and perturbed for providing
haptic surface properties like force shading or texture. The two following
sections demonstrate how such effects can be added, by modifying either
the constraints or the force applied to the user.

16.4.1 Smooth Surfaces

Our current implementation uses a continuous collision detection method
suitable for polygonal objects. As a result, smooth-shaped objects approxi-
mated by polygonal meshes feel like polyhedral surfaces, due to the discon-
tinuity at the polygon edges. To avoid that, Morgenbesser and Srinivasan
have been the first to adapt the well known Phong method [Phong 75] for
smoothing polygonal meshes [Morgenbesser and Srinivasan 96].
They demonstrated that a similar haptic effect, called force shading and
discussed in Section 15.3.1 in this book, can give the illusion of a haptically
smooth shape. More recently, Ruspini et al. [Ruspini et al. 97] also pro-
posed to adapt the graphical methods using the virtual proxy approach.
Compared to the Morgenbesser approach, their force shading method al-
lows them to handle situations involving multiple intersections between the
proxy and shaded surfaces at the same time.

Figure 16.7. Smoothing effect. (a) The edge is felt because of the discontinuous
force implied by the change in the normal direction. (b) Thanks to the use of
the vertex normal N, the force shading method avoids the discontinuity, and
smoothes the edge.



�

�

�

�

�

�

�

�

16.4. Haptic Surface Properties 343

Like the Ruspini et al. approach, the constraint-based method proposed
in this chapter allows to adapt the Phong method [Phong 75]. At each point
on a mesh polygon, a new vector is computed by interpolating the normals
from the vertices of the polygon. This new normal is used to compute the
illumination of the model at this point. Consequently, the edges of the
polygonal mesh do not appear, and the shape appears to be smooth. The
same idea is used for force shading.

The following sections explain the link between the force vector di-
rection and the surface normal, followed by the description of the force
shading algorithm. Finally, they show how force shading can be efficiently
computed in our asynchronous algorithm.

Surface normal and force rendered. As described in Sections 16.2 and 16.3,
the computation of the force directly results from the computation of the
constrained acceleration, which itself uses both the unconstrained accel-
eration and the contact information (or constraint space). The latter is
mainly defined by the surface normal for each contact point between the
god-object and the shape. Consequently, changing the surface normals in
the contact information will change the direction of the force vector.

Basic algorithm. Using contact positions, similarly to the Phong approach,
the algorithm proceeds by first computing the interpolated contact normals
at each position of the contact points. These vectors are used to create a
new constraint space, called the force shading constraint space. The rest of
the algorithm consists of two computation passes (cf. Figure 16.8), i.e., the
computation of the new direction of the force vector and the computation
of the new god-object configuration.

• Force vector direction. First, a force-shading-constrained acceleration
is computed from the unconstrained acceleration and the force shad-
ing constraint space. Next, the computation of the force is done with
this new acceleration and the original unconstrained acceleration. At
this point, and without the next stage, the force rendered by the hap-
tic device will give the illusion of a non-flat mesh polygon, but the
edges are still felt. The next stage explains how to avoid that.

• Constrained acceleration. As seen in Figure 16.7(a), with the six-
degree-of-freedom god-object method, a discontinuity occurs when
the user reaches an edge of the shape. Indeed, such an effect is pro-
vided by the computation of the constraint acceleration, which is
always as close as possible to the unconstrained acceleration. Even
with the computation of the perturbed force direction described in



�

�

�

�

�

�

�

�

344 16. Six-Degree-of-Freedom Rendering of Rigid Environments

Figure 16.8. Two computation passes. The Gauss least constraints principle is
used twice to compute the force-shading-constrained acceleration asc and the
final constrained acceleration ac. The first pass uses the force shading constraint
space, while the second pass computes the motion of the god-object with the
original constraint space and the force-shading-constrained acceleration as an
unconstrained acceleration.

the stage before, this sudden change in the configuration of the god-
object makes the user feel the edges of the polygonal mesh. To avoid
that, the force shading constraint acceleration is used as an uncon-
strained acceleration and combined with the original constraint space
to compute a final acceleration for the god-object (cf. Figure 16.8).
Figure 16.7(b) shows the successive god-object configurations when
such an approach is used.

Optimization with the asynchronous process. The computation described
above is a time-consuming computation, because of the double constraint-
based quasi-static computation. This can be optimized by exploiting the
asynchronous aspect of the proposed algorithm, and by implementing one
step in each process (i.e., the simulation and the coupling loops).

The force shading constraint space is created by the simulation loop
and written to the shared data. In parallel, the coupling loop uses the last
force shaded constraint space retrieved and computes the force-shading-
constrained acceleration, which is also written in the shared data. Con-
sequently, instead of the unconstrained acceleration, the force-shading-
constrained acceleration is computed by the simulation loop using the
original constraint space to create the new constraint acceleration of the
god-object.

16.4.2 Textures

Chapter 18 describes some recent methods for six-degree-of-freedom haptic
texture rendering [Otaduy et al. 04,Otaduy and Lin 04], but they are not



�

�

�

�

�

�

�

�

16.4. Haptic Surface Properties 345

Figure 16.9. Bump and hole texture. The direction of the force vector F is
perturbed by a sine function. The x position of the contact point is an entry of
the sine function to find a value for perturbing the direction of the force. The
perturbed force FT is transmitted to the haptic device, allowing the user to feel
the bumps and holes defined by this function.

applicable in conjunction with the constraint-based method described in
this chapter. Earlier approaches, summarized in Section 15.3.3 in this book,
proposed to explore textured surfaces in three degrees of freedom [Siira
and Pai 96,Ho et al. 99,Pai et al. 01]. Minsky [Minsky 95] was the first
to introduce a system to synthesize high-frequency textures for a haptic
device. Only in 2D, they used a texture-map method. This approach is
an adaptation of the bump-mapping graphical method proposed by Blinn
[Blinn 78]. The approach combines the haptic device location and the
map to provide a surface property and a force feedback. This produces a
convincing effect of high-frequency textures.

A similar effect can be produced by perturbing the force computed by
the six-degree-of-freedom constraint-based god-object approach, using a
discrete or continuous function at the contact point position. For example,
a sine function along one axis could be sufficient for providing bumps and
holes along this axis (cf. Figure 16.9). In the case of multiple contact points,
the perturbation vector used to modify the force vector direction is defined
by averaging the perturbation vector at each contact point.

This method provides high-frequency textures and can be mixed with
the force shading effect described above. However, similar to the Minsky et
al. approach, if the speed of the god-object is too high, or the update rate
of the simulation loop is too low, the contact point positions can pass from
a hole directly to another one without feeling the bump in between. This
implies a limitation in the texture frequency according to the exploration
speed and the update rate of the simulation loop.



�

�

�

�

�

�

�

�

346 16. Six-Degree-of-Freedom Rendering of Rigid Environments

16.5 Results and Discussion
The validation of the presented approach is performed on a Stringed Haptic
Workbench in which the SPIDAR-G, a tension-based six-degree-of-freedom
force-feedback device [Kim et al. 02b], allows a user to interact intuitively
on a large two-screen display [Tarrin et al. 03a]. The entire algorithm is
executed on a 3.2 GHz dual-processor Xeon PC, to which the haptic device
is connected. This PC communicates with a cluster of PCs only dedicated
to the stereo display on both screens of the Stringed Haptic Workbench.
The communication between the Xeon PC and the cluster of PCs is ensured
by UDP protocols.

Each of the three main loops is launched in its separate thread. The
haptic device thread frequency is fixed by the device: the constraint-based
force computed by the constraint-based coupling loop is read from the
shared data and applied to the user at 1000 Hz. The frequencies of the
constraint-based coupling thread and the god-object simulation thread vary
over time, depending on the complexity of the models and the task being
performed (see below).

16.5.1 Peg-in-a-Hole Benchmark

First, the quality and the stability of the haptic interaction is evaluated in
a simple but classical case: the peg-in-a-hole benchmark (see Figure 16.10).
This benchmark is well known because, although it involves only very sim-
ple geometry (here, 288 triangles for the peg and 280 triangles for the
box), it has typically been a challenge to provide a stable and realistic hap-

Figure 16.10. The models used in the peg-in-a-hole benchmark. The peg contains
288 triangles, while the hole contains 280 triangles. The hole is aligned with the
y-axis.



�

�

�

�

�

�

�

�

16.5. Results and Discussion 347

Figure 16.11. Performance of our approach in the peg-in-a-hole benchmark. The
method computes a constraint-based force within a few microseconds, while a
peg configuration update requires only a few milliseconds, which is sufficient to
prevent visual lag in the simulation.

tic display of the insertion of the peg, due to the multiple and potentially
redundant contact points occurring during the task [Gregory et al. 00b].

Figure 16.11 reports several timings and statistics measured during a
typical interaction. The first row reports several key configurations tested
during the interaction, including (a) sliding the tip of the peg on the top



�

�

�

�

�

�

�

�

348 16. Six-Degree-of-Freedom Rendering of Rigid Environments

side of the box, (b) laying the peg on the top side of the box and sliding it
on the box, (c) pushing on the left side of the box, (d) exploring the right
extremity of the hole, and (e) inserting the peg in the hole. The second row
reports the time required to compute the constraint-based force (see Sec-
tion 16.3) during the interaction. It can be seen that the constraint-based
force is computed in less than 25 microseconds throughout the manipu-
lation. The third row shows that the time required to update the con-
figuration of the god-object is always smaller than 10 milliseconds, which
is sufficient to prevent any visual lag throughout the manipulation. The
fourth row reports the number of simultaneous contact points during the
interaction, which can be seen to be fairly limited throughout the manipu-
lation. This can be easily explained by the fact that (a) new contact points
rarely occur exactly simultaneously, and (b) compared to other approaches
using the interpenetration between virtual objects, constraint-based quasi-
static computations tend to limit the apparition of new contact points,
since at most 12 of them can be independent (each constraint removes
half a degree of freedom). This greatly contributes to the efficiency of the
constraint-based coupling loop. Finally, the fifth and the sixth rows report
the Y and Z components of the constraint-based force applied to the user
during the interaction. As expected, the Y component is non-zero only
when the user pushes the peg on the left side of the box or explores the
right extremity of the hole (steps (c) and (d)), and remains equal to zero
whenever the peg is sliding on the top side of the box or inside the hole.
The Z component has high values when the user pushes the peg on the top
side of the box and has little variations when the peg is inside the hole, due
to user movement precision. In other words, the user does not feel any ar-
tificial friction force or any artificial sticking during the manipulation (e.g.,
the Y component of the force is never positive during step (c)).

Overall, the combination of continuous collision detection, constraint-
based quasi-statics, and constraint-based force computation makes it very
easy for the user to accomplish the task, by allowing the peg to slide on the
surface of the box and the hole, while providing the user with a high-quality
haptic display.

16.5.2 Stanford Bunnies Benchmark

The second benchmark involves two Stanford bunnies (27,000 triangles per
bunny, see Figure 16.12). One bunny is static, and the second bunny is ma-
nipulated by the user. Figure 16.5 shows several key steps of the interaction:
Figure 16.5(a) shows the ear of the mobile bunny sliding in a ridge of the
static bunny; Figure 16.5(b) demonstrates how the constraint-based god-
object simulation provides realistic contacting configurations during the
interaction; similarly, Figure 16.5(c)–(d) show how our approach is able to



�

�

�

�

�

�

�

�

16.5. Results and Discussion 349

Figure 16.12. Performance of the approach in the Stanford Bunny benchmark.
Even in this complex benchmark (27,000 triangles per bunny), the presented
method is able to compute a constraint-based force within a few microsec-
onds. The simulation of the god-object, which includes collision detection and
constraint-based quasi-statics computations, is performed in less than 15 millisec-
onds, which is sufficient to prevent visual lag during the interaction.

provide the user with high-quality haptic display of contacting rigid bodies,
where the details of the geometry can be felt by the user.

Figure 16.12 reports on the performance of the approach during a typ-
ical interaction session with the bunnies, which includes the configurations
represented in Figure 16.5. Again, the force applied to the user is computed
within a few microseconds, while an update of the configuration of the mo-
bile bunny, which includes continuous collision detection and constraint-
based quasi-statics, is performed within a few milliseconds, resulting in the
absence of any visual lag during the interaction.



�

�

�

�

�

�

�

�

350 16. Six-Degree-of-Freedom Rendering of Rigid Environments

16.5.3 Discussion

Benefits. The main benefits of the presented approach stem from the com-
bination of three key elements:

• Continuous collision detection allows the user to feel the details of the
geometry of the rigid bodies and potentially feel the contact between
vertices, edges, and faces of the contacting objects. Furthermore,
the ability to produce visually convincing non-penetrating, but tan-
gent contacting configurations (e.g., Figure 16.5(b)) helps improve
the perceived stiffness of the objects [Srinivasan et al. 96].

• Asynchronous updates of the configuration of the god-object and the
force applied to the user help satisfy the different update rates re-
quired by the haptic and the visual displays.

• Constraint-based quasi-statics allows the user to slide on the environ-
ment obstacles, and haptically feel the reduced motion sub-space re-
sulting from the simultaneous non-penetration constraints, thus pro-
viding the user with a realistic haptic display of surfaces, corners,
ridges, and object/object contact in general.

Especially, the physically-based computation of the force applied to the
user guarantees that no artificial friction or sticking is felt, and that no
force is applied when the god-object is in free space. This is to be con-
trasted to what would occur if some kind of virtual coupling were involved
in the computation of the force applied to the user. Figure 16.13 shows such
a comparison, in which the god-object (dark gray) is constrained to remain
above the surface of the obstacle. In the case depicted in Figure 16.13(a),
where the haptic device (light gray) has penetrated the environment, a
virtual coupling would attempt to bring the haptic device back to the con-
figuration of the god-object, which would result in an artificial tangential
friction applied to the user.

As mentioned before, this would degrade the perceived orientation of
the surface of the obstacle [Sachtler et al. 00]. In contrast, the constraint-
based approach guarantees that the perceived orientation is correct, since
the contact forces are always orthogonal to the constraints.3 Furthermore,
in the case depicted in Figure 16.13(b), where the user moves away from
the obstacle, a virtual coupling would attempt to bring the god-object back
to the surface of the obstacle, which would result in a sticky feeling. In
this case, however, the constraint-based approach yields the correct force

3Since the constrained acceleration of the god-object ac minimizes the kinetic distance
||ac − au||M to the unconstrained acceleration au among the possible accelerations, it
is such that (ac − au)T Mac = 0, which implies that (Fc)T ac = 0.



�

�

�

�

�

�

�

�

16.5. Results and Discussion 351

Figure 16.13. Benefits of the constraint-based approach. The constraint-based
approach introduced in this chapter allows to remove force artifacts typically
found in previous methods (see Section 16.5).

(Fc = 0), since moving away from the obstacle’s surface satisfies the non-
penetration constraint (hence, ac = au).

Finally, it can be shown that the simulation of the god-object is purely
dissipative, i.e. that the force Fu = Mau applied to the god-object is such
that

(Fu)T ac � (Fu)T au.

Thus, the non-penetration constraints can only dissipate the energy trans-
mitted to the god-object.4 The tests have shown that the user is able to
e.g., release the handle of the haptic device while the peg is inside the hole
(cf. Figure 16.11, step (e)).

Limitations. The approach has two main limitations:

• Linearized constraints. In order to efficiently compute the quasi-
statics of the god-object and the constraint-based force applied to
the user, the non-penetration constraints are linearized. This might
reduce the quality of the force applied to the user when a large dis-
crepancy between the configurations of the god-object and the haptic
device occurs. It would be interesting to investigate some more so-
phisticated force computation methods to address this problem, in-

4The proof is straightforward. Indeed, (Fu)T (ac−au) = (au)T M(ac−au) = −||ac−
au||2M + (ac)T M(ac − au). Since (ac − au)T Mac = 0 (see Footnote 3), (Fu)T ac �
(Fu)T au. Note that the product of the force and the acceleration is used because the
approach deals with the quasi-static case. This is the equivalent of the product of the
force and the velocity used in typical analyses.



�

�

�

�

�

�

�

�

352 16. Six-Degree-of-Freedom Rendering of Rigid Environments

volving, for example, an implicit formulation of the non-penetration
constraints.

• Potentially low update rate of the set of constraints. There is no guar-
antee that the approach is able to update the set of non-penetration
constraints at 1000 Hz. This might lead to missing some high-frequency
details when the user slides rapidly on the surface of the environment
obstacles.

The potentially low update rate of the set of constraints is the main reason
for the separation of the god-object simulation and the constraint-based
force computation into asynchronous processes, in this approach and sev-
eral previous ones (e.g., [Constantinescu et al. 04, Mark et al. 96]). Be-
cause the complexity of any collision detection method that reports all
the contacting features is output dependent, however, it seems arguable
that whichever collision detection method is used, it will always be pos-
sible to find a scenario such that the time required to determine all the
contact points will take more than one millisecond. It was preferred to
rely on a god-object simulation method that offers precise interaction with
rigid bodies, and, especially, precisely contacting configurations. Although
this might limit the rate at which the set of non-penetration constraints
is updated (sometimes as low as 70 Hz in the Stanford bunnies bench-
mark, and about 300 Hz on average), this approach allows us to compute
a constraint-based force consistent with the current set of simultaneous
constraints at extremely high rates (always higher than 80,000 Hz in the
Stanford bunnies benchmark). Furthermore, it should be emphasized that
the constraint-based computations performed in the constraint-based cou-
pling loop implicitly include some collision detection. Returning to the
example depicted in Figure 16.4, it can be seen that if, between two up-
dates of the set of non-penetration constraints, the haptic device switches
from a state where all currently known non-penetrating constraints are
satisfied (in which case Fc = 0) to one where at least one of the currently
known non-penetrating constraint is not satisfied (in which case Fc �= 0),
the user will feel this collision. In summary, collision detection is implic-
itly performed in the constraint-based coupling loop, for the current set of
non-penetration constraints, at extremely high rates.

16.6 Summary
This haptic rendering method described in this chapter generalizes the clas-
sical three-degree-of-freedom god-object method, introduced by Zilles and
Salisbury [Zilles and Salisbury 95], to six-degree-of-freedom haptic display
of contacting rigid bodies. With the current approach, a rigid god-object



�

�

�

�

�

�

�

�

16.6. Summary 353

is able to contact and slide on the environment obstacles without pen-
etrating them, and the forces applied to the user are orthogonal to the
non-penetration constraints (in the kinetic norm sense). The proposed ap-
proach has been successfully tested on the classically difficult peg-in-a-hole
benchmark and on some more complex models—two Stanford bunnies with
27,000 triangles each. It has been shown that the presented method is able
to provide a high-quality haptic display of contacting rigid bodies in both
cases with basic surface properties (e.g., textures and force shading). The
constraint-based approach ensures that no force artifacts are felt by the
user.

The approach presented here could be extended in several directions.
One possibility would be to extend the approach to multiple dynamic ob-
jects (although it can be argued that quasi-static interaction is preferable
for the simulation of many tasks, as few manipulation tasks seem to require
using the inertia of the manipulated object to accomplish the task). One
possible direction to do this could be to generalize the approach suggested
by Niemayer and Mitra [Niemeyer and Mitra 04] to six-degree-of-freedom
haptic interaction. Finally, actual industrial scenarios such as virtual pro-
totyping and assembly tasks could be investigated.

Acknowledgments
The authors would like to express their profound appreciation for the sup-
port and feedback from the PSA Peugeot Citroën representatives involved
in the project. They also wish to thank Dr. Ming C. Lin and Dr. Miguel A.
Otaduy for insightful discussions, and Stanford University for the original
bunny models.

This work was partially supported by PERF-RV2 and by the INTU-
ITION European Network of Excellence (IST NMP-1-507248-2).



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

17
Rendering of Spline Models

D. E. Johnson and E. Cohen

While faceted models are in widespread use, for example in games, other
applications, such as computer-aided design (CAD), computer-aided man-
ufacture (CAM), and higher-end animation require more exact model rep-
resentations. A de facto standard in these areas are spline models, which
use higher-degree, rational, parametric surfaces to represent shape. This
chapter will provide some introduction to spline basics and show how to ap-
ply this theory for the demanding computational task of haptic rendering.
A representative model is shown in Figure 17.1.

17.1 The Spline Representation
Splines are a subset of parametric equations. The line segment interpolat-
ing between two points P1 and P2 is easily described in parametric form
as

L(t) = (1 − t)P1 + tP2, 0 ≤ t ≤ 1. (17.1)

This is also a linear spline. In spline terminology, the points P1 and P2

are control points and the functions that weight the points are the basis

Figure 17.1. This CAD model of a crank consists of multiple NURBS surfaces
joined by piecewise linear trimming loops.

355



�

�

�

�

�

�

�

�

356 17. Rendering of Spline Models

functions. The domain of the function is set by the knot vector. Of course,
splines are much more general than line segments; they describe piecewise
polynomial curves and surfaces of controllable continuity. In CAD, rational
splines are popular because they can precisely represent conic sections, such
as arcs. This rational representation is known as non-uniform rational B-
spline (NURBS).

17.1.1 NURBS models

Non-uniform rational B-spline (NURBS) surfaces are highly compact and
yet very expressive representations for modeling. A NURBS surface is a
bivariate vector-valued piecewise rational function of the form

S(u, v) =

∑m
i=0

∑n
j=0 Pi,jwi,jBj,kv (v)Bi,ku (u)∑m

i=0

∑n
j=0 wi,jBj,kv (v)Bi,ku (u)

, (17.2)

where the {Pi,j} form the set of control points known as the control mesh,
the {wi,j} are the weights, and the {Bi,ku} and {Bj,kv} are the basis func-
tions defined on the knot vectors {u} and {v} for a surface of order ku in
the u direction and kv in the v direction.

The various properties of a NURBS surface, including a local convex
hull property, and the ability to evaluate surface points, normals and tan-
gents, along with its intuitive control characteristics, make it a good rep-
resentation for modeling and design. These properties have led to NURBS
becoming a de facto industry standard for the representation and data
exchange of geometric models.

Trimmed NURBS models are constructed by cutting away portions of
a NURBS surface, using trimming curves in parametric space. These trim-
ming curves require their own representation. One approach is to store
trimming information as directed closed polygons called trimming loops.
Each individual linear portion of the loop is called a segment. A collection
of connected segments that represents shared boundary between two sur-
faces is referred to as an edge. Portions of the surface domain to the left of
a loop are considered cutaway, while pieces to the right are deemed part of
the model. Note that each surface that is part of a model contains at least
one trimming loop. If there is no portion of the surface being cut away,
then this loop simply surrounds the boundary of the domain of the surface.

17.2 Distance and Orthogonal Projection
The previous chapter discussed computing forces by finding the distance
between the haptic interface point (HIP) and the constrained proxy point



�

�

�

�

�

�

�

�

17.2. Distance and Orthogonal Projection 357

(a) (b)

Figure 17.2. (a) The closest point on a triangle is found by projecting the hap-
tic interface point down along the triangle normal. (b) There is an equivalent
parametric representation of the surface.

on the surface. At the level of the triangle primitives, the closest point on
the triangle face is found by projecting the haptic interface point along the
triangle normal onto the surface. This operation is seen in Figure 17.2.
While this operation may make intuitive sense, it is worth looking at the
underlying mathematics in more detail, so that this process can be adapted
for spline models.

The triangle lies on an infinite plane sharing the same normal, N , and
this plane will be used in the following discussion. Instead of using a
geometric projection operation, the closest point finding operation can be
expressed in a different form. A plane can be defined as going through a
set of vertices V1, V2, V3, which create an internal coordinate system with
axis vectors (V2 − V1, V3 − V1, N). This system then defines the plane in
parametric form, T (u, v), where

T (u, v) = V1 + u(V2 − V1) + v(V3 − V1). (17.3)

Figure 17.2(b) shows this parametric setup. The distance, D, between
the HIP and every point on the plane is then

D(u, v) = ||PHIP − T (u, v)||. (17.4)

The closest point on the plane is the minimum of Equation (17.4). Minima,
and really all extrema, occur at common zeroes of the partial derivative
of an equation. Since the distance, as expressed above, involves finding
vector magnitude with a square root, a common trick is to use the squared
distance instead. The squared distance shares roots with the Euclidean



�

�

�

�

�

�

�

�

358 17. Rendering of Spline Models

distance and has a simplified system of partial derivatives. Therefore,

D2(u, v) = ||PHIP − T (u, v)||2 (17.5)
= (PHIP − T (u, v)) · (PHIP − T (u, v)). (17.6)

The minimum distance occurs at simultaneous zeroes of F, the system
of partial derivatives of D2(u, v). In the following equation, partials are
denoted by a subscripted parameter. The partials are found by using the
chain rule on D2(u, v).

F =
[
D2

u(u, v)
D2

v(u, v)

]
=
[
2(PHIP − T (u, v)) · −Tu(u, v)
2(PHIP − T (u, v)) · −Tv(u, v)

]
=
[
0
0

]
. (17.7)

This probably does not seem like a very natural way to find the distance
to a plane, and it would be computationally inefficient to use it directly.
However, it does provide justification for the geometric projection opera-
tion used earlier. Looking at the system of partials, F , it describes the
conditions that need to be met where there is a minimum in distance. The
condition is that the vector between the HIP, PHIP , and the proposed so-
lution point on the plane, T (u, v), must be orthogonal to both the surface
tangents at T (u, v). This is because the dot product between that vector
and each tangent must equal zero for F to be a root. An equivalent way
of stating these constraints is that the vector between the HIP and the
proposed solution point must be parallel to the normal, since the normal
is orthogonal to both surface tangents. Therefore, the geometric “project
along the normal” concept comes directly from trying to minimize the dis-
tance between a point and a plane.

Haptic rendering of spline models works directly with the parametric
form of the distance equation. The complexity of haptic rendering algo-
rithms then depends on finding the appropriate type of numeric or symbolic
solver to update these closest points fast enough, and reliably enough, for
use with a haptic interface.

17.3 Local Minima in Distance versus the
Virtual Proxy

Recall that simple application of finding the closest point on a model’s sur-
face to the HIP is not enough for realistic haptic rendering. For polygonal
models, the concept of the virtual proxy is used to track the HIP’s his-
tory, and to prevent unpleasant artifacts such as being accelerated through
thinner models and sharp changes in forces. In essence, this additional
state information and the application of constrained minimization is used
to maintain a local minima in distance for computing the restoring force.



�

�

�

�

�

�

�

�

17.4. 3-DOF Haptic Rendering of Spline Models 359

Such a local minima is a natural result of applying numerical methods
to the parametric distance equations. In a typical numerical root finder,
an initial guess must be used to start the method. For systems with a state
that evolves over time, a simple approach uses the result from the previous
time step to initialize the solution for the current time step. This is exactly
analogous to the virtual proxy used on polygoal models.

17.4 3-DOF Haptic Rendering of Spline Models
Haptic rendering of spline models shares similar approaches to that for
polygonal models. There is unconstrained motion in free space, estimates
of potential contact locations through distance measures, transitioning from
free motion to penetration into a model with concurrent force generation,
continued motion with updated forces, and transitioning back into free
motion.

The earliest haptic rendering of spline models was heavily constrained
by available computation power. One approach out of the Ford Motor
company [Stewart et al. 97] mirrored early polygonal approaches by slowly
updating an intermediate plane [Adachi 93], which was used to compute an
aproximate distance to the model. Another approach, Direct Parametric
Tracing (DPT), by Thompson et al. [Thompson et al. 97] directly used
the spline surface, but linearized the distance update during motion of
the HIP to increase speed. This approximation was necessitated by the
embedded processors used to compute forces in their haptic system. The
DPT approach does illustrate many of the operations needed for successful
haptic rendering of spline models and is detailed in the following section.

17.5 Direct Parametric Tracing
The DPT method used an approximation known as nodal mapping [Sny-
der 95] to find a first-order approximation to the closest point on the surface
(Figure 17.3). The HIP is projected onto the control mesh of the NURBS
surface, resulting in a point Q. Each vertex of the control mesh has an
associated (u, v) parametric value that is called the node [Cohen and Schu-
maker 85]. An approximate (u, v) for Q is determined by interpolating
between node values, using the barycentric coordinates of Q. The sur-
face is evaluated at the interpolated (u, v) point and the distance between
S(u, v) and E is used as the surface proximity distance. With the addi-
tional compute power of modern machines, root polishing with numerical
methods would be advisable and would yield a more accurate result. Nodel



�

�

�

�

�

�

�

�

360 17. Rendering of Spline Models

Figure 17.3. The projected distance along the control polygon is used as the
parametric distance between associated nodes.

mapping can then be thought of as a heuristic to find a starting point for
the numerical method.

17.5.1 Tracking Phase

When a surface becomes close enough to the HIP, the approximate closest
point from nodal mapping initializes the DPT local closest point tracking
method (Figure 17.4). Following the derivation in [Thompson et al. 97], the
DPT method is shown for a B-spline curve, rather than for a surface. Some
definitions used are the previous point on the curve, γ(u): the tangent
vector at γ(u), γ′(u); and the current HIP location, E. These elements
determine a new approximate closest point on the curve.

The basic idea is to linearly approximate motion along γ′(u) to a change
in parameter along the curve. At the limit, γ′(u) relates changes in position
along the curve in Euclidean space to changes in position in parametric
space:

γ′(u) =
dγ

du
≈ ∆γ

∆u
. (17.8)

Given a Euclidean movement along γ, the corresponding movement in the
parametric space of the curve is calculated as

|∆u| ≈ ‖∆γ‖
‖γ′(u)‖ . (17.9)

In order to use Equation (17.9) as a closest point tracking method,
movement of the end-effector needs to be related to movement of the closest
point on the curve. The exact ∆γ, corresponding to movement of the closest
point along the curve, clearly involves finding the desired new closest point.
Instead of finding an exact ∆γ, a first-order Taylor series approximation
to the curve, the tangent γ′(u) is used to compute an approximate ∆γ.



�

�

�

�

�

�

�

�

17.5. Direct Parametric Tracing 361

(a) (b)

(c) (d)

Figure 17.4. (a) Initial state. (b) HIP moves. (c) Projection of HIP position
onto surface tangent plane. (d) New surface point and tangent plane found via
parametric projection.

The movement of the end-effector can now be related to movement of the
closest point along the curve by projecting the offset vector, ψ, formed by
subtracting γ(u) from E, onto the curve tangent vector (Figure 17.4(c)).
Thus,

∆γ ≈ 〈 ψ , γ′(u) 〉
‖γ′(u)‖2

γ′(u). (17.10)

Fortunately, these elements are all efficiently computable on B-spline curves
through the curve evaluation done at the previous time step. That curve
refinement yields new control polygon points Pi and Pi−1, which are the
curve evaluated at the previous closest point parameter, and a point along
the tangent vector, respectively. The final result,

∆u ≈ 〈 ψ , (Pi∗+1 − Pi∗) 〉
‖Pi∗+1 − Pi∗‖2

(
ui∗+k − ui∗+1

k − 1

)
, (17.11)

shows that the change in parameter as the HIP moves can be found with
very few arithmetic operations. On more modern machines, such an update
can be computed several hundred thousand times per second.

The new curve location, γ(u∗ + ∆u), is a good approximation to the
closest point to E. The new closest point is evaluated through multiple
knot insertions at u∗ + ∆u, which maintains the conditions needed to use
Equation (17.11) at the next time step (Figure 17.4(d)).



�

�

�

�

�

�

�

�

362 17. Rendering of Spline Models

Essentially, we make a first order approximation of the closest point
movement in Euclidean space with the tangent projection. The closest
point movement is converted into parametric movement through a first or-
der approximation to the parametric velocity at the previous closest point.
The new closest point is then converted back into Euclidean space through
curve refinement and evaluation. For small step sizes and penetration
depths, this provides an excellent approximation.

For surfaces, the method is essentially the same, although the projection
step now requires projection onto the tangent plane, S′(u, v), of the surface.
Barycentric coordinates are used to derive ∆u and ∆v. In the original
DPT paper, the DPT method used to trace a single surface ran at 1400 Hz
on a Motorola 68040 processor, barely fast enough for haptic rates, but
significantly faster than more sophisticated iterative numerical methods.

17.5.2 Surface Transitions

The closest point update equations are only valid for single surfaces. Realis-
tic models are formed out of multiple surfaces connected at their parametric
boundaries, or by trimming curves, so updates to the local closest point
must be able to transition over surface boundaries onto the new surface.
In practice, trimming curves are used to join surfaces at their parametric
boundaries, as well at the interior of the domain, so the trimming curve
case is the only one that must be considered.

Trimming curves complicate closest point tracking in the following ways.
In the parametric domain, trims remove portions of the domain. Thus, for
each update of the closest point, the tracking algorithm needs to check if
the updated point is still within the valid domain. Update steps that cross
a trim boundary can be thought of as moving onto a new surface, so the

(a) (b)

Figure 17.5. (a) Transitioning across a trimming edge and onto another surface.
(b) Transitioning onto the intersection of two surfaces.



�

�

�

�

�

�

�

�

17.5. Direct Parametric Tracing 363

parameter value of the closest point needs to be converted from one surface
to the new surface. Additionally, trims can form C1 discontinuities on the
model. The image of the trim curve forms a curve in Euclidean space along
a sharp boundary between adjoinng surfaces. Each point on this Euclidean
trim curve encompasses a range of normals from one surface normal to
the other surface normal. Following the idea of orthogonal projection, it
follows that a range of HIPs can project onto the Euclidean trim curve, so
the closest point on the model may lie on the trim curve, rather than on
any particular surface.

A general transition from one surface to the next may take the form of
detecting a closest point in the trimmed-away domain, finding the closest
point on the Euclidean trim curve and possibly moving on the trim for
a number of updates, then transitioning onto the adjoining surface and
resuming DPT on that surface. These elements each require their own
approaches.

17.5.3 Trim Intersection

Discrete movement along the surface correlates to a directed line segment
in parametric space. This segment is constructed using the current closest
point’s parametric coordinates and the next location calculated using direct
parametric tracing. If this segment, or movement vector, intersects any of
the surface’s trimming segments then a boundary has been crossed. The
location of the intersection is determined by selecting the intersection point
closest to the current contact point.

Since the number of trimming segments per surface can be very large,
it is not possible to check every segment for intersection. Multiple accel-
eration data structures are reasonable choices for speeding this problem.

Figure 17.6. A spatial grid reduces the number of trim segments that must be
checked for intersection. Only the highlighted cells intersecting the movement
vector need to be processed.



�

�

�

�

�

�

�

�

364 17. Rendering of Spline Models

In [Thompson II and Cohen 99], a spatial grid in the parametric domain
was used. Each cell in the grid contains the trim segments that lie within
or intersect it. Each call to to the trim intersection test results in only
checking those segments lying within the cells that the movement vector
intersects. In addition, a grid walking algorithm checks the cells in the
order the movement vector traverses through them. Figure 17.6 shows an
example movement through the spatial grid structure. The intersection
checks conclude at the first valid intersection, further cutting down on the
number of intersection checks performed. In [Museth et al. 05], a hierachi-
cal oriented bounding box test was used to find the intersection point. In
practice, trimming loops tend not to exhibit pathological behavior, such as
repeated self-intersections, so almost any efficiency structure will probably
perform well.

17.5.4 Adjacency

In order to smoothly transition from one surface to another, it is necessary
to calculate an accurate transition point on the neighboring surface. Our
system maintains an edge adjacency table for each surface. This table allows
efficient determination of the adjacent surface, as well as the appropriate
trimming loop and edge onto which the transition should occur. Not all
CAD file formats retain this topological connectivity information, in which
case it would have to be reconstructed through repeated sampling of the
closest point from a point on one surface to the other along the trim curve.
Given such an edge adjacency table, finding the corresponding point on the
adjoining surface is just a table lookup and interpolation along the trim
edge.

17.5.5 Edge Tracing and Release

Tracing along a trim edge is closely related to tracing along the surface.
The edge tracing algorithm must slide along the edge in Euclidean space
to a point locally close to the probes position. Since the trim loop has
connectivity information, a hill-climbing algorithm that slides along the
trim to a new local minimum is fast and sufficient.

Once the local closest point is found, the algorithm checks to see if
the tracked point should release from the trim onto the surface. If DPT
performed on the surfaces adjoining the new location moves onto a surface,
then the surface point is used. If the updated surfaces points all lie in the
invalid, trimmed-away domain, then the closest point remains on the trim
curve.



�

�

�

�

�

�

�

�

17.6. Stability of Numerical Closest Point Methods 365

17.6 Stability of Numerical Closest Point
Methods

Computing power has increased since the development of the DPT ap-
proach, so it is worthwhile examining more accurate closest point update
methods. Equation (17.7) showed the system of equations whose roots
were the closest points on a plane. By replacing the parametric equation
of the plane with a spline surface S(u, v), the system describing the closest
point on a surface is obtained. In this form, the scaling factor of −2 is also
dropped for simplicity.

F(u, v) =
[
(PHIP − S(u, v)) · Su(u, v)
(PHIP − S(u, v)) · Sv(u, v)

]
=
[
0
0

]
. (17.12)

Any number of numerical methods can be applied to solve such a
system. Multidimensional Newton’s method is a powerful and popular
method for such root finding. Given an initial guess at the solution,
x = (uinit, vinit), Newton’s method iterates finding a ∆x that moves F(x)
closer to the root. Multidimensional Newton’s method takes the form

J(u, v) · ∆xT = −F(u, v), (17.13)

where J(u, v) is the Jacobian of F(u, v), or the matrix of partial derivatives.
The change in parameter is then found by taking the inverse of the Jacobian
and multiplying that with the system of equations:

∆xT = −J(u, v)−1F(u, v). (17.14)

Looking at all the elements of a Newton’s method update step, the
expanded form is[

(PHIP − S) · Suu + Su · Su (PHIP − S) · Suv + Su · Sv

(PHIP − S) · Suv + Su · Sv (PHIP − S) · Svv + Sv · Sv

]
·
[
∆u
∆v

]
= −F

(17.15)
where S is the surface evaluated at the current root estimate. Additional
geometric insight into degeneracy conditions for Newton’s method can be
obtained by rewriting the vector between the HIP and the current estimated
closest point on the surface PHIP −S in terms of a local coordinate system
on the surface, using the tangent plane and surface normal evaluated at
the root estimate,

PHIP − S = xSu + ySv + zN. (17.16)

During haptic updates, each discrete step of the HIP is very small. In this
case, x and y tend to zero. At the limit, then,

PHIP − S = zN. (17.17)



�

�

�

�

�

�

�

�

366 17. Rendering of Spline Models

Substituting this form into Equation (17.15), the Jacobian used in an
update of Newton’s method becomes[

zN · Suu + Su · Su zN · Suv + Su · Sv

zN · Suv + Su · Sv zN · Svv + Sv · Sv

]
. (17.18)

Important intrinsic properties of surfaces are called the first and second
fundamental forms of a surface, G and L. They are defined as

G =
[
Su · Su Su · Sv

Su · Sv Sv · Sv

]
=
[
E F
F G

]
, (17.19)

L =
[
Suu ·N Suv ·N
Suv ·N Svv ·N

]
=
[
L M
M N

]
. (17.20)

These forms share common elements with the Jacobian of the update step
in Equation (17.18), which can be rewritten in terms of the elements of G
and L, or [

zL+ E zM + F
zM + F zN +G

]
. (17.21)

The matrix inversion step is degenerate when the determinant of the Ja-
cobian is zero. The determinant of the Jacobian equals zero at the roots
of

z2

(
LN −M2

EG− F 2

)
+ z

(
LG+ EN + 2MF

EG− F 2

)
+ 1 = 0. (17.22)

This unwieldy equation actually shares the forms of the sums and product
of the principal curvatures of a surface. The principal curvatures, κ1 and
κ2, define the maximum and minimum curvatures of curves passing through
a point on a surface. The sums and products of these curvatures are exactly
the coefficients of the determinant of the Jacobian, so the determinant can
be written in terms of the principal curvatures as

z2κ1κ2 + z(κ1 + κ2) + 1 = 0, (17.23)

with roots
z = − 1

κ1
and z = − 1

κ2
. (17.24)

Getting back to the original point of all this rewriting, a HIP that is
along the normal of the last closest point and at a distance of one of the
principal radii of curvature will cause a degenerate update of Newton’s
method. Points in the neighborhood of these degeneracies will have very
poor condition numbers, leading to numerically poor matrix inversions. In
light of this, haptic algorithms using numerical methods need to be aware
of potential degeneracies and have tests and fallback methods available to



�

�

�

�

�

�

�

�

17.7. 6-DOF Haptic Rendering of Spline Models 367

safely update the position when needed. Recent approaches have sought
more reliable updates of the closest point on a surface. These approaches
include geometric hierarchies based on normal cones [Johnson and Co-
hen 05], feedback control of the update [Patoglu 05], and symbolic analysis
of critical points with numerical updates [Seong et al. 06].

17.7 6-DOF Haptic Rendering of Spline Models
The system of equations describing the conditions for a local minimum
distance between the HIP and a spline surface can be expanded to consider
the local minimum distance between two surfaces. When the haptic device
controls the position and orientation of a model rather than a point, such
distance measures are necessary.

A straightforward extension of 3-DOF haptic rendering considers find-
ing the extrema of the distance between two surfaces A(u, v) and B(s, t):

D(u, v, s, t) = ||A(u, v) −B(s, t)||. (17.25)

As before, extrema occur at simultaneous zeroes of the system of partial
derivatives, F(u, v, s, t),

F(u, v, s, t) =

⎡⎢⎢⎣
(A(u, v) −B(s, t)) · Au(u, v)
(A(u, v) −B(s, t)) · Av(u, v)
(A(u, v) −B(s, t)) ·Bs(s, t)
(A(u, v) − B(s, t)) ·Bt(s, t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ . (17.26)

Analogous to the point case, extrema occur when the line between clos-
est points on the surfaces is normal to each surface. The problem with using
this system directly in Newton’s method is that during model interpenetra-
tion, roots not only correctly yield the penetration of the two models but
also a curve of zero distance, where the two surfaces intersect. This curve
matches the term A(u, v) − B(s, t) going to zero in the set of equations.
Local updates can very easily “slide” into these extraneous solutions.

17.7.1 Extremal Distance Formulation

A more robust solution is proposed in [Nelson et al. 99]. The extremal
distance between parametric surfaces A(u, v) and B(s, t) may be described
by the following equation:

E(u, v, s, t) = (A(u, v) −B(s, t)) ·NA, (17.27)



�

�

�

�

�

�

�

�

368 17. Rendering of Spline Models

where NA is the surface normal at A(u, v). Extrema of E are when⎡⎢⎢⎣
Au(u, v) ·N + (A(u, v) −B(s, t)) ·Nu

Av(u, v) ·N + (A(u, v) −B(s, t)) ·Nv

−Bs(s, t) ·N
−Bt(s, t) ·N

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ . (17.28)

Noting that the normal N is orthogonal to the tangent plane formed by
the partials Au and Av, the terms Au · N and Av · N are always zero.
Additionally, the partials of N lie in the tangent plane of A, as shown
by the Weingarten equations. The equivalent constraint may be formu-
lated by replacing these normal partials with the partials of A(u, v). These
substitutions form a simplified set of equations⎡⎢⎢⎣

N ·Bs

N ·Bt

(A(u, v) −B(s, t)) · Au

(A(u, v) −B(s, t)) · Av

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ . (17.29)

The first two equations constrain the solution to collinear normals at the
surface points forming the solution and the second two maintain colinearity
of the vector connecting the surface points with the surface normals.

This system of equations may be locally solved through incremental
updates of the parameters, using multi-dimensional Newton’s method,

∆u = J−1(−F), (17.30)

where J is the Jacobian of F.
This formulation still contains some extraneous zeroes, since there may

be multiple locations where the surfaces’ tangent planes are parallel and
are at a local distance extremum. However, these undesired roots are less
common than the extraneous roots from the straightforward extension of
the minimum distance formulation. Repeated application of the extremal
distance update tracks the penetration depth as two models interpenetrate,
as seen in Figure 17.7.

While these equations may be used directly by the haptic rendering sys-
tem, additional efforts at stability have developed in [Nelson et al. 99]. This
approach used a differential parametric contact formulation that evolved
the pair of points forming the penetration depth, using surface velocities
and the local curvature properties of the surfaces to stably update the pen-
etration depth, using numerical integration of the point movement. Nu-
merical methods guarded against drift of the updated solution.



�

�

�

�

�

�

�

�

17.8. Conclusion 369

Figure 17.7. As the haptically controlled model pushes into the other model, the
extremal distance equations can track the penetration depth between the two
models.

17.8 Conclusion
Haptic rendering of spline models shares common characteristics with hap-
tic interaction between polygonal models, but casts the problem into a
symbolic form, rather than a geometric one. As distance methods to and
between spline models become faster and more robust, these advances can
be directly applied to improving the haptic rendering of these models.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

18
Rendering of Textured

Objects
M. A. Otaduy and M. C. Lin

Rendering of surface texture (i.e., fine geometric features on an object’s
surface) is an important topic in haptics that has received increasing at-
tention. The intrinsic surface property of texture is among the most salient
haptic characteristics of objects. It can be a compelling cue to object iden-
tity and it can strongly influence forces during manipulation [Klatzky and
Lederman 02]. In medical applications with limited visual feedback, such
as minimally invasive or endoscopic surgery [Salisbury 99], and virtual pro-
totyping applications of mechanical assembly and maintainability assess-
ment [Wan and McNeely 03], accurate haptic feedback of surface detail is
a key factor for successful dexterous operations.

To be correctly represented, surfaces with high-frequency geometric tex-
ture detail require higher sampling densities, thereby increasing the cost
of collision detection. In fact, computation of texture-induced forces us-
ing full-resolution geometric representations of the objects and handling
contacts at microgeometric scale is computationally prohibitive, and novel
representations must be considered. Similar to graphical texture render-
ing [Catmull 74], researchers in haptic rendering have investigated geomet-
ric representations where objects with high combinatorial complexity (i.e.,
with a high polygon count) are described by coarse representations, along
with texture images that store fine geometric detail.

This chapter begins by covering psychophysical foundations for haptic
texture rendering algorithms, and giving a summary of methods for 3-DOF
rendering. Then we introduce a force model for collision response between
two textured surfaces, which captures perceptually relevant aspects identi-
fied in psychophysics studies. We conclude the chapter with the description
of a fast algorithm for GPU-based computation of approximate penetration
depth, which enables 6-DOF haptic texture rendering in combination with
the force model for textured surfaces.

371



�

�

�

�

�

�

�

�

372 18. Rendering of Textured Objects

18.1 Perceptual Motivations
Chapter 1 discusses the perception of contact through a tool. Here, we
summarize some of the specific findings related to texture perception.

Klatzky and Lederman [Klatzky and Lederman 03] describe a textured
surface as a surface with protuberant elements arising from a relatively
homogeneous substrate. Interaction with a textured surface results in per-
ception of roughness. Existing research on the psychophysics of texture
perception indicates a clear dichotomy of exploratory procedures: (1) per-
ception of texture with the bare skin, and (2) perception through an inter-
mediate (rigid) object, a probe.

Most of the research efforts have been directed toward the characteri-
zation of cutaneous perception of textures. Katz [Katz 25] suggested that
roughness is perceived through a combination of spatial and vibratory codes
during direct interaction with the skin. More recent evidence demonstrates
that static pressure distribution plays a dominant role in perception of
coarse textures (features larger than 1 mm) [Lederman 74, Connor and
Johnson 92], but motion-induced vibration is necessary for perceiving fine
textures [LaMotte and Srinivasan 91,Hollins and Risner 00]. As pointed
out by Klatzky and Lederman [Klatzky and Lederman 02], object-object
interaction roughness is encoded in vibratory motion transmitted to the
subject.

In the last few years, Klatzky and Lederman have directed experi-
ments that analyze the influence of several factors on roughness percep-
tion through a rigid probe. Klatzky et al. [Klatzky et al. 03] distinguished
three types of factors that may affect the perceived magnitude of roughness:
inter-object physical interaction, skin- and limb-induced filtering prior to
cutaneous and kinesthetic perception, and higher-level factors such as effer-
ent commands. The design of contact determination and collision response
algorithms for haptic texture rendering is mostly concerned with factors
related to the physical interaction between objects: object geometry [Led-
erman et al. 00,Klatzky et al. 03], applied force [Lederman et al. 00], and
exploratory speed [Lederman et al. 99,Klatzky et al. 03]. The influence of
these factors has been addressed in the design of haptic texture rendering
algorithms [Otaduy et al. 04], as later described in this chapter.

The experiments conducted by Klatzky and Lederman to characterize
roughness perception [Klatzky and Lederman 02] used a common set-up:
subjects explored a textured plate with a probe with a spherical tip, and
then they reported a subjective measure of roughness. Plates of jittered
raised dots were used, and the mean frequency of dot distribution was one
of the variables in the experiments. The resulting data was analyzed by
plotting subjective roughness values versus dot interspacing in logarithmic
graphs.



�

�

�

�

�

�

�

�

18.2. Three-DOF Haptic Texture Rendering 373

Klatzky and Lederman [Klatzky and Lederman 99] compared graphs of
roughness versus texture spacing (1) with finger exploration and (2) with
a rigid probe. They concluded that, in the range of their data, rough-
ness functions were best fit by linear approximations in finger exploration,
and by quadratic approximations in probe-based exploration. In other
words, when perceived through a rigid spherical probe, roughness initially
increases as texture spacing increases, but, after reaching a maximum
roughness value, it decreases again. Based on this finding, the influence
of other factors on roughness perception can be characterized by the max-
imum value of roughness and the value of texture spacing at which this
maximum takes place.

Lederman et al. [Lederman et al. 00] demonstrated that the diameter
of the spherical probe plays a crucial role in the maximum value of per-
ceived roughness and the location of the maximum. The roughness peak
is higher for smaller probes, and it occurs at smaller texture spacing val-
ues. Lederman et al. [Lederman et al. 00] also studied the influence of the
applied normal force during exploration. Roughness is higher for larger
force, but the influence on the location of the peak is negligible. The effect
of exploratory speed was studied by Lederman et al. [Lederman et al. 99].
They found that the peak of roughness occurs at larger texture spacing
for higher speed. Also, with higher speed, textured plates feel smoother at
small texture spacing, and rougher at large spacing values. The studies re-
flected that speed has a stronger effect in passive interaction than in active
interaction.

18.2 Three-DOF Haptic Texture Rendering
Three-DOF haptic rendering algorithms have been extended to account
for subfeature geometric detail that is not directly encoded in the geomet-
ric primitives, in a way similar to the texture mapping technique broadly
employed in computer graphics. Indeed, haptic rendering of textures was
one of the first tackled problems in the field of computational haptics, by
Minsky et al. [Minsky et al. 90]. This section begins with a description of
Minsky’s pioneering algorithm for rendering textures on the plane [Min-
sky 95]. Then it discusses rendering of textures on 3D surfaces, covering
offset-based methods and probabilistic methods.

18.2.1 Rendering Textures on the Plane

Minsky [Minsky 95] developed the Sandpaper system for 2-DOF haptic
rendering of textures on a planar surface. Her system was built around a
force model for computing 2D forces from texture height field information.



�

�

�

�

�

�

�

�

374 18. Rendering of Textured Objects

Following energy-based arguments, her force model synthesizes a force F
in 2D, based on the gradient of the texture height field h at the location of
the probe:

F = −k∇h. (18.1)

Minsky also qualitatively and quantitatively analyzed roughness per-
ception and the believability of the proposed force model. One of the main
conclusions of her work was to establish her initial hypothesis, that texture
information can be conveyed by displaying forces tangential to the con-
tact surface. This hypothesis was later exploited for rendering textured 3D
surfaces [Ho et al. 99].

18.2.2 Methods Based on Surface Offsets

High-resolution surface geometry can be represented by a parameterized
coarse mesh, along with texture images storing detailed offset or displace-
ment field information, similarly to the common approach of texture map-
ping in computer graphics [Catmull 74]. Constraint-based 3-DOF hap-
tic rendering methods determine a unique contact point on the surface
of the rendered object. Usually, the mesh representation used for de-
termining the contact point is rather coarse and does not capture high-
frequency texture. Nevertheless, the parametric coordinates of the contact
point can be used for accessing surface texture information from texture
images.

Ho et al. [Ho et al. 99] introduced a technique similar to bump mapping
[Blinn 78] that alters the surface normal, based on the gradient of the
texture offset field. A combination of the original and refined normals is
used for computing the direction of the feedback force.

Techniques for haptic texture rendering based on a single contact point
can capture geometric properties of only one object and are not suitable for
simulating full interaction between two surfaces. The geometric interaction
between two surfaces is not limited to, and cannot be described by, a pair
of contact points. Moreover, the local kinematics of the contact between
two surfaces include rotational degrees of freedom, which are not captured
by point-based methods.

Ho et al. [Ho et al. 99] indicated that a high offset gradient can induce
system instability. Along a similar direction, Choi and Tan [Choi and
Tan 03b, Choi and Tan 03a] studied the influence of collision detection
and penetration depth computation on 3-DOF haptic texture rendering.
Discontinuities in the output of collision detection are perceived by the
user, a phenomenon that they described as aliveness. This phenomenon is
a possible problem in 6-DOF haptic rendering, as well.



�

�

�

�

�

�

�

�

18.3. Texture Force Model 375

18.2.3 Probabilistic Methods

Some researchers have exploited statistical properties of surfaces for com-
puting texture-induced forces that are added to the classic 3-DOF contact
forces. Siira and Pai [Siira and Pai 96] synthesized texture forces accord-
ing to a Gaussian distribution for generating a sensation of roughness. In
order to improve stability, they did not apply texture forces during static
contact. Later, Pai et al. [Pai et al. 01] presented a technique for render-
ing roughness effects by dynamically modifying the coefficient of friction
of a surface. The roughness-related portion of the friction coefficient was
computed according to an autoregressive process driven by noise.

Probabilistic methods have proved to be successful for rendering high-
frequency roughness effects in point-surface contact. It is also possible,
although this approach has yet to be explored, that they could be combined
with geometric techniques for synthesizing high-frequency effects in 6-DOF
haptic rendering.

18.3 Texture Force Model
In this section we describe a force model for 6-DOF haptic texture render-
ing. First, we describe some design considerations. Then, we detail the
force and torque equations based on the gradient of directional penetra-
tion depth, and we discuss the computation of the gradient using finite
differences.

18.3.1 Offset Surfaces and Penetration Depth

As summarized in Section 18.1, Klatzky and Lederman [Klatzky and Leder-
man 02] concluded, after a series of studies, that the perception of roughness
is intimately related to the trajectory of the probe grabbed by the user.
For spherical probes as the ones used in their studies, and in the absence of
dynamic effects, the surface traced during exploration constitutes an offset
surface. The oscillation of the offset surface produces the vibratory motion
that encodes roughness. The idea of offset surfaces has also been used by
Okamura and Cutkosky [Okamura et al. 01] to model interaction between
robotic fingers and textured surfaces.

The height h of the offset surface traced by a spherical probe is equal to
the vertical penetration depth δ if the center of the sphere moves exactly
along the surface. This connection between penetration depth and offset
surfaces can be generalized to non-spherical probes through the concept of
a Minkowski sum. An offset surface corresponds to the boundary of the
Minkowski sum of a given surface and a sphere. Therefore, the height of
the offset surface at a particular point is the distance to the boundary of



�

�

�

�

�

�

�

�

376 18. Rendering of Textured Objects

the Minkowski sum for a particular position of the probe, which is the same
as the penetration depth. Actually, the height of the offset surface is the
distance to the surface along a particular direction (i.e., vertical), so the
distance to the boundary of the Minkowski sum must also be measured
along a particular direction. This distance is known to be the directional
penetration depth.

Since for spherical probes, perception of roughness is tightly coupled
with the undulation of the traced offset surface, a texture force model for
general surfaces should take into account the variation of penetration depth
(i.e., its gradient). As noted earlier, the gradient of a height field has also
been used in the context of 3-DOF rendering methods [Minsky 95,?] as a
descriptor for texture-induced forces. The use of the gradient of penetration
depth in 6-DOF haptic rendering can be considered as a generalization of
the concept used in 3-DOF haptic rendering.

18.3.2 Penalty-Based Texture Force

Otaduy and Lin [Otaduy and Lin 04] designed a force model for collision
response between textured surfaces that would account for the effects of
geometry and normal force identified in Klatzky and Lederman’s perceptual
studies. As haptic rendering is a human-in-the-loop system, dynamic effects
associated with grasping factors, such as exploratory speed, need not be
modeled explicitly. The force model extends classic penalty-based collision
response by defining an elastic penetration energy U with stiffness k:

U =
1
2
kδ2. (18.2)

Based on this energy, texture force F and torque T are defined as(
F
T

)
= −∇U = −kδ (∇δ) , (18.3)

where ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z ,

∂
∂θx

, ∂
∂θy

, ∂
∂θz

)
is the gradient in 6-DOF configura-

tion space.
Each contact between two objects A and B can be described by a pair

of contact points pA and pB, and by a penetration direction n. The pene-
tration depth between objects A and B can be locally approximated by the
directional penetration depth δn along n. Then, Equation 18.3 is rewrit-
ten for δn in a reference system {u,v,n} located at the center of mass of
A. The axes u and v may be selected arbitrarily as long as they form an
orthonormal basis with n. Equation 18.3 reduces to(

Fu Fv Fn Tu Tv Tn

)T = −kδn
(

∂δn
∂u

∂δn
∂v 1 ∂δn

∂θu

∂δn
∂θv

∂δn
∂θn

)T

, (18.4)



�

�

�

�

�

�

�

�

18.4. Penetration Depth between Textured Models 377

where θu, θv, and θn are the rotation angles around the axes u, v, and n,
respectively.

The force and torque on object A (and similarly on object B) for each
contact can be expressed in the global reference system as

FA = (u v n) (Fu Fv Fn)T
,

TA = (u v n) (Tu Tv Tn)T . (18.5)

Forces and torques of all contacts are summed up to compute the net force
and torque.

Generalizing Minsky’s approach for 3-DOF haptic rendering [Minsky 95],
the tangential forces Fu and Fv are proportional to the gradient of pen-
etration depth. However, the 6-DOF force model also defines a penalty-
based normal force and gradient-dependent torque that describe full 3D
object-object interaction. In addition, the tangential force and the torque
are proportional to the normal force, which is consistent with the results
of psychophysics studies, showing that perceived roughness increases with
the magnitude of the normal force [Klatzky and Lederman 02].

18.3.3 Gradient of Penetration Depth

Penetration depth functions δ and δn are sampled at discrete points on a 6-
DOF configuration space. With central differencing, the partial derivatives
can be approximated as

∂δn
∂u

=
δn(u + ∆u, v, n, θu, θv, θn) − δn(u − ∆u, v, n, θu, θv, θn)

2∆u
, (18.6)

and similarly for ∂δn
∂v , ∂δn

∂θu
, ∂δn

∂θv
and ∂δn

∂θn
.

The value of δn(u + ∆u, ...) can be obtained by translating object A a
distance ∆u along the u axis and computing the directional penetration
depth. A similar procedure is followed for other penetration depth values.

18.4 Penetration Depth between Textured
Models

Otaduy et al. [Otaduy et al. 04] designed a 6-DOF haptic texture rendering
algorithm in which geometric models are composed of simplified represen-
tations, along with texture images storing fine geometric detail. In the
context of haptic rendering, these texture images are referred to as haptic
textures. Figure 18.1 depicts an example with a hammer and a CAD part,
and the haptic texture for the hammer.



�

�

�

�

�

�

�

�

378 18. Rendering of Textured Objects

Figure 18.1. Haptic rendering of interaction between textured models. Left: high-
resolution textured hammer (433K polygons) and CAD part (658K polygons).
Top right: low-resolution models (518 & 720 polygons); Bottom right: hammer
texture with fine geometric detail [Otaduy et al. 04]. ( c© 2004 IEEE)

The main idea behind the haptic texture rendering approach is a two-
stage algorithm for computing penetration depth, which is then used to
apply collision response with the texture force model described earlier. This
two-stage algorithm is described in detail later, but it can be summarized
as follows:

1. Obtain approximate contact information from simplified geometric
representations.

1.1 Perform collision detection between the low-resolution meshes.

1.2 Identify each pair of intersecting surface patches as one contact.
1.3 Characterize each contact by a pair of contact points on the

patches and a penetration direction n.

2. Refine this contact information using detailed geometric information
stored in haptic textures.

2.1 For each contact, compute approximate directional penetration
depth along n, using haptic textures.

2.2 Compute force and torque, using the force model for texture
rendering described in the previous section.

18.4.1 Definitions of Directional Penetration Depth

As described in Chapter 9, the penetration depth δ between two intersect-
ing polyhedra A and B is typically defined as the minimum translational



�

�

�

�

�

�

�

�

18.4. Penetration Depth between Textured Models 379

Figure 18.2. Penetration depth of height fields. Directional penetration depth of
surface patches expressed as height difference [Otaduy et al. 04]. ( c©2004 IEEE).

distance required for separating them, and this distance is equivalent to
the distance from the origin to the Minkowski sum of A and −B. On the
other hand, the directional penetration depth δn along the direction n is
defined as the minimum translation along n to separate the polyhedra.

The algorithm for computing the directional penetration depth assumes
that the intersecting surface patches can be represented as height fields
along the penetration direction. A height field H is defined as a set H =
{(x, y, z) ∈ R

3 | z = h(x, y)}. The function h : R
2 → R is called a height

function. Let p denote a point in R
3, let pxyz = (px py pz)T denote the

coordinates of p in a global reference system, and let puvn = (pu pv pn)T

its coordinates in a rotated reference system {u,v,n}. A surface patch
S ⊂ R

3 can be represented as a height field along a direction n, if pn =
h(pu, pv), ∀p ∈ S. Then, one can define a mapping g : D → S,D ⊂ R

2, as
g(pu, pv) = pxyz, where

pxyz = g(pu, pv) = (u v n) (pu pv h(pu, pv))
T
. (18.7)

The inverse of the mapping g is the orthographic projection of S onto
the plane (u,v) along the direction n. Given the mapping g, the height
function h can be computed as

h(pu, pv) = n · g(pu, pv). (18.8)

For two intersecting surface patches SA and SB that can be represented
as height fields along a direction n, their directional penetration depth δn
is the maximum height difference along the direction n, as illustrated in
Figure 18.2 by a 2D example.

A parameterization of the surface patches by orthographic projection
along n yields mappings gA : DA → SA and gB : DB → SB, as well
as height functions hA : DA → R and hB : DB → R. Therefore, the
directional penetration depth δn can be defined as

δn = max
(u,v)∈(DA∩DB)

(hA(u, v) − hB(u, v)) . (18.9)



�

�

�

�

�

�

�

�

380 18. Rendering of Textured Objects

18.4.2 Two-Stage Algorithm

Each contact between objects A and B is defined by two intersecting sur-
face patches SA and SB. Using a geometric representation that combines
low-resolution meshes and haptic textures, the surface patch SA is approx-
imated by a low-resolution surface patch ŜA (and similarly for SB). The
function fA : ŜA → SA defines a mapping from the low-resolution surface
patch ŜA to the surface patch SA.

Collision detection between the two low-resolution surfaces patches ŜA

and ŜB returns a penetration direction n. Given a rotated reference system
{u,v,n}, and assuming that all SA, ŜA, SB, and ŜB can be represented
as height fields along n, SA and ŜA are projected orthographically along n
onto the plane (u,v). This projection yields mappings gA : DA → SA and
ĝA : D̂A → ŜA. One can define D̄A = DA ∩ D̂A.
The mapping function gA can be approximated by a composite mapping
function fA ◦ ĝA : D̄A → SA (see Figure 18.3). From Equation 18.8, an
approximate height function ĥA : D̄A → R is defined as

ĥA(u, v) = n · (fA ◦ ĝA(u, v)). (18.10)

Given approximate height functions ĥA and ĥB, a domain D = D̄A ∩ D̄B,
and Equation 18.9, the directional penetration depth δn of SA and SB can
be approximated by

δ̂n = max
(u,v)∈D

(
ĥA(u, v) − ĥB(u, v)

)
. (18.11)

Even though the computation of δ̂n can be realized on CPUs, this algo-
rithm is best suited for implementation on graphics processors (GPUs), as
discussed next.

Figure 18.3. Approximate height function. Height function of a surface patch
approximated by a composite mapping function [Otaduy et al. 04]. ( c©2004
IEEE).



�

�

�

�

�

�

�

�

18.4. Penetration Depth between Textured Models 381

18.4.3 Computation on Graphics Hardware

As shown in Equation 18.4, computation of 3D texture-induced force and
torque according to the texture force model requires the computation of
directional penetration depth δn and its gradient at every contact. From
Equation 18.6, this requirement reduces to computing δn all together at
11 configurations of object A. Due to the use of central differencing to
compute partial derivatives of δn, object A must be transformed to two
different configurations, where δn is recomputed. All together, the force
model requires the computation of δn itself and 5 partial derivatives, hence
11 configurations. As pointed out in Chapter 9, computation of penetration
depth using exact object-space or configuration-space algorithms is too
expensive for haptic rendering applications. Instead, the approximation
δ̂n according to Equations 18.10 and 18.11 lead to a natural and efficient
image-based implementation on programmable graphics hardware. The
mappings ĝ and f correspond, respectively, to orthographic projection and
texture mapping operations, which are most suited for parallel and grid-
based computation using GPUs.

For every contact, first one must compute ĥB, and then perform two
operations for each of the 11 object configurations: (1) compute ĥA for the
transformed object A, and (2) find the penetration depth δ̂n = max(∆ĥ) =
max

(
ĥA − ĥB

)
. The height difference at the actual object configuration

is denoted by ∆ĥ(0), and the height differences at the transformed configu-
rations by ∆ĥ(±∆u), ∆ĥ(±∆v), ∆ĥ(±∆θu), ∆ĥ(±∆θv), and ∆ĥ(±∆θn).

Computation of height functions. In the GPU-based implementation, the
mapping f : Ŝ → S is implemented as a texture map (i.e., haptic texture)
that stores geometric detail of the high-resolution surface patch S. The
mapping ĝ is implemented by rendering Ŝ using an orthographic projection
along n. The height function ĥ is computed in a fragment program. Points
in S are obtained by looking up the haptic texture f and projecting the
position onto n. The result is stored in a floating point texture t.

Geometric texture mapping is chosen over other methods for approxi-
mating h (e.g., rendering S directly or performing displacement mapping)
in order to maximize performance. The input haptic texture f is stored as
a floating point texture.

Search of maximum values. The max function in Equation 18.11 could be
implemented as a combination of frame buffer readback and CPU-based
search. Expensive readbacks, however, can be avoided by posing the max
function as a binary search on the GPU [Govindaraju et al. 04]. Given two
height functions ĥA and ĥB stored in textures t1 and t2, their difference
is computed and stored in the depth buffer. Then the height difference is



�

�

�

�

�

�

�

�

382 18. Rendering of Textured Objects

A B A v n

Figure 18.4. Tiling in the GPU. Tiling of multiple height functions and contacts
to minimize context switches between target buffers [Otaduy et al. 04]. ( c© 2004
IEEE).

scaled and offset to fit in the depth range. Height subtraction and copy
to depth buffer are performed in a fragment program, by rendering a quad
that covers the entire buffer. For a depth buffer with N bits of precision,
the search domain is the integer interval [0, 2N). The binary search starts
by querying if there is any value larger than 2N−1. A quad is rendered at
depth 2N−1 and an occlusion query is performed, which will report if any
pixel passed the depth test, i.e., the stored depth was larger than 2N−1.
Based on the result, the depth of a new quad is set, and the binary search
continues.

Gradient computation. The height functions ĥA(±∆u), ĥA(±∆v), and
ĥA(±∆θn) may be obtained by simply translating or rotating ĥA(0). As a
result, only six height functions ĥA(0), ĥB(0), ĥA(±∆θu) and ĥA(±∆θv)
need to be computed for each pair of contact patches. These six height
functions are tiled in one single texture t to minimize context switches and
increase performance (See Figure 18.4).

Moreover, the domain of each height function is split into four quarters,
each of which is mapped to one of the RGBA channels. This optimization
exploits vector computation capabilities of fragment processors. As shown
in Figure 18.4, one can also tile 11 height differences per contact in the
depth buffer.

Multiple simultaneous contacts. The computational cost of haptic texture
rendering increases linearly with the number of contacts between the inter-
acting objects. However, performance can be further optimized. In order to
limit context switches, the height functions associated with multiple pairs
of contact patches are tiled in one single texture t, and the height differ-
ences are tiled in the depth buffer as well, as shown in Figure 18.4. The
cost of max search operations is further minimized by performing occlusion
queries on all contacts in parallel.



�

�

�

�

�

�

�

�

18.5. Experiments 383

18.5 Experiments
Otaduy et al. [Otaduy and Lin 04,Otaduy et al. 04] performed two types of
experiments in order to analyze the force model and rendering algorithm for
6-DOF haptic texture rendering. On the one hand, they performed offline
experiments to analyze the influence of the factors highlighted by percep-
tual studies on the vibratory motion induced by the force model [Otaduy
and Lin 04]. On the other hand, they performed interactive experiments
to test the effectiveness of the force model and the performance of its im-
plementation [Otaduy et al. 04].

18.5.1 Comparison with Perceptual Studies

As mentioned in Section 18.1, Klatzky and Lederman conducted experi-
ments where users explored textured plates with spherical probes, and they
reported subjective values of perceived roughness. Otaduy and Lin [Otaduy
and Lin 04] created simulated replicas of the physical setups of Klatzky and
Lederman’s experiments in order to analyze the vibratory motion induced
by the force model. The virtual experiments required the simulation of
probe-plate interaction, as well as human dynamics.

The spherical probe is modeled as a circular disk of diameter D and
the textured plate as a sinusoidal curve, as shown in Figure 18.5. The cir-
cular disk moves along a horizontal line, which represents a low-resolution
approximation of the sinusoidal curve. At each position of the disk, the
vertical penetration depth δn with respect to the sinusoidal curve is com-
puted.

Following the force model for haptic texture rendering, texture-induced
normal and tangential forces are defined as

Fn = −kδn, (18.12)

Fu = −kδn
dδn
du

. (18.13)

Figure 18.5. Model of probe-surface interaction and grasping dynamics. A disk
moves on a sinusoidal texture at constant speed v while dragging a mass mh. A
texture force Fu, based on penetration depth δn, is applied to the mass.



�

�

�

�

�

�

�

�

384 18. Rendering of Textured Objects

The normal force Fn is one of the factors studied by Lederman et al.
[Lederman et al. 00]. It is considered as an input in the experiments. Then,
one can rewrite

Fu = Fn
dδn
du

. (18.14)

Human dynamics are modeled as a system composed of mass mh, spring
kh, and damper bh [Hasser and Cutkosky 02]. The mass is linked through
the spring and damper to a point moving at constant speed v on the tex-
tured surface. The dragging force imposed by the point accounts for the
influence of exploration speed, which is a factor analyzed by Lederman et
al. [Lederman et al. 99]. Figure 18.5 shows a diagram of the simulated
dynamic system.

The texture force Fu also acts on the mass that models the human
hand. In the presence of a textured surface, Fu will be an oscillatory force
that will induce a vibratory motion on the mass. The motion of the mass
is described by the following differential equation:

mh
d2u

dt2
= kh (vt− u) + bh

(
v − du

dt

)
− Fu. (18.15)

The experiments summarized by Klatzky and Lederman [Klatzky and
Lederman 02] reflect graphs of perceived roughness versus texture spacing,
both in logarithmic scale. The motion of the hand model has been sim-
ulated in Matlab, based on Equation 18.15. Subjective roughness values
cannot be estimated in the simulations. Instead, knowing that roughness
is perceived through vibration, the vibration during simulated interactions
is quantified by measuring maximum tangential acceleration values. More
specifically, Otaduy and Lin [Otaduy and Lin 04] measured max(d2u

dt2 ) once
the motion of the mass reached a periodic state.

Figure 18.6 compares the effect of probe diameter, applied force, and
exploratory speed on perceived roughness, and on maximum simulated ac-
celeration. The first conclusion is that the graph of acceleration versus
texture spacing can be well approximated by a quadratic function in a log-
arithmic scale. The second conclusion is that the peaks of acceleration and
roughness functions behave in the same way as a result of varying probe
diameter: both peaks of roughness and acceleration are higher and occur at
smaller texture spacing values for smaller diameters. As a third conclusion,
both perceived roughness and simulated acceleration grow monotonically
with applied force, and the location of the peak is almost insensitive to the
amount of force. Results are not so conclusive for the effect of exploratory
speed, though.

The effects of probe diameter and applied force on the motion induced
by the force model for texture rendering presented in Section 18.3.2 match



�

�

�

�

�

�

�

�

18.5. Experiments 385

0.8 1 2 4 6
1

2

5

10

20

50

Texture spacing (mm)

M
ax

im
um

 a
cc

el
er

at
io

n

1mm
2mm
3mm

0.8 1 2 4 6
1

2

5

10

20

50

Texture spacing (mm)

M
ax

im
um

 a
cc

el
er

at
io

n

0.29N
0.58N
0.87N

0.8 1 2 4 6
5

10

20

50

Texture spacing (mm)

M
ax

im
um

 a
cc

el
er

at
io

n

55.4mm/s
114.6mm/s
222.2mm/s

Figure 18.6. From top to bottom, effects of probe diameter, applied force, and
exploratory speed. For each row, the left image shows results of psychophysics
studies, and the right shows simulation results. (Left images printed with per-
mission of ASME, Haptics-e and authors; Right images c© 2004 ACM)



�

�

�

�

�

�

�

�

386 18. Rendering of Textured Objects

in a qualitative way the effects of these factors on perceived roughness
of real textures. The results exhibit some differences on the effects of
exploratory speed. These differences may be caused by limitations of the
force model or limitations of the dynamic hand model employed in the
simulations.

But the reason for these differences may also be that roughness is per-
ceived as a combination of several physical variables, not solely acceleration.
The complete connection between physical parameters, such as forces and
motion, and a subjective metric of roughness, is still unknown. Neverthe-
less, the analysis of the force model has been based on qualitative compar-
isons of locations and values of function maxima. This approach relaxes
the need for a known relationship between acceleration and roughness. For
example, if perceived roughness depends monotonically on acceleration in
the interval of study, the maxima of roughness and acceleration will occur
at the same values of texture spacing. This correlation is basically what
was found in the experiments.

18.5.2 Interactive Tests with Complex Models

Otaduy et al. [Otaduy et al. 04] performed experiments to test the per-
formance of the texture force computation and the rendering algorithm
in interactive demonstrations. The first set of experiments evaluated the
conveyance of roughness effects under translational and rotational motion.
The second set of experiments tested the performance of the haptic tex-
ture rendering algorithm and its GPU-based implementation in scenarios
with complex contact configurations. Besides these experiments, several
subjects used the haptic texture rendering system to identify texture pat-
terns through haptic cues only. The reported experiences are promising, as
subjects were able to successfully describe regular patterns such as ridges,
but had more difficulty with irregular patterns. This result is what one
expects when real, physical textured models are explored.

Implementation details. The experiments were performed using a 6-DOF
PHANTOM haptic device, a dual Pentium4 2.4 GHz processor PC with 2.0
GB of memory and an NVidia GeForce FX5950 graphics card, and the Win-
dows 2000 OS. The penetration depth computation on graphics hardware
was implemented using OpenGL plus OpenGL’s ARB fragment program
and GL NV occlusion query extensions. The visual display of the scene
cannot stall the haptic texture rendering process; hence, it requires a dedi-
cated graphics card. The full-resolution scene was displayed on a separate
commodity PC.

In the experiments, the models were described by coarse representations
and haptic textures. For collision detection, a bounding volume hierarchy



�

�

�

�

�

�

�

�

18.5. Experiments 387

(BVH) of convex hulls was computed for each benchmark model. Following
the approach developed by Kim et al. [Kim et al. 03], the contacts returned
by the contact query are clustered, and contact points and penetration
direction are computed for each cluster. This information is passed to the
refinement step, where texture forces are computed, using the force model
and the GPU-based implementation presented in this chapter. During
texture force computation, each value of penetration depth between contact
patches is computed on a 50 × 50, 16-bit depth buffer. This resolution
proved to be sufficient, based on the results.

The contact forces and torques of all contact patches are added to com-
pute net force and torque, which are directly displayed to the user without
a stabilizing intermediate representation. In this way the experiments do
not get distorted by the use of intermediate representations, and the anal-
ysis can focus on the performance of the force model and the rendering
algorithm. For higher stability, the output of collision response may be
integrated in more stable haptic rendering architectures (See Chapter 8 for
more details).

Benchmark models and scenarios. The models shown in Figure 18.7 were
used for the experiments on conveyance of roughness. The performance
tests were executed on the models shown in Figure 18.8. The complexities
of the full-resolution textured models and their coarse resolution approx-
imations are listed in Table 18.1. Notice the drastic simplification of the
low-resolution models. At this level, all texture information is eliminated
from the geometry, but it is stored in 1024 × 1024-size floating point tex-
tures. The number of BVs at coarse resolution reflects the geometric com-
plexity for the collision detection module. Also notice that the block and
gear models are fully convex at coarse resolution. The interaction between
these models is described by one single contact, so they are better suited
for analyzing force and motion characteristics in the simulations.

Models Full Res. Tris Low Res. Tris Low Res. BVs

Block 65,536 16 1

Gear 25,600 1,600 1

Hammer 433,152 518 210

CAD Part 658,432 720 390

File 285,824 632 113

Torus 128,000 532 114

Table 18.1. Complexity of benchmark models. Number of triangles at full resolu-
tion (Full Res. Tris) and low resolution (Low Res. Tris), and number of bounding
volumes at low resolution (Low Res. BVs).



�

�

�

�

�

�

�

�

388 18. Rendering of Textured Objects

Figure 18.7. Benchmark models for experiments on conveyance of roughness.
Left: textured blocks; Right: block and gear. ( c© 2004 IEEE)

Conveyance of roughness under translation. The gear and block models
present ridges that interlock with each other. One of the experiments
consisted of translating the block in the three Cartesian axes, while keeping
it in contact with the fixed gear, as depicted in Figure 18.7(b). Figure 18.9
shows the position of the block and the force exerted on it during 1, 500
frames of interactive simulation (approximately three seconds).

Notice that the force in the x direction, which is parallel to the ridges,
is almost zero. The texture force model successfully yields this expected
result, because the derivative of the penetration depth is zero along the x
direction. Notice also the staircase-like motion in the z direction, which
reflects how the block rests for short periods of time on the ridges of the
gear. The wide frequency spectrum of staircase-like motion is possible due
to the fine spatial resolution of penetration depth and gradient computa-
tion. Last, the forces in y and z are correlated with the motion profiles.

Figure 18.8. Benchmarks for performance tests. Textured hammer and helicoidal
torus (left). File and CAD part (right). ( c© 2004 IEEE)



�

�

�

�

�

�

�

�

18.5. Experiments 389

0 500 1000 1500
10

0

10

20

30

40

50

60

70

80

0 500 1000 1500
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F

x
F

y
F

z

x
y
z

Position (mm.) Forces (N) 

Simulation frames 

Figure 18.9. Roughness under translation. Position and force profiles generated
while translating the model of a textured block in contact with a gear model, as
shown in Figure 18.7(b). Notice the staircase-like motion in z, and the correlation
between force and position changes. ( c© 2004 IEEE)

Conveyance of roughness under rotation. Two identical striped blocks were
placed interlocking each other, as shown in Figure 18.7(a). Then small os-
cillating rotations of the upper block were performed around the direction

0 1000 2000 3000 4000 5000 6000
0

2

4

6

0 1000 2000 3000 4000 5000 6000

2

0

2

Motion along  n (in mm.) 

Rotation around  n (in deg.) 

Simulation frames

Figure 18.10. Roughness under rotation. Motion profile obtained by rotating
one textured block on top of another one, as depicted in Figure 18.7(a). Notice
the translation induced by the interaction of ridges during the rotational motion.
( c© 2004 IEEE)



�

�

�

�

�

�

�

�

390 18. Rendering of Textured Objects

n, and the induced translation along that same direction was observed. Fig-
ure 18.10 shows the rotation and translation captured during 6, 000 frames
of interactive haptic simulation (approximately 12 seconds). Notice how
the top block rises along n as soon as it is slightly rotated, thus producing a
motion very similar to the one that occurs in reality. Previous point-based
haptic rendering methods are unable to capture this type of effect. The
texture force model presented in Section 18.3 successfully produces the de-
sired effect by taking into account the local penetration depth between the
blocks. Also, the derivative of the penetration depth produces a physically
based torque in the direction n that opposes the rotation.

Performance tests. In the experiments on conveyance of roughness, collision
detection between the low-resolution models can be executed using fast
algorithms that exploit the convexity of the models. As explained earlier,
low-resolution contact is described by one contact point in each scenario,
and the haptic update rate is approximately 500 Hz.

The performance of the haptic texture rendering algorithm and its im-
plementation were also tested in scenarios where the coarse resolution mod-
els present complex contact configurations. These scenarios consist of a file
scraping a rough CAD part, and a textured hammer touching a wrinkled
torus (see Figure 18.8).

In particular, Figure 18.11 shows timings for 500 frames of the simula-
tion of the file interacting with the CAD part. The graph reflects the time

0 100 200 300 400 500
0

2

4

6

8

10

12

0 100 200 300 400 500
0

5

Total Frame Time
Texture Forces
Collision Detection

Time (in msec.)

Number of contact patches

Simulation frames

Figure 18.11. Timings. Performance analysis and number of clustered contact
patches during 500 simulation frames of a file model scraping a CAD part, as
shown in Figure 18.8. In this complex contact scenario the haptic frame rate
varies between 100 Hz and 200 Hz. ( c© 2004 IEEE)



�

�

�

�

�

�

�

�

18.6. Discussion 391

spent on collision detection between the coarse-resolution models (an aver-
age of 2 ms), the time spent on haptic texture rendering, and the total time
per frame, which is approximately equal to the sum of the previous two.
In this experiment, the penetration depth for each contact is computed on
a 50 × 50 16-bit buffer (see Section 18.4.3). As shown by the roughness
conveyance experiments, this resolution proved to be sufficient to display
convincing roughness stimuli.

In this particularly challenging experiment, the haptic update rate var-
ied between 100 Hz and 200 Hz. The dominant cost corresponds to haptic
texture rendering, and it depends almost linearly on the number of contacts.
The achieved force update rate may not be high enough to render textures
with high spatial frequency, but, as shown above, the proposed force model
enables perception of roughness stimuli that were not captured by earlier
methods.

Moreover, Figure 18.11 shows performance results for a contact con-
figuration in which large areas of the file at many different locations are
in close proximity with the CAD part. In fact, collision detection using
coarse-resolution models reports an average of 104 pairs of convex patches
in close proximity, which are later clustered into as many as 7 contacts.
Using the full-resolution models, the number of contact pairs in close prox-
imity would increase by several orders of magnitude, and simply handling
collision detection would become infeasible at the desired haptic rendering
frame rates. Furthermore, as the support for programming on GPUs and
capabilities of GPUs continue to grow at a rate faster than Moore’s Law,
the performance of 6-DOF haptic texture rendering is expected to reach
kHz update rates in the near future.

18.6 Discussion
Otaduy and Lin [Otaduy and Lin 04] demonstrated through a series of
experiments with a simulated model that there is a qualitative match be-
tween the effects produced by the force model described in Section 18.3
and the results of the studies on roughness perception directed by Klatzky
and Lederman [Klatzky and Lederman 02]. Specifically, the effects of probe
diameter and applied force on the acceleration of a simulated hand induced
by the force model match the effects of these factors on perceived roughness
of real textures in a qualitative way. The results exhibit some differences
on the effects of exploratory speed, but these differences may be caused
by limitations of the dynamic hand model employed in the experiments.
The complete connection between physical parameters, such as forces and
motion, and a subjective metric of roughness, is still unknown. Neverthe-
less, the analysis of simulated accelerations and perceived roughness reflects
high correlation of the locations and values of function maxima.



�

�

�

�

�

�

�

�

392 18. Rendering of Textured Objects

Despite the apparent validity of the texture force model and the high
performance achieved with the GPU-based computation of penetration
depth, 6-DOF haptic texture rendering still presents some limitations and
should be a topic for further research. An important issue in every force
model for haptic rendering is its stability. Choi and Tan [Choi and Tan 03a]
have shown that even passive rendering algorithms may suffer from a prob-
lem called aliveness, induced by geometric discontinuities. Using haptic
textures, discontinuities may arise if the contact patches cannot be de-
scribed as height fields along the penetration direction, and these are pos-
sible sources of aliveness.

Also, as with other discrete techniques, the haptic texture rendering
algorithm is susceptible to aliasing problems. Some of the potential alias-
ing sources are low resolution of the input textures, low spatial resolution
in the image-based computation of penetration depth, approximation of
derivatives with central differencing, and temporal sampling.

In some contact scenarios with large contact areas, the definition of a
local and directional penetration depth is not applicable. An example is the
problem of screw insertion. In situations with contact between interlocking
features, local geometry cannot be represented as height fields, and the
gradient of directional penetration depth may not capture the interlocking
effects.

In practice, the force model generates forces that create a realistic per-
ception of roughness for object-object interaction; however, one essential
limitation of penalty-based collision response is the inability to enforce
motion constraints. The texture force model attempts to do so by increas-

Figure 18.12. Haptic interaction with deformable models using texture-based
representations.



�

�

�

�

�

�

�

�

18.6. Discussion 393

ing tangential contact stiffness when the gradient of penetration depth is
high. But the stiffness delivered to the user must be limited, for stability
purposes. New constraint-based haptic rendering techniques, and perhaps
other haptic devices [Peshkin and Colgate 99], will be required to properly
enforce constraints.

Texture-based representation has also shown potential lately for hap-
tic interaction with detailed deformable models. Galoppo et al. [Galoppo
et al. 06,Galoppo et al. 07a] have developed deformation models combining
a core dynamic model with few global degrees of freedom, and a deformable
surface with many, but local, degrees of freedom. Such models have been
applied to both rigid and articulated cores, and the performance of the so-
lution methods allows interactive computations with moderately complex
objects, and the possibility of haptic interaction [Galoppo et al. 07b], as
shown in Figure 18.12.

Acknowledgments
Part of the work presented here was supported by a fellowship of the Gov-
ernment of the Basque Country, National Science Foundation, Office of
Naval Research, U.S. Army Research Office, and Intel Corporation. The
authors would also like to thank Nitin Jain, Avneesh Sud, Roberta Klatzky,
Susan Lederman, Fred Brooks, and the UNC Gamma group.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

19
Modeling Deformation of

Linear Elastostatic Objects
D. L. James and D. K. Pai

Quasistatic deformation models have been well known in haptic force-
feedback rendering for at least a decade since their introduction by Cotin
and others. They provide computationally efficient models of small-
deformation response that reach equilibrium at time scales faster than
graphics rates or user interactions. In this chapter, we revisit [James and
Pai 01] and show how global deformation of linear elastostatic objects can
be solved efficiently using precomputed Green’s functions and fast low-rank
updates based on Capacitance matrix algorithms. Capacitance matrices
provide exact contact response models, allowing contact forces to be com-
puted for haptics much faster than global deformation behavior. Vertex
pressure masks are introduced to support the convenient abstraction of
localized scale-specific point-like contact with an elastic and/or rigid sur-
face approximated by a polyhedral mesh. Examples are presented for the
CyberGloveTM and PHANTOMTM haptic interfaces. Updated timings are
provided, exhibiting approximately an order-of-magnitude improvement
over [James and Pai 01].

19.1 Motivations for Linear Elastostatic Models
Discrete linear elastostatic models (LEMs) are important physically based
elastic primitives for computer haptics because they admit a very high-
degree of precomputation, or “numerical compression” [Astley and Hay-
ward 98]. They provide cheap force response models suitable for haptic
rendering of stiff elastic objects during continuous contact. The degree of
useful precomputation is quite limited for most types of nonlinear and/or
dynamical elastic models (although see [Barbič and James 05]), but LEMs
are a well known exception, mainly due to the precomputability of time-
independent Green’s functions (GFs), the applicability of linear superposi-
tion principles, and linear system solvers. Intuitively, GFs form a basis for

395



�

�

�

�

�

�

�

�

396 19. Modeling Deformation of Linear Elastostatic Objects

describing all possible deformations of a LEM. Thus, while LEMs form a
relatively simple class of elastic models, in which geometric and material
linearities are an ultimate limitation, the fact that the model is linear is
also a crucial enabling factor. We conjecture that LEMs will remain one
of the best runtime approximations of stiff elastic models for simulations
requiring stable high-fidelity force feedback.

A central idea for LEMs in computer haptics is the formulation of
the boundary value problem (BVP) solution in terms of suitable precom-
puted GFs using Capacitance matrix algorithms (CMAs). Derived from
the Sherman-Morrison-Woodbury formula for low-rank updating of matrix
inverses (and factorizations), CMAs have a long history in linear alge-
bra [Press et al. 87,Hager 89], where they have been commonly used for
static reanalysis [Kassim and Topping 87], to efficiently solve LEM contact
mechanics problems [Ezawa and Okamoto 89,Man et al. 93], and more re-
cently, for interactive simulations and haptic rendering [Bro-Nielsen and
Cotin 96,Cotin et al. 99,James and Pai 99,James and Pai 03].

For computer haptics, a fundamental reason for choosing to compute
the LEM elasticity solution using a CMA formulation, is that the capaci-
tance matrix1 is the main quantity of interest: it is the compliance matrix
that relates the force feedback response to the imposed contact displace-
ments. Also, the precomputation of GFs effectively decouples the global
deformation and force response calculations, so that the capacitance matrix
can be extracted from the the GFs at no extra cost; this is the fundamental
mechanism by which a haptic interface can efficiently interact with a LEM
of very large complexity, such with wavelet GF models [James and Pai 03].
The user can feel no difference between the force response of the complete
system and the capacitance matrix, because none exists. Lastly, CMAs are
direct matrix solvers whose deterministic operation count is appealing for
real-time applications.

The final part of this chapter addresses the special case of point-like
haptic contact. It has long been recognized that point contact is a con-
venient abstraction for haptic interactions, and the PHANTOMTM haptic
interface is a testament to that fact. While it is possible to consider the
contact area to be truly a point for rigid models, infinite contact pressures
are problematic for elastic models, and tractions need to be distributed
over finite surface areas. We propose to do this efficiently by introduc-
ing nodal traction distribution masks that address at least two core issues.
First, having a point contact with force distributed over a finite area is
somewhat contradictory, and the traction distribution is effectively an un-
derdetermined quantity without any inherent spatial scale. This is resolved
by treating the contact as a single displacement constraint, whose traction

1The term “capacitance” is due to historical convention [Hager 89].



�

�

�

�

�

�

�

�

19.1. Motivations for Linear Elastostatic Models 397

distribution enters as a user- (or manipulandum-) specified parameter. The
distribution of force on the surface of the model can then be consistently
that specified in a fashion which is independent of the scale of the mesh.
Second, given that the model is discrete, special care must be taken to en-
sure a sufficiently regular force response on the surface, since irregularities
are very noticeable during sliding contact motions. By suitably interpolat-
ing nodal traction distributions, displacement constraints can be imposed
that are consistent with regular contact forces for numerous discretizations.

19.1.1 Related Work on Haptic Rendering of Elastostatics

There are several instances in the literature of real-time simulation of linear
elastostatic models based on precomputed GFs methods and related tech-
niques. These models were used because of their low runtime costs and
desirable force-feedback properties. For example, researchers at INRIA
have made extensive use of real-time elastostatic FEM variants for liver-
related surgical simulations [Bro-Nielsen and Cotin 96,Bro-Nielsen 96,Cotin
et al. 98]. During a precomputation phase, they have used condensa-
tion [Zienkiewicz 77,Bro-Nielsen and Cotin 96], as well as iterative meth-
ods [Cotin et al. 99] to compute displacement responses due to unit forces
applied to vertices on the “free” boundary. At run time, a small system of
equations is solved to determine the correct superposition of responses to
satisfy the applied surface constraints, which may be identified as a case of
the capacitance matrix approach (cf. Lagrange multipliers [Cotin et al. 99]).
Since the preprocess only exploits linearity, anisotropic (and inhomoge-
neous) material properties can be supported [Picinbono et al. 00]. Other
groups have also used the precomputed elastostatic FEM approach of [Bro-
Nielsen and Cotin 96] for surgical simulation, including the KISMET sur-
gical simulator, which incorporates precomputed models to provide high-
fidelity haptic force feedback [Kühnapfel et al. 99].

One limitation of the GF precomputation strategy is that incremental
runtime modifications of the model require extra runtime computations.
While it may be too costly for interactive applications, this can also be
efficiently performed using low-rank updating techniques, such as for static
reanalysis in the engineering community [Kassim and Topping 87]. For
surgical simulation, a practical approach has been to use a hybrid domain
decomposition approach, in which a more easily modified dynamic model
is used in a smaller region to be cut [Cotin et al. 98,Hansen and Larsen 98].

The authors presented an interactive animation technique in [James and
Pai 99], which combined precomputed GFs of boundary element models
with matrix-updating techniques for fast boundary value problem (BVP)
solution. The Green’s function description provides a data-driven descrip-
tion that subsumes discretization issues of both [James and Pai 99] and



�

�

�

�

�

�

�

�

398 19. Modeling Deformation of Linear Elastostatic Objects

the FEM approaches of [Bro-Nielsen and Cotin 96, Cotin et al. 99]. Pre-
computed stiffness matrix factorizations have also been used for interac-
tive deformation [Berkley et al. 99], and avoid the explicit superposition of
Green’s function quantities, but can complicate random access for multi-
point haptic contact resolution.

Astley and Hayward [Astley and Hayward 98] introduced an approxi-
mation for linear viscoelastic FEM models that also exploits linearity, in
this case by precomputing multilevel Norton equivalents for the system’s
stiffness matrix. By doing so, haptic interaction is made possible by em-
ploying an explicit multirate integration scheme wherein a model associated
with the contact region is integrated at a higher rate than the remaining
coarser model.

Finally, local buffer models were presented by Balaniuk in [Balaniuk 00]
for rendering forces computed by e.g., deformable object, simulators which
cannot deliver forces at fast rendering rates. An application of the tech-
nique was presented for a virtual echographic exam training simulator
in [d’Aulignac et al. 00]. While we do not use the same approach here,
the local buffer model concept is related to our capacitance matrix method
for force computation.

19.2 Linear Elastostatic Boundary Model
Preliminaries

Linear elastostatic objects are essentially three-dimensional linear springs,
and as such they are useful modeling primitives for physically based simula-
tions. The unfamiliar reader might consult a suitable background reference
before continuing [Hartmann 85,Zienkiewicz 77,Brebbia et al. 84,James and
Pai 99]. In this section, background material for a generic discrete GF de-
scription for a variety of precomputed linear elastostatic models is provided.
Conceptually, GFs form a basis for describing all possible deformations of a
LEM, subject to a certain class of constraints. This is useful because it (1)
provides a common language to describe all discrete LEMs, (2) subsumes
extraneous discretization details by relating only physical quantities, and
(3) clarifies the generality of the force feedback algorithms described later.

Another benefit of using GFs is that they provide an efficient means for
exclusively simulating only boundary data (displacements and forces), if de-
sired. While it is possible to simulate various internal volumetric quantities
(see Section 19.2.5), simulating only boundary data involves less compu-
tation. This is sufficient since we are primarily concerned with interactive
simulations that impose surface constraints and provide feedback via sur-
face deformation and contact forces.



�

�

�

�

�

�

�

�

19.2. Linear Elastostatic Boundary Model Preliminaries 399

19.2.1 Geometry and Material Properties

Given that the fast solution method is based on linear systems principles,
essentially any linear elastostatic model with physical geometric and mate-
rial properties is admissible. We shall consider models in three dimensions,
although many arguments also apply to lower dimensions. Suitable models
would of course include bounded volumetric objects with various internal
material properties, as well as special subclasses such as thin plates and
shells. Since only a boundary or interface description is utilized for specify-
ing user interactions, other exotic geometries may also be easily considered,
such as semi-infinite domains, exterior elastic domains, or simply any set of
parametrized surface patches with a linear response. Similarly, numerous
representations of the surface and associated displacement shape functions
are possible, e.g., polyhedral, NURBS, or subdivision surfaces [Schröder
et al. 99].

19.2.2 Nodal Displacements and Tractions

Let the undeformed boundary be denoted by Γ. The change in shape of the
surface is described by the surface displacement field u(x), x ∈ Γ, and the
surface force distribution (force per unit area) is called the traction field
p(x), x ∈ Γ. We will assume that each surface field is parametrized by
n nodal variables (see Figure 19.1), so that the discrete displacement and
traction vectors are

u = [u1, . . . , un]T , (19.1)

p = [p1, . . . , pn]T , (19.2)

respectively, where each nodal value is a vector in R
3. This description

admits a very large class of surface displacement and traction distributions.

Γu

Figure 19.1. Illustration of discrete nodal displacements u defined at vertices on
the undeformed boundary Γ (solid blue line), that result in a deformation of the
surface (to dashed red line). Although harder to illustrate, a similar definition
exists for the traction vector, p.



�

�

�

�

�

�

�

�

400 19. Modeling Deformation of Linear Elastostatic Objects

In order to relate traction distributions to forces, define a scalar function
space, L, on the model’s boundary:

L = span {φj(x), j = 1 . . . n, x ∈ Γ} , (19.3)

where φj(x) is a scalar basis function associated with the jth node. The
continuous traction field is then a three-vector function with components
in L,

p(x) =
n∑

j=1

φj(x)pj . (19.4)

The force on any surface area is equal to the integral of p(x) on that area.
It then follows that the nodal force associated with any nodal traction is
given by

fj = ajpj where aj =
∫

Γ

φj(x)dΓx (19.5)

defines the area associated with the jth node.
For example, in our implementation we use linear boundary element

models for which the nodes are vertices of a closed triangle mesh. The mesh
is modeled as a Loop subdivision surface [Loop 87] to conveniently obtain
multiresolution models for rendering as well as uniformly parameterized
surfaces suitable for BEM discretization and deformation depiction. The
displacement and traction fields have convenient vertex-based descriptions

uj = u(xj), pj = p(xj),

where xj ∈ Γ is the jth vertex. The traction field is a piecewise linear
function, and φj(x) represents a “hat function” located at the jth vertex
with φj(xj) = 1. Given our implementation, we shall often refer to node
and vertex interchangeably.

19.2.3 Discrete Boundary Value Problem (BVP)

At each step of the simulation, a discrete BVP must be solved, which
relates specified and unspecified nodal values, e.g., to determine deforma-
tion and feedback forces. Without loss of generality, it shall be assumed
that either position or traction constraints are specified at each boundary
node, although this can be extended to allow mixed conditions, e.g., normal
displacement and tangential tractions. Let nodes with prescribed displace-
ment or traction constraints be specified by the mutually exclusive index
sets Λu and Λp, respectively, so that Λu∩Λp = ∅ and Λu∪Λp = {1, 2, ..., n}.
In order to guarantee an equilibrium constraint configuration, we will re-
quire that there be at least one displacement constraint, i.e., Λu �= ∅. We
shall refer to the (Λu,Λp) pair as the BVP type.



�

�

�

�

�

�

�

�

19.2. Linear Elastostatic Boundary Model Preliminaries 401

Boundary conditions arising in a force-feedback loop might consist of
some displacement constraints in the area of contact, with “free” boundary
conditions (zero traction) and other (often zero displacement) support con-
straints outside the contact zone. The solution to Equation (19.7) yields
the rendered contact forces and surface deformation.

Denote the unspecified and complementary specified nodal variables by

vj =
{

pj : j ∈ Λu

uj : j ∈ Λp
and v̄j =

{
ūj : j ∈ Λu

p̄j : j ∈ Λp
, (19.6)

respectively. By linearity of the discrete elastic model, there formally exists
a linear relationship between all nodal boundary variables

0 = Av + Āv̄ = Av − z, (19.7)

where the BVP system matrix A and its complementary matrix Ā are, in
general, dense block n-by-n matrices [Hartmann 85]. Body force terms
associated with other phenomena, e.g., gravity, have been omitted for sim-
plicity, but can be included since they only add an extra contribution to
the z term.

A key relationship between BVP system matrices (A, Ā) of different
BVP types (Λu,Λp) is that they are related by exchanges of corresponding
block columns, e.g., (A:j, Ā:j), and therefore small changes to the BVP type
result in low-rank changes to the BVP system matrices (see Section 19.3.2).

While the boundary-only system matrices in Equation (19.7) could
be constructed explicitly, e.g., via condensation for FEM models
[Zienkiewicz 77] or using a boundary integral formulation (see next sec-
tion), it need not be in practice. The discrete integral equation in Equa-
tion (19.7) is primarily a common starting point for later definition of GFs
and derivation of the CMA, while GFs may be generated with any conve-
nient numerical method, or even robotically scanned and estimated from
real objects [Pai et al. 01].

19.2.4 Example: Boundary Element Models

A simple closed-form definition of (A, Ā) is possible for models discretized
with the boundary element method (BEM) [Brebbia et al. 84, James and
Pai 99]; BEM discretizations are possible for models with homogeneous
and isotropic material properties. The surface-based nodal quantities are
related by the dense linear block matrix system

0 = Hu − Gp =
n∑

j=1

hijuj −
n∑

j=1

gijpj , (19.8)



�

�

�

�

�

�

�

�

402 19. Modeling Deformation of Linear Elastostatic Objects

where G and H are n-by-n block matrices, with each matrix element, gij or
hij , a 3-by-3 influence matrix with known expressions [Brebbia et al. 84].
In this case, the jth block columns of A and Ā may be identified as column
exchanged variants of G and H:

A:j =
{

−G:j : j ∈ Λu

H:j : j ∈ Λp
(19.9)

Ā:j =
{

H:j : j ∈ Λu

−G:j : j ∈ Λp
. (19.10)

While we use BEM models for our implementation, we reiterate that the
CMA is independent of the method used to generate the GFs.

19.2.5 Fast BVP Solution with Green’s Functions

GFs of a single BVP type provide an economical means for solving Equa-
tion (19.7) for that BVP, and when combined with the CMA (Section 19.3)
will also be useful for solving other BVP types. From Equation (19.7), the
general solution of a BVP type (Λu,Λp) may be expressed in terms of
discrete GFs as

v = Ξv̄ =
n∑

j=1

ξj v̄j =
∑

j∈Λu

ξj ūj +
∑
j∈Λp

ξj p̄j , (19.11)

where the discrete GFs of the BVP system are the block column vectors

ξj = −
(
A−1Ā

)
:j

(19.12)

and
Ξ = −A−1Ā = [ξ1ξ2 · · · ξn] .. (19.13)

Equation (19.11) may be taken as the definition of the discrete GFs (and
even Equation (19.7)), since it is clear that the jth GF simply describes
the linear response of the system to the jth node’s specified boundary
value, v̄j . An illustration is given in Figure 19.2. Once the GFs have been
computed for one BVP type, that class of BVPs may be solved easily using
Equation (19.11). An attractive feature for interactive applications is that
the entire solution can be obtained in 18ns flops if only s boundary values
(BV) are nonzero (or have changed since the last time step). Temporal
coherence may also be exploited by considering the effect of individual
changes in components of v̄ on the solution v.

19.2.6 Precomputation of Green’s Functions

Since the GFs for a single BVP type only depend on geometric and mate-
rial properties of the deformable object, they may be precomputed for use



�

�

�

�

�

�

�

�

19.3. Fast Global Deformation Using Capacitance Matrix Algorithms (CMAs) 403

v = 0 v = ξjx̂ v = ξjŷ v = ξj ẑ

Figure 19.2. Illustration of the jth Green’s function block column, ξj = Ξ:j ,
representing the model’s response due to the three XYZ components of the jth
specified boundary value, v̄j . Here the vertex belongs to the (“free”) traction
boundary, j ∈ Λp, and so ξj is literally the three responses due to unit tractions
applied in the (RGB color-coded) XYZ directions. White edges emanating from
the (displaced) jth vertex help indicate the resulting deformation. Note that the
vertex does not necessarily move in the direction of the XYZ tractions. Using
linear superposition, the CMA can determine the combinations of these and other
tractions required to move vertices to specified positions.

in a simulation. This provides a dramatic speed-up for simulation by de-
termining the deformation basis (the GFs) ahead of time. While this is not
necessary a huge amount of work (see Table 19.2), the principal benefits
for interactive simulations are the availability of the GF elements via cheap
look-up table operations, as well as the elimination of redundant runtime
computation when computing solutions, e.g., using a haptic device to grab
a vertex of the model and move it around simply renders a single GF.

Once a set of GFs for a LEM are precomputed, the overall stiffness can
be varied at runtime by scaling BVP forces accordingly; however changes
in compressibility and internal material distributions do require recompu-
tation. In practice it is only necessary to compute the GF corresponding
to nodes which may have changing or nonzero boundary values during the
simulation.

19.3 Fast Global Deformation Using Capacitance
Matrix Algorithms (CMAs)

This section presents an algorithm for using the precomputed GFs of a
relevant reference BVP (RBVP) type to efficiently solve other BVP types.
With an improved notation and emphasis on computer haptics, this sec-
tion unifies and extends the approaches presented in [James and Pai 99]
exclusively for BEM models, and for FEM models in, e.g., [Bro-Nielsen and



�

�

�

�

�

�

�

�

404 19. Modeling Deformation of Linear Elastostatic Objects

0
pΛ

0
uΛFixed Boundary;

Free Boundary;

Figure 19.3. Reference Boundary Value Problem (RBVP) example. The RBVP
associated with a model attached to a flat rigid support is shown with boundary
regions having fixed (Λ0

u) or free (Λ0
p) nodal constraints indicated. A typical sim-

ulation would impose contacts on the free boundary via displacement constraints
with the CMA.

Cotin 96], in a way that is applicable to all LEMs, regardless of discretiza-
tion, or origin of GFs [Pai et al. 01]. Haptic applications are considered in
Section 19.4.

19.3.1 Reference Boundary Value Problem (RBVP) Choice

A key step in the GF precomputation process is the initial identification
of an RBVP type, denoted by (Λ0

u,Λ
0
p), that is representative of the BVP

types arising during simulations. For interactions with an exposed free
boundary, a common choice is to have the uncontacted model attached to
a rigid support, as shown in Figure 19.3. The n-by-n block system matrices
associated with the RBVP are identified with a subscript as A0 and Ā0,
and the corresponding GFs are hereafter always denoted by Ξ.

Note that the user’s choice of RBVP type determines which type of
nodal constraints (displacement of traction) are commonly specified (in
order to define Ξ), but is independent of the actual numerical boundary
values v̄ used in practice. For example, there are no requirements that
certain boundary values be zero, although this results in fewer summations
(see Equation (19.11)).

19.3.2 Capacitance Matrix Algorithm (CMA) for BVP Solution

Precomputed GFs speed up the solution to the RBVP, but they can also
dramatically reduce the amount of work required to solve related BVP
when used in conjunction with CMAs. This section describes the CMA
and presents the derivation of related formulae.

Relevant formulae. Suppose the constraint-type changes, e.g., displace-
ment ↔ traction, with respect to the RBVP at s nodes specified by the list
of nodal indices S = {S1, S2, . . . ,Ss}. As mentioned earlier, it follows from
Equations (19.6) and (19.7) that the new BVP system matrices (A, Ā) are



�

�

�

�

�

�

�

�

19.3. Fast Global Deformation Using Capacitance Matrix Algorithms (CMAs) 405

related to those of the RBVP (A0, Ā0) by s block column swaps. This may
be written as

A = A0 +
(
Ā0 − A0

)
EET (19.14)

Ā = Ā0 +
(
A0 − Ā0

)
EET, (19.15)

where E is an n-by-s block matrix

E =
[
I:S1

I:S2
· · · I:Ss

]
,

containing columns of the n-by-n identity block matrix, I, specified by the
list of updated nodal indices S. Postmultiplication by E extracts columns
specified by S. Throughout, E is used to write sparse matrix operations
using dense data, e.g., Ξ, and like the identity matrix, it should be noted
that there is no cost involved in multiplication by E or its transpose.

Since the BVP solution is

v = A−1z = −A−1Āv̄, (19.16)

substituting Equation (19.15) for Ā and substituting the Sherman-Morrison-
Woodbury formula [Golub and Loan 96] for A−1 (using the GF definition
Ξ=−A−1

0 Ā0),

A−1 = A−1
0 + (I + Ξ)E(−ETΞE)−1ETA−1

0 , (19.17)

into Equation (19.16), leads directly to an expression for the solution in
terms of the precomputed GFs2. The resulting capacitance matrix formulae
are

v = v(0)︸︷︷︸
n× 1

+ (E + (ΞE))︸ ︷︷ ︸
n× s

C−1︸︷︷︸
s× s

ETv(0)︸ ︷︷ ︸
s× 1

, (19.18)

where C is the s-by-s capacitance matrix, a negated submatrix of Ξ,

C = −ETΞE, (19.19)

and v(0) is the response of the RBVP system to z=−Āv̄,

, v(0) = A−1
0 z =

[
Ξ
(
I − EET

)
− EET

]
v̄., (19.20)

Algorithm for BVP solution. With Ξ precomputed, the formulae in Equa-
tions (19.18)–(19.20) immediately suggest an algorithm given that only
simple manipulations of Ξ and inversion of the smaller capacitance subma-
trix are required. An algorithm for computing all components of v is as
follows:

2Similarly from [James and Pai 99] with δAS =(Ā0−A0)E.



�

�

�

�

�

�

�

�

406 19. Modeling Deformation of Linear Elastostatic Objects

1. For each new BVP type (with a different C matrix) encountered,
construct and temporarily store C−1 (or LU factors) for subsequent
use.

2. Construct v(0).

3. Extract ETv(0) and then apply the capacitance matrix inverse to it,
C−1(ETv(0)).

4. Add the s column vectors (E + (ΞE)) weighted by C−1(ETv(0)) to v(0)

for the final solution v.

Complexity Issues. Given s nonzero boundary values, each new capaci-
tance matrix LU factorization involves at most 2

3s
3 flops, after which each

subsequent solve involves approximately 18ns flops (s�n). This is partic-
ularly attractive when s�n is small, such as often occurs in practice with
localized surface contacts.

An important feature of the CMA for interactive methods is that it is
a direct matrix solver with a deterministic operation count. It is therefore
possible to predict the runtime cost associated with each matrix solve and
associated force feedback subcomputations (see Section 19.4), thus making
CMAs predictable for real-time computations.

19.3.3 Selective Deformation Computation

A major benefit of the CMA direct BVP solver is that it is possible to just
evaluate selected components of the solution vector at runtime, with the
total computing cost proportional to the number of components desired,
i.e., output-sensitive evaluation. This is a key enabling feature for force
feedback where, e.g., contact forces are desired at different rates than the
geometric deformations. Selective evaluation would also be useful for op-
timizing (self) collision detection queries, avoiding simulation of occluded
or undesired portions of the model, as well as rendering an adaptive level
of detail representations.

In general, any subset of solution components may be determined at
a smaller cost than computing v entirely. Let the solution be desired at
nodes specified by the set of indices D, with the desired components of v
extracted by ET

D. Using Equation (19.18), the selected solution components
may be evaluated as

ET
Dv = ET

Dv(0) + ET
D (E + (ΞE))C−1ETv(0),

using only O(s2 + s|D|) operations. The case where S = D is especially
important for force feedback and is discussed in the following section.



�

�

�

�

�

�

�

�

19.3. Fast Global Deformation Using Capacitance Matrix Algorithms (CMAs) 407

19.3.4 Extensions

Several extensions exist to overcome various bottlenecks of the CMA al-
gorithm. First, due to the dense nature of the GF matrix, computation
and storage issues arise for large models. The O(sn) cost of GF summa-
tion for surface deformation can be a bottleneck, although to some extent
fast native BLAS or graphics hardware implementations (as in [Barbič and
James 05]) can help. A fast summation algorithm based on fast lifted
wavelet transforms was proposed in [James and Pai 03] to alleviate the
summation bottleneck, and it also provides practical memory requirements
for large models.

Second, the O(s3) capacitance matrix inversion/factorization step can
become a bottleneck for large contact regions. By exploiting temporal
coherence common in contact problems, the O(s3) cost can be reduced
to O(s2 ∆s), where ∆s is the number of changes (additions or deletions)
to the contact node set. Details on the updating/downdating procedures
are given in [James 01]. For temporally coherent cases where ∆s � s,
such as in grasping scenarios (see Figure 19.4), the overhead of updating
the capacitance matrix inverse can often outperform LU factorization of C.
Another way to reduce contact updating complexity is to coarsen (or adapt)

Figure 19.4. Grasping simulation. Using a CyberTouch data input device from
Virtual Technologies Inc. (Top), a virtual hand (Bottom) was used to deform
an elastostatic BEM model with approximately 900 surface degrees of freedom
(DOF) at graphical frame rates (>30 FPS) on a Pentium 2 450 MHz computer
in Java JDK 1.3. The capacitance matrix algorithm was used to impose dis-
placement constraints on an otherwise free boundary, often updating over 100
DOF per frame. While force feedback was not present, the capacitance matrices
computed could also have been used to render contact forces at a rate higher
than that of the graphical simulation.



�

�

�

�

�

�

�

�

408 19. Modeling Deformation of Linear Elastostatic Objects

the contact resolution, and hierarchical (wavelet) GFs were introduced in
[James and Pai 03] for this purpose. Unfortunately, coarsened contacts also
limit the ability to resolve contact regions, unless adaptivity is used.

19.4 Capacitance Matrices as Local Buffer
Models

For force-feedback-enabled simulations in which user interactions are mod-
eled as displacement constraints applied to an otherwise free boundary,
the capacitance matrix has a very important role: it constitutes an exact
contact force response model by describing the compliance of the contact
zone. Borrowing terminology from [Balaniuk 00], we say that the capac-
itance matrix can be used as a local buffer model. While the capacitance
matrix is used in Section 19.3.2 to determine the linear combination of GFs
required to solve a particular BVP and reconstruct the global deformation,
it also has the desirable property that it effectively decouples the global
deformation calculation from that of the local force response. The most
relevant benefit for haptics is that the local contact force response may be
computed at a much faster rate than the global deformation.

19.4.1 Capacitance Matrix Local Buffer Model

From Equation (19.18), the S components of the solution v are

ETv = ET
[
v(0) + (E + (ΞE))C−1ETv(0)

]
= ETv(0) +

(
ETE

)︸ ︷︷ ︸C−1ETv(0) +
(
ETΞE

)︸ ︷︷ ︸C−1ETv(0)

↓ I − C (from Equation (19.19))
= ETv(0) + C−1ETv(0) − ETv(0)

= C−1
(
ETv(0)

)
. (19.21)

Consider the situation, which naturally arises in haptic interactions, in
which the only nonzero constraints are updated displacement constraints,
i.e.,

v̄ = EETv̄ ⇒ v(0) = −v̄ (using Equation (19.20)). (19.22)

In this case, the capacitance matrix completely characterizes the local con-
tact response, since (using Equation (19.22) in Equation (19.21))

ETv = −C−1ETv̄. (19.23)



�

�

�

�

�

�

�

�

19.4. Capacitance Matrices as Local Buffer Models 409

This in turn parametrizes the global response since these components (not
in S) are

(I − EET)v = (I − EET)
[
v(0) + (E + (ΞE))C−1ETv(0)

]
= (I − EET)(ΞE)(ETv), (19.24)

where we have used Equation (19.23) and the identity (I − EET)E=0. Such
properties allow the capacitance matrix and Ξ to be used to derive efficient
local models for surface contact.

For example, given the specified contact zone displacements

uS = ETv̄, (19.25)

the resulting tractions are

pS = ETv = −C−1
(
ETv̄

)
= −C−1uS, (19.26)

and the rendered contact force is

f = aT
SpS =

(
−aT

SC−1
)
uS = KSuS, (19.27)

where KS is the effective stiffness of the contact zone used for force feedback
rendering,

aS = (aS1 , aS2 , . . . , aSs)
T ⊗ I3 (19.28)

represents nodal areas Equation (19.5), and I3 is the scalar 3-by-3 identity
matrix. A similar expression may be obtained for torque feedback. The vi-
sual deformation corresponding to solution components outside the contact
zone is then given by Equation (19.24) using pS =ETv.

19.4.2 Example: Single Displacement Constraint

A simple case, which will be discussed in much greater detail in Section 19.5,
is that of imposing a displacement constraint on single a node k, which
otherwise had a traction constraint in the RBVP. This case occurs, for
instance, when the tip of a haptic device comes into contact with the free
surface of an object. The new BVP therefore has only a single constraint
switch with respect to the RBVP, and so s=1 and S={k}. The capacitance
matrix here is just C=−Ξkk, so that the kth nodal values are related by

pk = −C−1ūk = (Ξkk)−1 ūk or ūk = Ξkkpk.

The capacitance matrix can generate the force response, f =akpk, required
for haptics in O(1) operations, and for graphical feedback, the correspond-
ing global solution is v=ξkpk.



�

�

�

�

�

�

�

�

410 19. Modeling Deformation of Linear Elastostatic Objects

19.4.3 Force Feedback for Multiple Displacement Constraints

When multiple force feedback devices are interacting with the model by im-
posing displacement constraints, the force and stiffness felt by each device
are tightly coupled in equilibrium. For example, the stiffness felt by the
thumb in Figure 19.4 will depend on how the other fingers are supporting
the object. For multiple contacts like this, the capacitance matrix again
provides an efficient force response model for haptics. Without presenting
the equations in detail, we shall just mention that the force responses for
each of the contact patches can be derived from the capacitance matrix in
a manner similar to Equations (19.25)–(19.28).

19.5 Surface Stiffness Models for Point-Like
Contact

The second part of this chapter presents a simple and practical method
for describing point-like contact interactions. Such interactions are in the
haptics literature for rigid surface models [Massie and Salisbury 94, Ho
et al. 99]. Unlike their rigid counterparts, special care must be taken with
elastic models to define finite contact areas for point-like interactions since
point-like contacts defined only as single-vertex (Section 19.4.2) or nearest
neighbor [Cotin et al. 99] constraints lead to mesh-related artifacts, and
ambiguous interactions as the mesh is refined (see Figure 19.5). However,
the benefit of point-like contacts comes from the convenience of the point-
like parameterization of the contact, and not because the contact is highly
concentrated or “pin-like.” We present an approach using vertex pressure

Figure 19.5. Point contact must not be taken literally for elastic models. This
figure illustrates the development of a displacement singularity associated with
a concentrated surface force as the continuum limit is approached. In the left
image, an upward unit force applied to a vertex of a discrete elastic model results
in a finite vertex displacement. As the model’s mesh is refined (middle and
right images), the same concentrated force load eventually tends to produce a
singular displacement at the contact location, and the stiffness of any single vertex
approaches zero (see Table 19.1). Such point-like constraints are mathematically
ill-posed for linear models based on a small-strain assumption, and care must be
taken to meaningfully define the interaction.



�

�

�

�

�

�

�

�

19.5. Surface Stiffness Models for Point-Like Contact 411

masks which maintains the single contact description, yet distributes forces
on a specified scale. This allows point contact stiffnesses to be consistently
defined as the mesh scale is refined and provides an efficient method for
force feedback rendering of forces with regular spatial variation on irregular
meshes.

19.5.1 Vertex Pressure Masks for Distributed Point-Like
Contacts

In this section, the distribution of force is described using compactly sup-
ported per-vertex pressure masks defined on the free boundary in the neigh-
borhood of each vertex.

Vertex pressure mask definition. Scalar pressure masks provide a flexible
means for modeling vector pressure distributions associated with each node.
This allows a force applied at the ith node to generate a traction distribu-
tion that is a linear combination of {φj(x)} and not just φi(x).

In the continuous setting, a scalar surface density ρ(x) :Γ→R will relate
the localized contact force f to the applied traction p via

p(x) = ρ(x)f ,

which in turn implies the normalization condition∫
Γ

ρ(x)dΓx = 1. (19.29)

In the discrete setting, the piecewise linear surface density on Γ is

ρ(x) =
n∑

j=1

φj(x)ρj ∈ L (19.30)

and is parameterized by the discrete scalar vertex mask vector,

ρ = [ρ1, ρ2, . . . , ρn]T .

Substituting Equation (19.30) into Equation (19.29), the discrete normal-
ization condition satisfied becomes

aTρ = 1, (19.31)

where a is the sum of vertex areas from Equation (19.5). Notice that the
mask density ρ has units of 1

area .
In practice, the vertex pressure mask ρ may be specified in a variety of

ways. It could be specified at runtime, e.g., as the byproduct of a physical



�

�

�

�

�

�

�

�

412 19. Modeling Deformation of Linear Elastostatic Objects

(x)ρ

0

p

f

Figure 19.6. Collocated scalar masks. A direct means for obtaining a relative
pressure amplitude distribution about each node is to employ a user-specified
scalar functional of the desired spatial scale. The scalar pressure mask is then
given by nodal collocation (left), after which the vector traction distribution
associated with a nodal point load is then computed as the product of the applied
force vector and the (compactly supported) scalar mask (right).

contact mechanics solution, or could be a user-specified quantity. We shall
consider the case where there is a compactly supported scalar function
ρ(x) specified at each vertex on the free boundary. The corresponding
discrete vertex mask ρ may then be defined using nodal collocation (see
Figure 19.6):

ρj =
{
ρ(xj), j ∈ Λ0

p,
0, j ∈ Λ0

u.
,

followed by suitable normalization,

ρ :=
ρ

aTρ
,

to ensure the satisfaction of Equation (19.31).
In the following, denote the density mask for the ith vertex by the n-

vector ρi, with nonzero values being indicated by the set of masked nodal
indices Mi. Since the intention is to distribute force on the free boundary,
masks will only be defined for i∈Λ0

p. Additionally, these masks will only
involve nodes on the free boundary, Mi ⊂ Λ0

p, as well as be nonempty,
|Mi| > 0.

Example: Spherical mask functionals. Spherically symmetric radially de-
creasing mask functionals with a scale parameter were suitable candidates
for constructing vertex masks via collocation on smooth surfaces. One func-
tional we used (see Figures 19.7 and 19.8) had linear radial dependence,

ρi(x; r) =
{

1 − |x−xi|
r , |x − xi| < r,

0, otherwise,

where r specifies the radial scale and is representative of the haptic probe’s
tip. The effect of changing r is shown in Figure 19.7.



�

�

�

�

�

�

�

�

19.5. Surface Stiffness Models for Point-Like Contact 413

Figure 19.7. Illustration of changing mask scale. An exaggerated pulling defor-
mation illustrates different spatial scales in two underlying traction distributions.
In each case, pressure masks were generated using the linear spherical mask func-
tional (see Section 19.5.1) for different values of the radius parameter, r.

19.5.2 Vertex Stiffnesses Using Pressure Masks

Having consistently characterized point-like force loads using vertex pres-
sure masks, it is now possible to calculate the stiffness of each vertex. In
the following sections, these vertex stiffnesses will then be used to com-
pute the stiffness at any point on model’s surface for haptic rendering of
point-like contact.

Elastic vertex stiffness, KE. For any single node on the free boundary, i∈Λ0
p,

a finite force stiffness, Ki∈R
3×3, may be associated with its displacement,

i.e.,

f = Kiui, i ∈ Λ0
p.

As a sign convention, it will be noted that for any single vertex displacement

ui · f = ui · (Kiui) ≥ 0, i ∈ Λ0
p,

so that positive work is done deforming the object.
Given a force f applied at vertex i∈Λ0

p, the corresponding distributed
traction constraints are

pj = ρi
jf .

Since the displacement of the ith vertex is

ui =
∑

j∈Mi

ρi
jΞijf ,



�

�

�

�

�

�

�

�

414 19. Modeling Deformation of Linear Elastostatic Objects

(a) a(x) (b) ‖K(x)‖ (c) masked ‖K(x)‖

Figure 19.8. Effect of pressure masks on surface stiffness. Even models with
reasonable mesh quality, such as this simple BEM kidney model, can exhibit
perceptible surface stiffness irregularities when single-vertex stiffnesses are used.
A plot (a) of the vertex area, a, clearly indicates regions of large (dark red)
and small (light blue) triangles. In (b) the norm of the single-vertex surface
stiffness, ‖K(x)‖, reveals a noticeable degree of mesh-related stiffness artifacts.
On the other hand, the stiffness plotted in (c) was generated using a pressure
mask (collocated linear sphere functional (see Section 19.5.1) of radius twice the
mesh’s mean edge length) and better approximates the regular force response
expected of such a model. Masks essentially provide anti-aliasing for stiffnesses
defined with discrete traction distributions, and help avoid “soft spots.”

therefore the effective elastic stiffness of the masked vertex is

Ki = KE
i =

⎛⎝ ∑
j∈Mi

ρi
jΞij

⎞⎠−1

, i ∈ Λ0
p. (19.32)

Some examples are provided in Table 19.1 and Figure 19.8.
Therefore, in the simple case of a single masked vertex displacement

constraint ui, the local force response model exactly determines the result-
ing force, f = Kiui, distributed in the masked region. The corresponding
globally consistent solution is

v = ζif =

⎛⎝ ∑
j∈Mi

ρi
jξj

⎞⎠ f ,

where ζi is the convolution of the GFs with the mask ρ and characterizes
the distributed force load. The limiting case of a single vertex constraint
corresponds to Mi ={i} with ρi

j =δij/ai, so that the convolution simplifies
to ζi =ξi/ai.

Rigid vertex stiffness, KR. For rigid surfaces, a finite force response may be
defined using an isotropic stiffness matrix,

KR = kRigidI3 ∈ R
3×3, kRigid > 0.



�

�

�

�

�

�

�

�

19.5. Surface Stiffness Models for Point-Like Contact 415

Mesh Level Vertices ‖K‖F , Single ‖K‖F , Masked

1 34 7.3 13.3

2 130 2.8 11.8

3 514 1.1 11.2

Table 19.1. Vertex stiffness dependence on mesh resolution: This table shows
vertex stiffness (Frobenius) norms (in arbitrary units) at the top center vertex of
the BEM model in Figure 19.11(a), as geometrically modeled using Loop subdi-
vision meshes for three different levels of resolution. The stiffness corresponding
to a single vertex constraint exhibits a large dependence on mesh resolution and
has a magnitude which rapidly decreases to zero as the mesh is refined. On the
other hand, the stiffness generated using a vertex pressure mask (collocated lin-
ear sphere functional (see Section 19.5.1) with radius equal to the coarsest (level
1) mesh’s mean edge length) has substantially less mesh dependence, and quickly
approaches a nonzero value.

This is useful for defining responses at position-constrained vertices of a
deformable model,

Ki = KR, i ∈ Λ0
u, (19.33)

for at least two reasons. First, while it may seem physically ambiguous
to consider contacting a constrained node of a deformable object, it does
allow us to define a response for these vertices without introducing other
simulation dependencies, e.g., how the haptic interaction with the elastic
object support is modeled. Second, we shall see in Section 19.5.3 that
defining stiffness responses at these nodes is important for determining
contact responses on neighboring triangles that are not rigid.

19.5.3 Surface Stiffness from Vertex Stiffnesses

Given the vertex stiffnesses, {Ki}n
i=1, the stiffness of any location on the

surface is defined using nodal interpolation

K(x) =
n∑

i=1

φi(x)Ki, x ∈ Γ, (19.34)

so that (K(x))kl ∈ L. Note that there are no more than three nonzero
terms in the sum of Equation (19.34), corresponding to the vertices of
the face in contact. In this way, the surface stiffness may be continuously
defined using only |Λ0

p| free boundary vertex stiffnesses and a single rigid
stiffness parameter, kRigid, regardless of the extent of the masks. The global
deformation is then visually rendered using the corresponding distributed
traction constraints.



�

�

�

�

�

�

�

�

416 19. Modeling Deformation of Linear Elastostatic Objects

For a point-like displacement constraint ū applied at x∈Γ on a triangle
having vertex indices {i1, i2, i3}, the corresponding global solution is

v =
∑

i∈{i1,i2,i3}∩Λ0
p

ζiφi(x)f . (19.35)

This may be interpreted as the combined effect of barycentrically dis-
tributed forces, φi(x)f , applied at each of the triangle’s three masked vertex
nodes.

19.5.4 Rendering with Finite-Stiffness Haptic Devices

Similar to haptic rendering of rigid objects, elastic objects with stiffnesses
greater than some maximum renderable magnitude (due to hardware limi-
tations) have forces displayed as softer materials during continuous contact.
This can be achieved using a haptic vertex stiffness, KH

i , which is propor-
tional to the elastic vertex stiffness, KE

i . While the stiffnesses could all be
uniformly scaled on the free boundary, this can result in very soft regions
if the model has a wide range of surface stiffness. Another approach is to
set

KH
i = ηiK

E
i where ηi = min

(
1,

‖KR‖
‖KE

i ‖

)
,

f
H

Ex

nE
uE

Hu

nC

xC

x

Figure 19.9. Geometry of point-like contact. The surface of the static/undeformed
geometry (curved dashed line) and that of the deformed elastic model (curved
solid line) are shown along with: applied force (f), static contact location (xC),
deformed elastic model contact location (xE), haptic probe-tip location (xH), hap-
tic contact displacement (uH =xH−xC), elastic contact displacement (uE =xE−xC),
static contact normal (nC), and elastic contact normal (nE). Once the contact is
initiated by the collision detector, the sliding frictional contact can be tracked in
surface coordinates at force feedback rates.



�

�

�

�

�

�

�

�

19.6. Results 417

so that the elastic haptic model is never more stiff than a rigid haptic
model. The surface’s haptic stiffness KH(x) is then determined using Equa-
tion (19.34), so that ‖KH(x)‖ ≤ ‖KR‖, ∀x ∈ Γ.

In accordance with force-reflecting contact, the deformed elastic state
corresponds to the haptic force applied at the contact location xC. This
produces geometric contact configurations similar to that shown in Figure
19.9, where the haptic displacement uH can differ from the elastic displace-
ment uE. The geometric deformation is determined from the applied force f
and equation Equation (19.35). Note that when the haptic and elastic
stiffnesses are equal, such as for soft materials, then so are the elastic and
haptic displacements. In all cases, the generalized “god object” [Zilles and
Salisbury 94] or “surface contact point” [Sensable Technologies, Inc. 08] is
defined as the parametric image of xC on the deformed surface.

19.6 Results
GFs were precomputed using the boundary element method (BEM) with
piecewise linear boundary elements. Table 19.2 provides timings for the
BEM precomputation stages, as well as the submillisecond cost of simu-
lating point-like deformations using GFs. Further timings of CMA sub-
operations are shown in Table 19.3 and reflect interactive performance for
modest numbers of constraint type changes, s. All timings were performed
using the same unoptimized Java code as in the original paper [James and
Pai 01]; however, they were re-run on a single core of an Intel Core Duo
(T2700 2.33 GHz), with 2 GB RAM, and Sun’s Java 1.6.0 server JVM (for

Model # Vertices, n # Faces Precomp LUD % Simulate

Nodule 130v (89 free) 256f 0.052 min 16% 10 µsec

Kidney 322v (217 free) 640f 0.43 min 16% 25 µsec

Spatula 620v (559 free) 1248f 2.7 min 12% 64 µsec

Banana Seat 546v (245 free) 1088f 1.4 min 23% 28 µsec

Table 19.2. GF precomputation and simulation times for the BEM models de-
picted in Figure 19.11. All GFs corresponding to moveable free vertices (in Λ0

p)
were computed, and the precomputation time (Precomp) of the largest model
is less than an hour. As is typical of BEM computations for models of modest
size (n < 1000), the O(n2) construction of the matrices (H and G in Equa-
tion (19.8)) is a significant portion of the computation, e.g., relative to the O(n3)
cost of performing the LU decomposition (LUD %) of the A matrix. The last
column indicates that submillisecond graphics-loop computations (Simulate) are
required to determine the point-contact deformation response of each model’s
free boundary–primarily a rank-9 summation.



�

�

�

�

�

�

�

�

418 19. Modeling Deformation of Linear Elastostatic Objects

# Updates, s LU Factor LU Solve (ΞE)(ETv̄) for n=100

10 0.08 ms 3 µsec 37 µsec

20 0.43 ms 11 µsec 77 µsec

40 2.59 ms 42 µsec 152 µsec

100 40.0 ms 230 µsec 382 µsec

Table 19.3. Timings of CMA suboperations such as LU decomposition (LU Fac-
tor) and back-substitution (LU Solve) of the capacitance matrix, as well as the
weighted summation of s GFs (per 100 nodes) are shown for different sizes of
updated nodal constraints, s.

Windows); these timings are roughly an order of magnitude faster than
in the original paper. Obviously, complex models and contact scenarios
are now possible. These times can be reduced further by using optimized
matrix libraries.

An application of the CMA for multiple distributed contacts with uni-
lateral contact constraints was the grasping task illustrated in Figure 19.4,
using the LEM from Figure 19.11(a).

A force-feedback implementation of the point-like contact approach dis-
cussed in the previous section was built. Forces were rendered by a 3-DOF
PHANTOMTM haptic interface (model 1.0 Premium), on a dual Pentium II
computer running Windows NT. The haptic simulation was implemented
in C++, partly using the GHOST c© toolkit, and interfaced to our Art-
Defo elastostatic object simulation written in JavaTMand rendered with
Java 3DTM. The frictional point-contact problem was computed by the
haptic servo loop at 1 kHz, which then prescribes boundary conditions
for the slower graphical simulation running at 25–80 Hz. For a point-like
contact, it was only necessary to perform collision detection on the unde-

Figure 19.10. Photograph of simulation in use. Users were able to push, slide,
and pull on the surface of the model using a point-like manipulandum.



�

�

�

�

�

�

�

�

19.6. Results 419

(a)

(b)

(c)

(d)

Figure 19.11. Screenshots from real-time haptic simulations. A wide range of
ArtDefo models are shown subjected to various displacements, using the masked
point-like contacts of Section 19.5. For each model, the middle of the three
figures is uncontacted by the user’s interaction point (a small green ball). (a) A
simple nodular shape with a fixed base region. (b) A kidney-shaped model with
position-constrained vertices on the occluded side. (c) A plastic spatula with a
position-constrained handle. (d) A seemingly gel-filled banana bicycle seat with
matching metal supports.

formed model, so this was done using the GHOST c© API. A photograph of
the authors demonstrating the simulation is shown in Figure 19.10, and a
number of screen shots for various models are shown in Figure 19.11.

We observed that the vertex masks were successful in producing no-
ticeable improvements in the smoothness of the sliding contact force, es-
pecially when passing over regions with irregular triangulations (see Fig-
ure 19.8). We have not conducted a formal human study of the effective-
ness of our simulation approach. However, the haptic simulation has been
demonstrated to hundreds of users at two conferences: the 10th Annual



�

�

�

�

�

�

�

�

420 19. Modeling Deformation of Linear Elastostatic Objects

PRECARN-IRIS (Institute for Robotics and Intelligent Systems) Confer-
ence (Montreal, Quebec, Canada, May 2000) and in the ACM SIGGRAPH
2000 Exhibition (New Orleans, Louisiana, USA, July 2000). Users re-
ported that the simulation felt realistic. In general, the precomputed LEM
approach was found to be both stable and robust.

19.7 Summary
We have summarized an approach for real-time solution of boundary value
problems for discrete linear elastostatic models (LEMs), regardless of dis-
cretization, using precomputed GFs in conjunction with capacitance ma-
trix algorithms (CMAs). The data-driven CMA formulation highlights the
special role of the capacitance matrix in computer haptics as a contact
compliance useful for generating contact force and stiffness models and
provides a framework for extending the capabilities of these models.

Additionally, the important special case of point-like contact was ad-
dressed, with special attention given to the consistent definition of contact
forces for haptics. While this topic has been discussed before, we have
introduced vertex masks to specify the distribution of contact forces in a
way that leads to physically consistent force-feedback models that avoid
the numerical artifacts that lead to nonsmooth rendering of contact forces
on discrete models, as wells as ill-defined contacts in the continuum limit.

Epilogue: Green’s function models are particularly effective for linear elas-
tostatic models; however their use is limited for large-deformation models
(although see [James and Pai 02] for articulated models). At the time of this
writing, we have been investigating alternative basis-superposition meth-
ods for haptic rendering that are based on dimensional model reduction
and precomputed large-deformation modal models. We refer the reader to
on-going work for 6-DOF haptic rendering of multipoint contact between
geometrically complex models [Barbič and James 07].



�

�

�

�

�

�

�

�

20
Rendering of Frictional

Contact with Deformable
Environments

C. Duriez

The development of real-time simulations has led to the haptic rendering of
more precise and complex phenomena. For example, the rendering of de-
formable objects began by using naive deformable models and very simple
contact forces for deriving the device feedback. Contact forces computa-
tion was based on the geometrical criterion of interpenetration, using the
penalty-based methods. The result was a relatively poor quality of haptic
rendering. While more precise modeling techniques have improved de-
formable models, the computation of contact forces using physically based
contact and friction laws has also contributed to their improvement.

In this chapter, we present algorithms for high quality haptic rendering
of colliding deformable objects. Using these techniques, a user can virtually
“touch” deformable objects, as well as manipulate them and deform them
using frictional contacts. It is assumed that a model has its behavior repre-
sentation discretized using the finite element method, mass-spring systems,
or a similar method, and that collision events are detected using appropri-
ate techniques for deformable objects. See, for example, the discussion on
deformable models in Chapter 8, or the description of linear elastostatic
models in Chapter 19.

We start by presenting Signorini’s law and Coulomb’s law, which are
physical models of contact and of friction. We then present a solution
to solve them with respect to the dynamics of the deformable models.
Finally, we present several methods to adapt haptic rendering to deformable
objects.

421



�

�

�

�

�

�

�

�

422 20. Rendering of Frictional Contact with Deformable Environments

20.1 Contact and Friction Models

20.1.1 Signorini’s Contact Law

Signorini’s law is known in continuous media mechanics as a method to
resolve contacts between deformable bodies [N. Kikuchi 88]. In addi-
tion, it can also be extended to solve the dynamics of rigid object colli-
sions [Moreau 66].

We will be using Signorini’s law to solve the contacts between two bodies
named D1 and D2. Surfaces S1 on D1 and S2 on D2 are defined as local
boundaries, where boundary entities are in potential contact. For each
boundary entity P1 of D1, a neighbor element P2 of D2 is associated to
test the contact between D1 and D2 (see Figure 20.1). The direction of
P2P1 is given by n.

Figure 20.1. Contact between two deformable bodies. ( c© 2006 IEEE)

Let f (1)
n (P1) be the contact force exerted on D1 in P1 by body D2 in

the direction of contact n. The action/reaction principle gives

f (1)
n (P1) + f (2)

n (P2) = 0 (20.1)

The normal n, chosen arbitrarily1, is directed versus the inside of D1.
The gap between the two objects at P1 is

δn(P1) = P2P1 · n (20.2)

The Signorini contact model indicates that there is complementarity rela-
tion2 between this gap δn(P1) and the contact force f (1)

n (P1), that is

0 ≤ δn(P1) ⊥ f (1)
n (P1) ≥ 0. (20.3)

1It could have been the direction −n of P1P2. By the arbitrary choice of the direction
n, the problem is solved using the unknown forces applied at points P1 on D1. It is
exactly the same by using the opposite direction and taking the unknown forces applied
at point P2 on D2.

2Noted ⊥, this relation states that one of the two values δn(P ) or f
(1)
n (P1) must be

null.



�

�

�

�

�

�

�

�

20.1. Contact and Friction Models 423

Once the choice of the unknown forces (f (1)
n rather than f (2)

n ) and of applied
point (P1) is done, we simplify the writing using δn = δn(P1) and fn =
f

(1)
n (P1):

0 ≤ δn ⊥ fn ≥ 0 (20.4)

This model3 has several physical justifications:

• The inequality δn ≥ 0 guarantees the non-interpenetration.

• The pressure exerted by D2 on D1 is inevitably directed towards
object D1, i.e., fn ≥ 0.

• If the contact between o,jects at P is active, δn = 0 and D2 exerts a
pressure on D1 at point P1: fn > 0. Otherwise, δn > 0 and the force
exerted by D2 is null.

Dynamic problems often use a velocity formulation of this law. How-
ever, this formulation is valid only during the time of contact:

0 ≤ δ̇n(t) ⊥ fn ≥ 0 if δn(t) = 0, where (20.5)

δ̇n(t) describes the relative velocity between D1 and D2 along n at the
contact point.

Using Signorin’s law, the contact space is only constrained along the
normal, creating frictionless rendering. We now add Coulomb’s friction
law in the tangential contact space.

20.1.2 Coulomb Friction Law

Coulomb’s friction law describes the macroscopic behavior in the tangent
contact space. With this law, the reaction force lies within a spatial conical
region, whose height and direction are given by the normal force (see fig
20.2). If the reaction force is exclusively within this conical region, objects
will stick together. Otherwise, the reaction force lies on the boundary of
this region, and the objects will slip along the tangential direction (see
Figure 20.2). In this latter case, the friction force must be directed along
the direction of motion:

δ̇�T = �0 ⇒ ‖f�T ‖ < µ ‖f�n‖ (stick condition),

δ̇�T �= �0 ⇒ f�T = −µ ‖f�n‖ δ̇�T

‖δ̇�T ‖ = −µ ‖f�n‖ �T (slip condition),
(20.6)

3The original formulation of Signorini’s law (see [N. Kikuchi 88]) is not based on
contact forces, but on Cauchy stress exerted between entities at every contact location.
Using finite element method with low-order interpolation functions (i.e. tetrahedrons
with four nodes or hexahedrons with eight nodes), we obtain the equivalence with a
force formulation [Duriez et al. 06]. This force formulation is valid for a large number
of deformable models (mass-springs, particle-based methods, etc.)



�

�

�

�

�

�

�

�

424 20. Rendering of Frictional Contact with Deformable Environments

Figure 20.2. Coulomb friction law. ( c© 2006 IEEE)

During 3D slipping motion (also called dynamic friction), the tangential
direction is not known; however, we do know that the tangential force and
the tangential velocity are opposite along this direction. This case will
create a nonlinearity, as well as a complementarity state of stick/slip.

Signorini’s and Coulomb’s laws are also valid in multicontact cases.
However, to solve these laws for every contact, we have to include the
coupling that exists between them. This coupling comes from the intrinsic
mechanical behavior of deformable models.

20.2 Non-Smooth Dynamics for Deformable
Objects

In the context of real-time deformation, several techniques have accelerated
the computations on the finite element method (FEM) basis [Zhuang and
Canny. 99,Picinbono et al. 00,Irving et al. 04]. Other works include discrete
models like mass-spring or particle systems.

Equations used to model the smooth dynamic behavior of deformable
bodies have led to a synthetic formulation:

M(q)v̇ = P(t) − F (q,v, t) + r, (20.7)

where q ∈ R
n is the vector of generalized degrees of freedom (for instance,

displacement of a mesh or displacement and rotation of a rigid body),
M(q) : R

n �→ Mn×n is the inertia matrix, and v ∈ R
n is the vector

of velocity. Here, F represents internal forces from constitutive laws and
P gathers external forces. And r ∈ R

n is the vector of contact forces
contribution that we want to solve.

In addition to this equation, initial and boundary conditions are classi-
cally added to the dynamic problem. A tangent (or rigidity) matrix of the



�

�

�

�

�

�

�

�

20.3. Integration Schemes 425

deformable body is given by K(q) = ∂F

∂q , and a damping matrix is given by
B(q) = ∂F

∂v . Expression of function F can then be linearized:

F (q+∂q,v+∂v, t) ≈ F (q,v, t) + K(q)∂q + B(q)∂v. (20.8)

In the special case of small displacement, function F is a constant linear
application:

F (q,v, t) = Kq + Bv. (20.9)

Inertia matrix M(q) is often limited to a constant diagonal matrix M,
using mass lumping method.

If objects collide at instant t�, their relative displacement between con-
tact zones is continuous, but not their relative velocities, which are dis-
continuous. As a result, accelerations are not defined, and the system’s
dynamics are qualified non-smooth. Differential Equation (20.7) cannot be
used to describe these singular events, like collisions. Traditionally, during
non-smooth events at instant t�, our focus is not on the contact reaction,
but on its integral I in time, which is the impulse of the contact:

I = lim
h→0

∫ t�+h

t�

rdt. (20.10)

This contact impulse will create a variation in the velocities of the
colliding bodies that can be measured using the velocity before impact v−

and after impact v+. Then, Equation (20.7) at the time of impact can be
rewritten without using acceleration:

M(v+ − v−) =
∫ t�+h

t�

P(t) − F (q,v, t) dt+ I. (20.11)

20.3 Integration Schemes
In this section, we will investigate discrete solutions of dynamical equa-
tions at a particular time. The choice of the integration scheme is mainly
influenced by the non-smoothness of the dynamic problem when contact
occurs. There are two ways of dealing with time:

Event-driven. The smooth aspects of the problem (free motion, established
contact) are treated apart from non-smooth events (collision and friction
status changing: see [Baraff 94,Ruspini et al. 97,Redon et al. 02a]). This
approach necessitates the adaption of the time discretization according to
non-regular events, but also allows the use of high order integrators between
events. However, when contacts are numerous, this approach is no longer
usable, because the time between two non-regular events becomes too small.



�

�

�

�

�

�

�

�

426 20. Rendering of Frictional Contact with Deformable Environments

Time-stepping. A time step is fixed, and there is no limitation on the num-
ber of discontinuities that could happen during a time step ( [Anitescu
et al. 99]). All contact forces are integrated as an impulse for the time
step. In this case, the integrator’s order is low, such as 1 or 2. This can
lead to precision and dissipation problems, especially if the time step is too
large.

Since haptic rendering is based on real-time simulation, the time for the
computation must be equal (or at least close) to the time step used for tem-
poral integration. In this context, event-driven methods are less suitable,
since the computation time is maximum (collision event) when event-driven
methods tend to reduce the time step. Real-time, event-driven computa-
tion is also difficult, especially for collisions between deformable models,
which can be numerous. Moreover, dissipation problems that occur with
time-stepping methods are not problematic in a haptic context, since, in
most cases, energy dissipation helps the stability of the haptic rendering.
So, a time-stepping approach seems more adapted for real-time haptic sim-
ulation.

Using a time-stepping scheme, we consider the time interval [ti, tf ]
whose length is h = tf − ti. We have

M(vf − vi) =
∫ tf

ti

(P(t) − F(q,v, t)) dt + hrf , (20.12)

qf = qi +
∫ tf

ti

vdt. (20.13)

Integral I from Equation (20.11) has been evaluated by impulse values
hrf for the time step. To evaluate integrals

∫ tf

ti
(P(t) − F(q,v, t)) dt and∫ tf

ti
vdt, we chose an implicit Euler integration scheme:

M(vf − vi) = h (P(tf ) − F(qf ,vf , tf )) + hrf , (20.14)
qf = qi + hvf . (20.15)

In order to achieve real-time computation, some simplifications can be
made. One of them is to consider that the motion during a time step is
small enough so that it can be linearized:

F (qf ,vf , tf ) = F (qi,vi, ti) + Kdq + Bdv (20.16)

with

dq = qf − qi = hvf , (20.17)
dv = vf − vi. (20.18)



�

�

�

�

�

�

�

�

20.4. Building Contact Space 427

Using Equations (20.14) to (20.18), we obtain(
M + hB + h2K

)
(vf − vi) = −h2Kvi − h (F (qi,vi, t) + P(tf )) + hrf .

(20.19)

20.3.1 Free Motion and Contact Correction

The free motion is defined as the motion created on dynamic objects from
all forces (gravity, inertia, etc.) except contact forces. Using the previous
scheme, the solution vfree is found by solving the equation(

M + hB + h2K
)
(vfree − vi) = −h2Kvi − h (F (qi,vi, t) + P(tf )) .

(20.20)
Using this free motion, we will be able to detect the contacts using

collision or proximity distance algorithms. Then, by solving friction contact
laws, we will find the contact impulses hr for the set of detected contacts.
Contact reactions will be integrated in a correction motion dvc:(

M + hB + h2K
)
dvc = hr. (20.21)

This correction is added to free motion to obtain the final motion vf =
vfree + dvc. Now, we can concentrate on solving contact reactions and
determining the correction motion. This process begins by finding the
contact area in order to build the contact space.

20.4 Building Contact Space
In the two following sections, we will describe the mapping between contact
space given by a collision detection algorithm and the motion space where
q and v are defined.

20.4.1 Collision Detection Outputs

We assume that a collision/proximity detection algorithm identifies m po-
tential contacts between a pair of bodies D1 and D2. For each set of
contact points, we need the collision (or proximity) detection module to
provide:

• Two contact points P and Q;

• Their barycentric positions Ψ(P ) and Ψ(Q) within their triangles (or
other primitive);

• The contact normal n. If not provided, n is set to the initial direction
of QP. Using n, we can find t and s, the two tangential directions.



�

�

�

�

�

�

�

�

428 20. Rendering of Frictional Contact with Deformable Environments

Figure 20.3. Each contact connects two points, P1 and P2, that are interpolated
to the nodes of the mesh, respectively A1, B1, C1 and A2, B2, C2. ( c© 2006
IEEE)

These values can be determined by a variety of collision detection algo-
rithms for deformable bodies. No other specific information is needed or as-
sumptions are made. However, different shape descriptions (non-convexity,
non-smoothness, fast variation of surfaces, etc.) may influence collision
detection performance. For a discussion on collision detection algorithms,
see Chapter 9.

20.4.2 Contact and Motion Spaces

From collision or proximity detection, we have a set of potential contact
spots α = 1...nc, and we can find their associate frame Fα = [nα, tα, sα].
In that space, we will measure the relative displacement δα and velocity
δ̇α between colliding objects in order to use contact and friction laws.

For every contact and every object, we can build the mapping function
A that links the positions in the contact space to the motion space:

δα = (QP)Fα
= Aα(q1, t) − Aα(q2, t), (20.22)

where Aα(q, t) is the mapping function that depends on the contact α
(contact points, Pα and Qα, contact frame Fα) and the position q of the
colliding object.

To obtain a kinematic relation between the two spaces (contact and
motion), we use a linearization of Equation (20.22). For deformable objects,
mapping functions can be linearized easily using a barycentric position from
collision detection Ψα(P ) and Ψα(Q). For some highly deformable objects
(or for rigid articulated bodies), function Aα(q, t) could be nonlinear, and
in that case, we would build a Jacobian matrix around the current position.



�

�

�

�

�

�

�

�

20.5. Solving Strategy 429

If Hα(q) = ∂A

∂q , we obtain at time t for each contact,

δ̇α(t) = Hα(q1)v1(t) − Hα(q2)v2(t). (20.23)

A dual relation can be applied for the friction contact forces fα:

r1 = H
T
α(q1)fα r2 = −H

T
α(q2)fα. (20.24)

The transformation matrices for each contact and object can be stacked
together to form a matrix H that describes the relative velocities δ̇ and
contact forces f in the contact surface frames between all the contact points
in the system:

δ̇ = Hv r = HT f . (20.25)

In summary, we have defined the friction contact laws in Equations
(20.5) and (20.6) at the contact space level, and the correction dynamic
Equation (20.21) at the motion space level. In addition, we have the trans-
formation matrix H and HT to pass from one level to another. Thus, the
simultaneous resolution of all these equations needs to be outlined.

20.5 Solving Strategy
Choosing appropriate unknowns is important for a solving strategy. At the
beginning of the resolution of contact force, one knows neither the forces
(r or f) nor the motion (dv or δ̇) induced by contact of colliding objects.
However, depending on the number of degrees of freedom and the number
of contacts expected during the haptic simulation, it can be more or less
judicious to solve the problem in the contact space (local strategy) or in
the motion space (global strategy).

Global strategy can be applied to simulations with objects containing
fewer degrees of freedom and large numbers of contacts, such as in the
case of rigid body dynamics [Redon et al. 02a], where each object has
a maximum of six DOFs. However, in the case of haptic simulation of
deformable objects, the number of instantaneous contacts is often smaller
than the number of degrees of freedom, and a local strategy is preferable.

20.5.1 Frictionless Contact Solver

Naturally, friction contact cases require more computation than frictionless
cases. If haptic applications do not require friction rendering, the outlined
frictionless solver could be useful. Computation begins with the description



�

�

�

�

�

�

�

�

430 20. Rendering of Frictional Contact with Deformable Environments

of an object’s mechanics in contact space:

δ̇n = H
(

M
h

+ B + hK
)−1

HT︸ ︷︷ ︸
W

fn + δ̇
free

n , (20.26)

where W is the Delassus operator [Moreau and Jean 96], which gives the
mechanical coupling between contacts, in the contact space. Here δ̇

free

n

represents the relative velocities computed during the free motion. We
have two ways of computing this relative velocity:

• First, δ̇
free

n = δfree
n /h. The relative velocity is computed using the

interpenetration value δfree
n . If there is collision during the time step

(δfree
n < 0), it guarantees no interpenetration at the end of the time

step: δn = 0.

• Second, δ̇
free

n = Hvfree. In that case, we use a weaker formulation of
Signorini’s problem:

0 ≤ δ̇n(t) ⊥ fn ≥ 0 if δn(t) ≤ 0.

Indeed, using the time-stepping method cannot guarantee that δn(t) =
0 along the time step, as required in Equation (20.5). With this new
formulation, the initial interpenetration could remain at the end of
the time step, but it will not be accentuated.

Gathering Equations (20.5) and (20.26), a linear complementarity prob-
lem (LCP) can be obtained, which can be solved using several methods,
including direct and iterative solvers (see [Murty 97]).

However, a more realistic simulation needs to take into account another
phenomenon: static and dynamic friction.

20.5.2 Single Friction Contact Solver

The integration of the full Coulomb’s model into interactive haptic simu-
lations is a challenging issue. As described in Section 20.1.2, in addition to
the complementarity states stick/slip, there is a nonlinearity in the equa-
tion of the tangential direction during slipping motion. Moreover, it is not
possible to separate the friction computations from contact ones, because
motions in contact and friction spaces are linked by objects’ mechanical
behavior.

Let’s consider the motion of a slipping contact point. In Coulomb’s
law Equation (20.6), during slip, the direction of the friction force must be
in the direction of the tangential motion, but this motion and the friction



�

�

�

�

�

�

�

�

20.5. Solving Strategy 431

force are unknown. Fortunately, there are two equations available that can
help. The first one is the linearized system mechanical behavior in the
contact space, along two tangential directions, �t and �s:

δ̇α = [Wαα]fα + δ̇
free

α ⇔

⎡⎣ δ̇�nδ̇�t
δ̇�s

⎤⎦=

⎡⎣WnnWntWns

Wtn Wtt Wts

WsnWstWss

⎤⎦⎡⎣ f�n

f�t
f�s

⎤⎦+

⎡⎣ δ̇free
�n

δ̇free
�t

δ̇free
�s

⎤⎦ . (20.27)

The second one is Coulomb’s friction law. In the case of dynamic friction,
the law gives a nonlinear relation along the tangential direction �T of the
motion:

f�T = −µ ‖f�n‖
δ�T

‖δ�T‖
= −µ ‖f�n‖�T , (20.28)

where �T is an unknown unitary vector in the plane (�t, �s). This nonlin-
ear problem can be solved using the Newton-Raphson method [Alart and
Curnier 91]; however, a faster resolution technique better suited for haptic
rendering will be presented.

Let’s introduce an estimated value f̃α of the friction contact force for
this contact:

δ̇α − [Wαα](fα − f̃α) = [Wαα ]̃fα + δ̇
free

α .

In the search for contact force fα, the closer to the solution, the less
dominant Wαα is, since fα − f̃α → 0. Hence, we can solve the friction
contact using an iterative method, where Wαα is replaced by a diagonal
matrix in the first part of the equation. Diagonal values are Wnn along the
normal direction and an average of eigenvalues obtained along tangential
directions:

Λmin/max = eig
([

Wtt Wts

Wst Wss

])
Λα =

Λmin + Λmax

2
,

δ̇α −

⎡⎣ Wnn 0 0
0 Λα 0
0 0 Λα

⎤⎦ (fα − f̃α) ≈ [Wαα ]̃fα + δ̇
free

α . (20.29)

Then, a method of graph intersection can solve contact and friction laws. It
requires about ten iterations, since no previous estimation of f̃α is available
when the diagonal of the matrix Wαα is dominant.

Other solutions exist for a single contact point case, like [Mahvash and
Hayward 04]. However, we wish to focus on haptic simulations with mul-
ticontacts cases. Thus, a solving process able to evaluate friction contacts
that are coupled by mechanics is required.



�

�

�

�

�

�

�

�

432 20. Rendering of Frictional Contact with Deformable Environments

Input: δ̇
free
α = [δ̇free

n , δ̇
free
T ], Wαα, µ, (f̃α)

Output: fα = [fn, fT ]
set ε1 to Signorini tolerance
set ε2 to slipping force tolerance
if δ̇free

n < ε1 then

fα = −[Wαα]−1δ̇
free
α /* contact and sticking forces */

if ‖fT ‖ > µfn then

(fα = f̃α)
repeat

f̃α = fα /* contact and slipping forces */

δ̇test
n = Wnαfα + δ̇free

n

fn = f̃n − δ̇test
n /Wnn

δ̇
test
T = WTαfα + δ̇

free
T

fT = f̃T − δ̇
test
T /Λα

fT = µfn
fT

‖fT ‖

until ‖fα − f̃α‖/‖fα‖ < ε2;

end

else
fα = 0 /* no contact */

end

Algorithm 1. Solve friction contact state.

20.5.3 Iterative Multi-Contact Solution

Some solvers can solve multicontact with friction while keeping a full LCP
formulation. They are based on k-sided pyramids instead of the full Coul-
omb’s cone. However, it has been shown that solving this full problem
formulation with a direct solver is not efficient, especially when the number
of potential contacts increases [Duriez et al. 06]. In such cases, iterative
solutions, with or without simplification of the friction cone, seem to be
more adapted to real-time applications.

The problem of multiple friction contact can be solved using a Gauss-
Seidel-like algorithm. Let W be the Delassus operator, as in Equation
(20.26), but increased by friction directions. Considering a contact α among
m instantaneous contacts, one can write the behavior of the model in con-
tact space:

δ̇α − [Wαα]fα︸ ︷︷ ︸
unknown

=
α−1∑
β=1

[Wαβ ]fβ +
m∑

β=α+1

[Wαβ ]fβ︸ ︷︷ ︸
frozen

+ δ̇
free

α . (20.30)

Here [Wαβ ] gives the mechanical coupling between contact points α and β.



�

�

�

�

�

�

�

�

20.6. Haptic Rendering 433

We use a block Gauss-Seidel algorithm, where each block gives the
equations of one friction contact. On each contact α, this method consists
of solving the contact and friction laws by considering the contribution of
other contacts (α �= β) “frozen.” The solution of every block equation is
provided by Algorithm 1, described previously.

Input: δ̇
free
(3m×1), [W](3m×3m)

Output: f(3m×1)

set ε to desired precision
k = 0
repeat

k = k + 1
foreach α = 1 ... m do

δ̇
test

= δ̇
free
α

foreach β = 1 ... i − 1 do

δ̇
test

+ = [Wαβ ]f
(k)
β

end
foreach β = i ... m do

δ̇
test

+ = [Wαβ ]f
(k−1)
β

end

f
(k)
α = Solve friction contact ( δ̇

test
,Wαα, µ, f

(k−1)
α )

end

until
∑m

i=1

‖f
(k)
i

−f
(k−1)‖
i

‖
‖f

(k)
i ‖

< ε;

Algorithm 2. Gauss–Seidel-like resolution algorithm.

20.6 Haptic Rendering
In order to carry out haptic rendering of deformable models, the haptic
device has to be linked to a virtual object by some mechanism. In the
following, we will study two scenarios.

In the first one, the virtual object is a rigid tool that collides with a
deformable environment. Thus, some work on 3- or 6-DOF haptic methods
for rigid objects, like the haptic coupling or god object methods, can be
reused.

In the second scenario, the virtual object is deformable and the envi-
ronment could be either rigid or deformable. In that case, haptic methods
need to be adapted, and we propose a solution via a global corotational
model.

20.6.1 Coupling on a Rigid Object

In this configuration, haptic rendering comes from contact forces between
a rigid object and its deformable environment. Different methods, like



�

�

�

�

�

�

�

�

434 20. Rendering of Frictional Contact with Deformable Environments

god object (previously described in Chapter 15) or impedance/admittance
coupling [Adams and Hannaford 99], allow the rigid object to bind virtually
to the haptic device.

This virtual coupling may be considered intuitively as a 6-DOF stiffness
and damping between positions and velocities may be measured on the
interface and given by the simulation. It creates a force that is sent to
haptic feedback, as well as to the real-time simulation of the rigid object.
Optimal stiffness and damping values depend on the impedance of the
device, the mass of the virtual rigid object, and the frequency of the haptic
loop.

In order to obtain stable haptic feedback, the stiffness k, the angular
stiffness KΩ, the damping b, and the angular damping Bω should be in-
cluded in the dynamical model used to compute contact forces. For this
rigid coupled object, Equation (20.7) would be written

mv̇ = P(t) − b(v − v0) − k(q − q0) + r, (20.31)
Iω̇ = Mp(t) − ω ∧ (Iω) − Bω(ω − ω0) − KΩ(Ω − Ω0) + Mr, (20.32)

where I is the inertia, and ω and Ω are the angular velocity and position
of the rigid virtual object. The velocities (v0,ω0) and (q0,Ω0) are the
6-DOF velocities and the positions given by measure on the interface.

If linear and angular equations of rigid dynamics (with Id 3×3 identity
matrix) are stacked:

Mr =
[
mId 0

0 I

]
Br =

[
bId 0
0 Bω

]
Kr =

[
kId 0
0 KΩ

]
;

also, its contribution is added to the previous computation of the Delassus
operator:

W = H
(

M
h

+ B + hK
)−1

HT + Hr

(
Mr

h
+ Br + hKr

)−1

HT
r ,

with Hr as a linearization of the mapping from contact space to the motion
(v,ω) space.

20.6.2 Coupling on a Deformable Object

Haptic algorithms developed for rigid object manipulation cannot be di-
rectly applied to deformable objects. Indeed, the deformable objects need
to be grabbed somewhere. Thus, we have to define Dirichlet’s boundary
conditions in the neighborhood of grabbed spots. Moreover, we need to
build a virtual coupling between the haptic device and these boundary
conditions. In that case, straightforward computation of optimal stiffness
and damping does not exist.



�

�

�

�

�

�

�

�

20.6. Haptic Rendering 435

Figure 20.4. Example of virtual coupling for haptic rendering on a deformable
object. ( c© 2006 IEEE)

However, this solution (see Figure 20.4) is acceptable if we do not ma-
nipulate a dynamic deformable body composed of light and structured
materials. Since the choice of the time step used in the integration scheme
depends on the mass/stiffness ratio of deformable objects, the optimal time
step for these types of objects (low mass, high stiffness) can become too
small to obtain a real-time haptic simulation (500 Hz to 1 kHz). With an
implicit Euler scheme, excessive damping will appear if a non-optimal time
step is used.

In the following, we propose an alternative solution for the time step
issues, which also simplifies the coupling with a deformable object.

20.6.3 Co-Rotational Approach

An approach proposed by Terzopoulos and Witkin describes the motion
of deformable bodies [Terzopoulos and Witkin 88]. This model splits the
global motion (driven by a rigid model) from local relative displacement
(driven by a linear deformable model), as shown in Figure 20.5. This
model simplifies the heavy computation of a nonlinear deformable model
by using one global rotation for the whole body. Recent developments of
co-rotational approaches can be found in [Felippa 00, Shabana 94, Hauth
and Strasser 03], where the rotation is no longer computed for the whole
body, but more locally for large deformation.

In our case, we are using a global co-rotational approach, which decou-
ples the dynamic deformation in a dynamic rigid motion and a pseudo-static
deformable motion (see Figure 20.5). A deformable pseudo-static model is
linked with rigid motion using adapted Dirichlet conditions.



�

�

�

�

�

�

�

�

436 20. Rendering of Frictional Contact with Deformable Environments

Rigid body Motion

Deformational
motion

Reference
configuration
splits into CB

and CR

Base
Configuration CB

Corotational
configuration CR

Current
configuration C

Figure 20.5. Adapted from Felippa [Felippa 00]. The motion of a deformable
object may be split in two parts: a deformable motion in its current configuration
and a rigid motion in the space. ( c© 2006 IEEE)

The motion of one point is the sum of its dynamic rigid motion in the
global space and its pseudo-static local deformation. Thus, the two models
can be summed within the contact space. The Delassus operator will be
written

W = Hr

(
Mr

h

)−1

HT
r + H (B + hK)−1 HT . (20.33)

With this model, when the stiffness of the body increases, the behavior
tends to pure rigid body dynamics. In the Delassus operator [W ], mass and
stiffness are no more coupled, and the time step can be arbitrarily chosen.

This method allows larger tolerances on time steps, which consequently
allows haptic feedback to be performed on all kinds of material, even very
stiff ones, without modification of simulations parameters.

For haptic rendering, we can also reuse the coupling method with the
dynamic rigid part of the motion. For intuitive deformation, Dirichlet con-
ditions for the deformable sections should be defined in the neighborhood
of the grabbed location.

20.6.4 “Quasi-Rigid” Application

Using the co-rotational global model, our method includes frictional rigid
contacts in the limits of increasing stiffness. In this case, the deformable
section can be only seen as a physical plausible mechanical compliance that
solves part of the indetermination that appears when Coulomb’s friction is
adopted.



�

�

�

�

�

�

�

�

20.7. Examples 437

Indeed, it is known that in rigid body mechanics, frictional extensions
lead to non-unique solutions [Baraff 94, Anitescu et al. 99]. This non-
uniqueness usually induces convergence problems. The nonlinear Gauss-
Seidel method is able to obtain one result even if there is more than one
solution. However, the solution is influenced by the contact treatment
ordering.

Other work [Pauly et al. 04, Song et al. 04] has proposed adding small
deformations to rigid objects in order to add sufficient degrees of freedom
so that unique and smoother solutions can be obtained. A corotational
approach could be used in exactly the same way. As a result, if an FEM
model is used to compute pseudo-static deformation, very plausible results
arise from the friction contact force computation.

20.7 Examples

20.7.1 Snap-In Task

The example provided here is a virtual snap-in task between two objects,
one being deformable (a clip) and the other being either rigid or deformable
(a pipe). This example has been chosen because of its nonlinear behavior
from the computer haptics point of view, and it requires a sustained haptic
perception/action coordination.

The scenario is defined as follows. First, the operator needs to grab the
virtual clip and move it to the pipe, where it should be snapped in. Through
the haptic device, the operator reaches the clip’s handle, and by a simple
button press attaches it to the haptic device by a virtual 6-DOF coupling.
When the clip reaches the pipe spot, first collisions occur; subsequently,
haptic feedback will assist the operator in correctly positioning the clip
on the pipe for the snap-in process. This snap-in process consists of three
phases: a pushing phase, an instable equilibrium phase, and a final clipping
phase.

The pushing phase consists of the operator applying forces on the clip
towards the pipe. Here, contact points stick, due to static friction. When
the deformation starts, there is an induced resistance due to deformation
forces and dynamic friction, until the deformation reaches its maximum
(the distance between the two branches of the clip is maximum). At this
moment, the second phase commences.

The second phase is unstable, since it is an instant-time state. At this
moment, if the applied forces decrease, the clip may come back in an abrupt
way, especially if the object to be snapped in is rigid, as in Figure 20.6. If
forces are strong enough, then the clip goes to the third phase.



�

�

�

�

�

�

�

�

438 20. Rendering of Frictional Contact with Deformable Environments

Figure 20.6. Haptic feedback simulation of snap-in operation with a flexible tool:
first snapshots show clipping a cylinder. ( c© 2006 IEEE)

In the third phase, the motion of the clip is relatively abrupt, espe-
cially if the pipe is rigid, since the closing clip forces are induced from a
deformation relaxation, which is important. Here, the operator needs to
retain the process even with rigid pipe, while rendering haptic parameters
in a transparent manner. All tested algorithms correctly simulated this
behavior.

Figure 20.7. Snapshots of interactive snap-in and snap-out tasks on deformable
pipes. On the top, the pushing phase of the snap-in task. On the bottom, the
user withdraws the clip. which creates deformations on the pipes, especially if
the friction coefficient is large. ( c© 2006 IEEE)



�

�

�

�

�

�

�

�

20.7. Examples 439

Figure 20.7 shows screen snapshots from deformable/deformable inter-
active snap-in. When both objects are deformable, it is not easy to keep
coordination of motion and force while keeping the clip in such a way that
it should not slip, snap in too fast, or deform up to the point of breaking.
The most impressive haptic sensation occurs when the user tries to with-
draw the clip. Here, static friction and clip deformation give an important
resistance to the motion of the clip, while as the user moves the interface,
the haptic virtual coupling accumulates potential energy. Thus, in the very
last phase, the clip releases from the cylinder in a very abrupt manner.

Since this motion can be very fast, this example shows the importance of
implicit resolutions of models, contact, and friction laws. The values used
to calculate the stiffness of the clip (Young Modulus E = 700 MPa and
Poisson coefficient µ = 0.35) correspond to polyethylene. The co-rotational
method allows the use of a realistic mass (15 g) with a time step of 3 ms.

20.7.2 Catheter Navigation

In this example, we describe an approach that has led to the develop-
ment of a high-fidelity haptic simulation for interventional neuroradiology.
In particular, the focus is on new approaches for real-time deformation
of devices such as catheters and guidewires during navigation inside com-
plex anatomical vascular networks. This approach combines a real-time
incremental finite element model, an optimization strategy based on sub-
structure decomposition for the computation of W, and the Gauss-Seidel
algorithm for handling collision response in situations where the number of
contacts points is very large.

To control the motion of a catheter or guidewire within the vascular
network, the physician can only push, pull, or twist the proximal end of
the device. Since such devices are constrained inside the patient’s vascu-
lature, it is the combination of input forces and contact forces that allows
them to be moved toward a target. The main characteristics of these wire-
like structures are that their modeling techniques must enable geometric
nonlinearities, high tensile strength, and low resistance to bending.

For a catheter model, a natural choice is to use beam equations, since
they account for cross-sectional areas, cross-section moments of inertia,
and polar moment of inertia, while allowing solid and hollow devices of
various cross-sectional geometries and mechanical properties to be modeled.
The main disadvantage of such linear models is their inability to represent
large geometric nonlinearities that occur during navigation of these devices
through the vascular network.

To improve the accuracy of the model, an incremental approach based
on beam theory, which handles geometric nonlinearities while maintaining
real-time computation, is used. This quasi-static model is based on an



�

�

�

�

�

�

�

�

440 20. Rendering of Frictional Contact with Deformable Environments

Figure 20.8. Catheter navigation inside the cerebrovascular network. Complex,
nonlinear deformations are correctly represented by an incremental FEM model.
Collision detection and collision response allow the catheter to stay within the
lumen of the vessels.

evaluation of the linear model at each time step:

F (qf ,vf , tf ) = F (qi,vi, ti) + Kdq + Bdv.

The subsequent computation of (B + hK)−1 is optimized using a substruc-
ture decomposition.

In this example, a large number of nodes can be simultaneously in
contact. We avoid the complete construction of W by adapting the Gauss-
Seidel algorithm. Contacts are treated from one end of the wire structure
to the other, while accumulating their contribution in the substructure
decomposition using H and HT operators.

This method correctly handles contact response in complex situations
and when the contact forces should be applied. Haptic methodology is
based on a 6-DOF coupling with the tip of the catheter, which is con-
strained by its velocity and displacement. Reaction forces measured on
these constraints are applied via a haptic device, especially designed for
cardiovascular interventions.

20.8 Conclusion
When flexible virtual objects are interactively manipulated, stable and re-
alistic computer haptics requires “accurate” modeling of the contact space,
real-time forces, and deformation computations. In this chapter, we pro-
posed an implicit solution that solves Signorini’s and Coulomb’s laws,



�

�

�

�

�

�

�

�

20.8. Conclusion 441

thanks to a Gauss-Seidel technique. The proposed solution can be com-
bined with most existing fast deformable simulations, since the contact
treatment is separated from the deformation behavior. We also showed the
advantages of a global co-rotational approach in a real-time simulation con-
text. The solutions have been implemented and tested on two applications:
a snap-in simulation and a medical training program.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

21
Measurement-Based
Modeling for Haptic

Rendering
A. M. Okamura, K. J. Kuchenbecker,

and M. Mahvash

Measurement-based modeling is a technique for creating virtual environ-
ments based on real-world interactions. For the purpose of haptic ren-
dering, measurement-based models are formed from data recorded during
contact between an instrumented tool and a real environment. The created
model can be a database of recorded responses to various haptic stimuli, an
empirical input-output mapping, or a set of physics-based equations (Fig-
ure 21.1). In the database approach, recordings of a movement variable,
such as position or force, are played back during haptic rendering, similar
to audio recordings played on a stereo. Input-output models are created
by fitting simple phenomenological models to the recorded data and tuning
the haptic response as needed to provide the desired feel. Physics-based
models are constructed from a fundamental understanding of the mechani-
cal principles underlying the recorded haptic interaction; numerical values
for the model’s physical parameters can be selected either by fitting the
model’s response to the recorded data or by derivation from basic material
properties. Prior work has used all three of these methods in various forms
to create virtual environments that feel significantly more realistic than
models that are designed and tuned without incorporation of real-world

Record data
during real-world

interaction

Database

Input-

Physics-based model

output modelCreate

Identify parameters

Tune parameters

Store data

Simulate physics

Invoke mapping

Interpolate/replay data

Figure 21.1. The process of measurement-based modeling. Approaches include
database development, input-output modeling, and physics-based modeling.

443



�

�

�

�

�

�

�

�

444 21. Measurement-Based Modeling for Haptic Rendering

measurements. The complete process of acquiring real-world data, build-
ing an appropriate model, and authentically rendering it through a haptic
interface has been coined haptography [Kuchenbecker 06].

The primary advantage of this flavor of measurement-based haptic mod-
eling is the realism afforded by the display of high-frequency information.
When humans interact with a real environment, fast-acting sensors em-
bedded in the skin of the finger pads record the minute vibrations caused
by the interaction. These vibrations, which are also sensed as sound by
one’s ears, provide a wealth of information about the contacting objects.
For example, when tapping on a table, a person detects the presence of
the table not only by kinesthetic sensors in the muscles and tactile sensors
in the deformed skin of the fingertip, but also from instantaneous vibra-
tions caused by the impact. The human sense of touch is highly attuned to
these natural vibratory stimuli, as they provide useful information about
the environment’s material properties (e.g., metal versus wood), texture
(e.g., sandpaper versus glass), and even geometry (e.g., thin sheet versus
thick block). Unfortunately, conventional approaches to rendering a virtual
hard surface use a simple stiffness control law, which creates contact forces
that increase smoothly with penetration. Without additional vibration
feedback, virtual object interactions feel dead, squishy, and unrealistically
smooth, a limitation that has been a major motivation for the development
of measurement-based modeling.

In this chapter we describe the process of measurement-based model-
ing and provide several illustrative examples. Section 21.1 discusses the
literature on modeling and rendering realistic haptic virtual environments.
Section 21.2 provides a step-by-step description of the measurement-based
modeling process and highlights major haptic rendering considerations.
Sections 21.3 and 21.4 describe two applications of measurement-based
modeling: tapping on rigid objects and cutting deformable surfaces. Each
of these projects has contributed to haptics engineering science through
consideration of unique modeling and rendering challenges, helping to demon-
strate the breadth of measurement-based modeling applications. Finally,
we summarize the measurement-based modeling approach in Section 21.5.

21.1 Literature Review

21.1.1 Data Acquisition Methods

There are many object parameters that can be recorded for recreation in
virtual environments, including shape, surface properties, color, auditory
response, and dynamics. Shape acquisition in particular has a long history,
especially in applications such as reverse engineering and computer graph-



�

�

�

�

�

�

�

�

21.1. Literature Review 445

ics. For example, sophisticated scanning, data processing, and modeling
methods have enabled accurate virtual representations of extremely large,
detailed objects, such as Michelangelo’s sculpture of David [Levoy et al. 00].
Automated systems have also been designed to acquire visual [Reed and
Allen 99] and auditory [Richmond and Pai 00] data.

Acquisition of haptic data is inherently challenging because it requires
controlled contact, and system response can vary significantly with device
dynamics. Examples of automated haptic data acquisition include biome-
chanical parameters of the human thigh [d’Aulignac et al. 00] and forces and
deformations resulting from needle insertion [DiMaio and Salcudean 03].
In addition, researchers have developed multimodal and telerobotic data
acquisition facilities, such as the Active Measurement Facility of the Uni-
versity of British Columbia [Lang et al. 02].

Sometimes an automated system is not desirable for data acquisition.
Often, we wish to acquire the typical motions and forces that humans expe-
rience during interaction with real environments. For example, researchers
have recorded tapping forces [Okamura et al. 01], cutting forces [Greenish
et al. 02], and surgical motions and forces [Rosen et al. 01].

21.1.2 Modeling Approaches

In one of the first haptic measurement-based modeling studies, MacLean
developed an automatic haptic characterization technique in which the hap-
tic device was used to both acquire data and display it [MacLean 96]. She
found that the most realistic haptic model of a switch was achieved through
a combination of explicit measurement of certain component properties
(such as mass), an assumed model structure with fitted parameters based
on acquired data, and manual estimation to adjust the model until it felt
right. MacLean states that the applications of this measurement-based
modeling approach include emulation of real environments, production
quality control, and psychophysics research. Other researchers, e.g. [Colton
and Hollerbach 07,Weir et al. 04], have used a similar basic framework with
more sophisticated modeling techniques to capture the nonlinear dynamics
of turn signals and switches.

In other early measurement-based modeling work, Wellman and Howe
modeled the vibrations that result from tapping on surfaces of different
stiffness [Wellman and Howe 95]. This work was built upon by several
other studies that measured vibrations resulting from tapping [Okamura
et al. 01, Kuchenbecker et al. 06], stroking small surface features [Fiene
and Niemeyer 06], and puncturing membranes [Okamura et al. 98]. All
of these researchers selected an input-output model that matched the ob-
served contact accelerations, typically an exponentially decaying sinusoid
scaled by contact velocity. Interestingly, this model was later theoretically



�

�

�

�

�

�

�

�

446 21. Measurement-Based Modeling for Haptic Rendering

verified via physics-based analysis of contact dynamics [Fiene and Kuchen-
becker 07]. For cutting tissues, researchers have both played back the data
without much context-sensitive information [Greenish et al. 02] and de-
veloped haptic renderings that are based on the theory of the underlying
physics [Mahvash and Hayward 05].

21.1.3 Realistic Haptic Rendering

After data is acquired and a model is created, the model is haptically ren-
dered in a virtual environment, often in conjunction with a visual render-
ing. Even simple models, like vibration transients, can be displayed using
a variety of mechanisms. Wellman and Howe played vibrations through
a voice coil motor that was attached to a force feedback device (which
provided surface stiffness simulation) [Wellman and Howe 95]. They also
compared the ability of humans to distinguish between surfaces of different
stiffness in real and virtual environments, finding that the virtual environ-
ments worked almost as well as the real ones. Okamura, et al. displayed
similar contact vibrations through the motors of the haptic interface itself,
rather than augmenting the system with an additional actuator [Okamura
et al. 98]. These researchers found that the haptic device could not display
the desired waveforms exactly, so perceptual studies were employed to tune
the model parameters [Okamura et al. 01]. As an alternative to this labor-
intensive process, Kuchenbecker, et al. used a detailed dynamic model of
the haptic device to compensate for device dynamics in order to display
the desired acceleration waveform [Kuchenbecker et al. 06]. The rationale
for and detailed description of these different approaches are described in
Section 21.3. For rendering more complex interactions, such as punctur-
ing or cutting deformable tissues, several types of models can be combined
to provide realistic haptic feedback [Mahvash and Hayward 01, Mahvash
and Hayward 05]. A system for measurement-based modeling and haptic
rendering of cutting is described in Section 21.4.

21.2 Developing and Rendering a Measurement-
Based Model

This section briefly describes a series of steps and considerations to be
taken in the development and display of a measurement-based model, and
it uses the illustrative example of object stiffness to motivate the approach.
We assume an impedance-type haptic device such as the PHANTOM from
SensAble Technologies: the user can change the position of the device, and
the device can display forces to the user. The measurement and haptic



�

�

�

�

�

�

�

�

21.2. Developing and Rendering a Measurement-Based Model 447

rendering of object stiffness is a simple but important haptic display pro-
cedure, since object stiffness is the fundamental building block of almost
all force-feedback displays. Particularly with biological tissues, local stiff-
ness can convey many valuable haptic insights, including the location of
tumors or other irregular features, the level of deformation that may occur
during execution of a surgical plan, and the amount of force required to
manipulate or retract the tissue. While this section provides the proce-
dure, refer to Sections 21.3 and 21.4 for the detailed technical aspects of
measurement-based modeling and rendering.

21.2.1 Data Acquisition

The design of appropriate data acquisition systems requires some under-
standing of the acquisition scenario and potential models. The bandwidth,
resolution, degrees of freedom, geometry, size, and material properties of
the sensors or sensing instruments must be considered. For example, if
we seek to measure object stiffness, we must simultaneously record con-
tact force and position as the target surface is probed. To characterize
the stiffness of tissue in vivo, the force-sensing instrument would ideally
be minimally invasive (very small/thin), biocompatible, and sterilizeable.
The force sensor should have sufficient resolution to allow identification
of any nonlinear properties, and it needs adequate bandwidth to identify
any viscoelastic effects that are overlaid with the basic stiffness (elasticity)
properties of the tissue. The position of the instrument can be tracked
magnetically or visually if it is hand-held, or using optical encoders if it is
attached to a robot. The need for controlled data acquisition through the
use of a robot, versus the appropriateness of data acquired when a human
performs the acquisition, must be evaluated depending on the eventual
rendering application. As modeling progresses, it may become clear that
additional data is required to populate the model.

21.2.2 Modeling

As discussed earlier, there are three main types of models that can be de-
veloped based on the acquired data and a priori knowledge about the envi-
ronment: (1) In the database approach, the data acquired from the stiffness
experiments would be placed in a position-versus-force lookup table. There
might be several lookup tables for different velocities or for different loca-
tions on the tissue. (2) In the input-output modeling approach, the force
versus displacement data would be fit to a curve. For typical nonlinear
tissue elasticity, researchers have used exponential and polynomial models.
The coefficients of these models would be fit to the data using least squares
or another optimization approach. (3) In the physics-based approach, our



�

�

�

�

�

�

�

�

448 21. Measurement-Based Modeling for Haptic Rendering

knowledge of continuum mechanics indicates the use of a nonlinear consti-
tutive law, which requires a set of stress/strain coefficients for the material.
Since the experiments described above measure local force/displacement at
the point of probe contact, these coefficients are not readily available from
the data. They could be obtained through separate testing, in which very
small samples are examined for compressive and shear stress/strain coeffi-
cients, or they could be estimated if the three-dimensional deformation of
the tissue is tracked simultaneously with the force/displacement measure-
ments. During the development of physics-based models, acquired data is
used both to validate the effectiveness of the chosen model structure and
to fine-tune its parameters for an optimal fit. Next, there are two aspects
to the rendering problem: computing and generating the desired forces.

21.2.3 Rendering: Computing Forces from the Model

The forces displayed to the user of a haptic device should depend on both
the spatial and temporal activities of the user. For the database approach,
the basic haptic rendering is achieved by measuring the current position
of the haptic device, performing collision detection (checking if the end-
point has intersected a virtual surface), and, if a collision has occurred,
finding the force corresponding to the current penetration, using the rel-
evant lookup table. Since the database cannot have infinite resolution,
some interpolation will be required. If the object’s mechanical properties
include complex behavior like viscoelasticity, this approach will probably
perform poorly—unless a high-dimensional lookup table is used, the user
will not feel a response that changes appropriately with velocity. Input-
output and physics-based models are rendered in a similar manner. Since
each of these model types is, at a high level, an equation with an input
of haptic device position (and perhaps its derivatives) and an output of
haptic device force (achieved by commanding appropriate motor currents),
the force to be displayed to the user is simply computed when a collision
is detected. Force calculation is typically performed during each cycle of
the haptic loop, such that the forces are continually updated, based on the
user’s new position. For some haptic rendering approaches, often called
event-based haptics [Kuchenbecker et al. 06], a collision triggers the display
of an open-loop, appropriately designed waveform, which is subsequently
overlaid with stiffness-based forces for a short time after contact.

21.2.4 Rendering: Generating Desired Forces

The haptic device selected to render the desired forces much have a suffi-
cient resolution, bandwidth, output stiffness, stability, configuration, num-
ber of degrees of freedom, and workspace for the chosen virtual environ-
ment. The physical interface between the haptic device and the human can



�

�

�

�

�

�

�

�

21.3. Example Application: Tapping on Rigid Surfaces 449

take many forms, including a thimble, a knob, a stylus, and finger loops.
Selection of this interface, so that the interaction with the virtual environ-
ment is as natural as possible, is necessary for a realistic user experience.
For the display of stiffness, the task may be palpation, which is usually
performed with a gloved or bare hand. Thus, among conventional inter-
faces, a thimble would be most appropriate. For haptic display of cutting,
the interface should attach to the human hand as would a needle, scalpel,
or a pair of scissors (as in Section 21.4). The bandwidth of the haptic de-
vice is of particular concern for the display of vibratory information, often
requiring dynamic compensation, as described in Section 21.3. External
measurements of the position (and its derivatives) and force output of the
haptic device during rendering can be measured and compared with the
desired behavior to ensure adequate portrayal of the underlying model.

21.2.5 Human Perception and Performance

The realism of a haptic virtual environment can be objectively evaluated
through experiments on human perception and performance. The clear-
est way to evaluate realism is to ask users to rate the realism of the
measurement-based virtual environment, usually in comparison with other
algorithms and real objects. This testing is best done without direct au-
ditory and visual feedback, since these sensory modalities often provide
obvious cues that inevitably cause a “haptic Turing test” to fail. For a
task such as identifying real versus virtual objects through palpation, care
must also be taken to provide the same tactile interface (such as a cup over
the finger) in both the virtual and real trials. Human performance also
yields useful information even when realism itself is not the ultimate goal.
If the objective is to observe user performance in a virtual environment
that is comparable to performance in a real environment, metrics for per-
formance, such as time, error rate, path traveled, and force profile can be
recorded. Qualitative comments solicited from users via open-ended ques-
tions can also be very useful in identifying the factors that contribute to a
particular rendering’s realism or lack thereof.

21.3 Example Application: Tapping on Rigid
Surfaces

Many haptic virtual environments need to realistically portray hard ob-
jects. For example, mechanical assembly simulations often include metal
and plastic components; medical trainers render bone, taut sutures, and
metal instruments; and interactive museum displays may show wooden
or ceramic artifacts. Conventional algorithms render the surfaces of these



�

�

�

�

�

�

�

�

450 21. Measurement-Based Modeling for Haptic Rendering

hard objects by constraining a spherical virtual proxy to remain outside the
objects and connecting the haptic device’s interaction point to the proxy
location with a linear spring [Basdogan and Srinivasan 02]. The system up-
date rate, position measurement resolution, and frictional characteristics of
the device set an upper limit on the stiffness that can be stably displayed,
which is often on the order of 1 N/mm [Abbott and Okamura 05,Diolaiti
et al. 06]. When the stiffness of the virtual spring between the haptic de-
vice and the proxy is programmed above this maximum value, the haptic
device vibrates unnaturally during contact with virtual surfaces. Avoiding
instability requires the selection of stiffnesses far lower than those encoun-
tered in hard objects every day, leaving virtual environments feeling overly
soft and mushy.

Increasing the stable closed-loop stiffness of haptic systems to real-world
levels would require extraordinary advances in position resolution and servo
rate, so researchers have turned to alternative strategies. Prominent among
these is the approach of event-based haptics, wherein a strong transient is
overlaid with traditional position feedback for a short time (about 100 ms)
after contact [Kuchenbecker et al. 06]. As discussed in the following sec-
tions, these transients drastically improve the feel of hard virtual surfaces
when created via the measurement-based modeling approach.

21.3.1 Data Acquisition

Recreating the feel of hard tapping requires an investigation of the dynam-
ics of the associated real interaction. Research on the human sense of touch
has revealed that hard contact is detected by the Pacinian corpuscles, rel-
atively large mechanoreceptors that lie deep within the hairless skin of the
hand and respond to vibrations from about 20 to 1000 Hz [Bell et al. 94].
To measure the vibrations that occur perpendicular to the surface when
a hard tool is tapped against a hard object, we can employ either a force
sensor mounted between the hand and the tool tip, or an accelerometer
mounted rigidly to the tool shaft. Force sensors are generally larger, more
expensive, more delicate, and more susceptible to drift, so most researchers
prefer to use an accelerometer to acquire tapping data. Whether a force
or acceleration sensor is used, it needs a bandwidth of at least 1000 Hz in
order to capture the high-frequency vibration signals that are perceptible
to a human. Instrumenting real taps also requires a measurement of sty-
lus velocity, which is typically computed from a high-resolution position
sensor.

Figure 21.2 shows the motor position, motor velocity, and stylus accel-
eration recorded as a human repeatedly tapped the distal link of a PHAN-
TOM onto a sample of wood on a foam substrate. The motor position is the
output of the shoulder-axis encoder transformed into tip space. The motor



�

�

�

�

�

�

�

�

21.3. Example Application: Tapping on Rigid Surfaces 451

-5

0

5

10

15

M
ot

or
 P

os
iti

on
(m

m
)

-300

-200

-100

0

100

M
ot

or
 V

el
oc

ity
(m

m
/s

) 44.1 72.2 95.3
131.8

181.2
228.5 206.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-20

0

20

40

60

S
ty

lu
s 

A
cc

el
er

at
io

n
(m

/s
2 )

Time (s)

Figure 21.2. Recorded motor position, motor velocity, and stylus acceleration
for a single data acquisition run, in which a user tapped the distal link of a
PHANTOM haptic interface against a piece of balsa wood mounted on top of a
layer of soft foam.

velocity is computed by differentiating and low-pass filtering the encoder
signal, and the acceleration is recorded from a MEMS-based accelerometer
(ADXL321) mounted on the stylus near the user’s grasp point. When the
user brings the stylus down to the surface, which is located at x = 0, the
stylus and hand undergo an acceleration transient that resembles an ex-
ponentially decaying sinusoid. Note that these characteristic accelerations
could not be computed from the encoder signal, as the cables and link-
age that connect the stylus to the motor generally act as a low-pass filter
and block such transmission. If a recording like that shown in Figure 21.2
spans the range of velocities expected from users of the virtual environment
being designed, it adeptly captures the response of the tested tool/object
combination.

21.3.2 Modeling

Once a set of tapping data has been acquired, there are two main methods
for building a model of the associated hard contact: the database approach
and the input-output approach. In both cases the recorded data needs to
be parsed to identify each contact event. As can be seen in Figure 21.2, a



�

�

�

�

�

�

�

�

452 21. Measurement-Based Modeling for Haptic Rendering

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−30

−20

−10

0

10

20

30

40

50

60

70
S

ty
lu

s 
A

cc
el

er
at

io
n 

(m
/s

2 )

Time (s)

228.5
206.4
181.2
131.8
95.3
72.2
44.1

Incoming Velocity
(mm/s)

Figure 21.3. Contact accelerations arranged by incoming velocity.

faster approach to contact creates a larger acceleration transient, though
the shape stays relatively constant. This trend suggests arranging the
transients by incoming velocity, as shown in Figure 21.3. Each transient is
100 ms long, recorded at 10 kHz.

Database approach. The first option for building a measurement-based
model for rendering hard objects is to store the recorded acceleration tran-
sients directly in a database. A nicely spaced subset of the recorded incom-
ing velocities should be chosen; samples that have high incoming accelera-
tion should be discarded, as should transients that appear atypical. Some
pre-processing of these signals may be useful, such as a smoothing filter to
remove high-frequency electrical noise, but the database method generally
requires minimal data manipulation.

Input-output approach. The second option is to utilize the input-output
approach, an empirical method that maps parameters of the interaction to
the haptic system’s output via a simple mathematical relationship. In this
case, the input parameters are the qualitative variable of stylus/sample
combination and the quantitative variable of the user’s incoming veloc-
ity. The output of our model is the acceleration transient that we want



�

�

�

�

�

�

�

�

21.3. Example Application: Tapping on Rigid Surfaces 453

to be generated at contact with a virtual rendering of our chosen environ-
ment. We relate these by looking for a waveform that captures the bulk
of the observed contact response. As observed by many researchers (first
by [Wellman and Howe 95]), data like that shown in Figure 21.3 resemble
an exponentially decaying sinusoid that is scaled by incoming velocity, vin:

a(t) = vin A sin(ωt) e−t/τ . (21.1)

This model can be fit to the data via manual selection of A, ω, and τ ,
or through an automated technique such as nonlinear unconstrained opti-
mization, yielding an empirical input-output model for realistic rendering
of hard contact.

21.3.3 Rendering: Computing Forces from the Model

The program that controls the haptic device must have access to the model
(acceleration database or equation) during operation. Each time the user
comes into contact with a virtual surface, the correct model is selected, and
the incoming velocity is used to calculate the acceleration transient that
should be displayed. For the application of hard tapping, this step yields
hand/stylus acceleration, rather than contact force; these two movement
variables are related by the dynamics of the stylus and the user’s hand
(ΣFstylus = Fcontact + Fhand = mstylusastylus); either a force or acceleration
model may be used, but acceleration is generally more convenient.

Database approach. With an acceleration database, the program must
interpolate between the two stored transients whose incoming velocities
bracket the current value. An approach velocity below the lowest stored
value entails scaling by the ratio vin/vlow. A vin above the highest database
value can similarly be handled with extrapolation, though a more reliable
response could be calculated by adding another transient to the database.

Input-output approach. With an acceleration equation, vin is merely plugg-
ed into the transient Equation (21.1) at each point in time after the contact.
The transient is discontinued when t equals a predefined limit, such as
100 ms, at which point it will have a value very close to zero.

21.3.4 Rendering: Generating Desired Forces

Once the desired contact acceleration transient has been computed, the
haptic system must determine the electrical current that should be applied
to each of the device’s motors. For low frequency signals (≤10 Hz), it is
generally acceptable to assume ideal output from the computer interface



�

�

�

�

�

�

�

�

454 21. Measurement-Based Modeling for Haptic Rendering

through the current amplifiers, motors, cable transmissions, and mechan-
ical linkages. But ideal response cannot be assumed for most systems at
higher frequencies, since the output is colored by these intervening dynam-
ics before reaching the hand of the user [Hayward and Astley 96]. Even
with perfect dynamic transmission across the frequency range of interest,
the system designer must determine the effective mass of the haptic device
in order to convert desired stylus acceleration into motor current/force
output. Regardless of the method used to select this transformation, one
should note that achieving acceleration transient output often requires over-
driving the motors with higher current levels than can be permitted during
steady-state operation, as detailed in [Fiene et al. 06].

User judgment. In the simplest situation, the system programmer can use
ad-hoc methods to select a gain between modeled acceleration and out-
put motor current. The initial choice is usually fine-tuned during informal
testing, which can often achieve satisfactory results. A more thorough
methodology was developed by Okamura et al., who asked human subjects
to interact with a decaying sinusoid input-output model under factorial
combinations of possible values for the three parameters A, ω, and τ [Oka-
mura et al. 01]. In this case, the scaling gain was rolled into the selection
of A. Subjects rated the realism of each rendering as compared to the re-
sponse of a nearby real object, and the best-rated parameter combination
was selected for the virtual environment.

Dynamic compensation. The second method for determining the relation-
ship between desired acceleration and necessary motor current requires an
accurate model of the haptic system. Understanding the stylus’s response
to high frequency motor currents allows us to compensate for these dy-
namics and provide more realistic haptic feedback [Kuchenbecker et al. 06].
This device model can usually be developed via traditional black-box sys-
tem identification techniques, which involve applying a variety of high fre-
quency current commands to the system (while it is being held by a user)
and measuring the resulting stylus acceleration. When the relationship
from requested motor current to stylus acceleration is relatively linear and
time-invariant, it can be modeled as a set of poles, zeroes, and a gain se-
lected to match the empirical data. The transfer function generally has
several resonances and anti-resonances at frequencies between ten and sev-
eral hundred Hz, with diminishing response thereafter. Conditioning the
desired acceleration transients by the inverse of this transfer function yields
an estimate of the current transient that should be requested for the present
tap. This dynamic characterization needs to be performed for each degree
of freedom of the haptic interface, so the stored device models can be used
in real time to generate a wide variety of desired stylus accelerations.



�

�

�

�

�

�

�

�

21.3. Example Application: Tapping on Rigid Surfaces 455

21.3.5 Human Perception and Performance

The measurement-based models developed above for tapping on hard ob-
jects were validated through human-subject testing to show their bene-
fits over conventional rendering methods. This study by Kuchenbecker,
Fiene, and Niemeyer sought to quantify the perceived realism of several
virtual surfaces, as compared to real objects [Kuchenbecker et al. 06]. As
illustrated in Figure 21.4, subjects used a PHANTOM haptic interface to
blindly tap on randomly ordered samples while listening to white noise.
After tapping on a sample for five seconds, the user rated its realism on a
scale of 1 to 7, as compared to the piece of real wood presented at the start
of the experiment. Reporting a “1” signified that the surface did not feel
at all like the real wood sample, and a “7” signified that it felt perfect.

Sixteen subjects participated in the study, and the mean, median, and
standard error of the ratings they provided for six of the tested samples are
shown in Figure 21.5. As expected, the best-rated sample was the piece
of solid wood. The two worst-rated samples were the real sample of foam
and the virtual sample that included only proportional feedback; the poor
performance of the virtual spring rendering underscores the softness of the
traditional algorithm. The other three samples were a piece of real wood
on a foam substrate, a virtual rendering with database-driven acceleration
transients, and a virtual rendering with parametric decaying sinusoid tran-
sients that were developed via the input-output method. For all three of
the virtual surfaces, the underlying spring stiffness was 0.68 N/mm, the

(a) (b)

Figure 21.4. (a) PHANTOM, test-sample platform, real samples, and virtual
sample placeholders. (b) Experimental set-up for realism rating. (Reproduced
from [Kuchenbecker et al. 06] c© 2006 IEEE.)



�

�

�

�

�

�

�

�

456 21. Measurement-Based Modeling for Haptic Rendering

Realism Rating
1 2 3 4 5 6 7

Foam

Input-Output

Database

Wood on Foam

Wood

Proportional Alone

Figure 21.5. The two measurement-based rendering algorithms scored almost as
well as the sample of real wood on a foam substrate, while subjects gave the
poorest realism ratings to the conventional proportional feedback algorithm and
the real foam sample. (Reproduced from [Kuchenbecker et al. 06] c© 2006 IEEE.)

maximum value that did not incite buzzing or instability during sustained
contact.

Before this user study was conducted, preliminary testing had revealed
that acceleration transients designed to match the contact response of hard
wood felt unnatural when paired with the foam-like softness of the virtual
spring. Transients recorded from wood on top of foam provide a more coher-
ent sensation, and during the experiment they almost matched the realism
of the sample from which they were recorded. This finding supports the
decision of Okamura et al. to lower the frequency of simulated transients
below that observed in real contacts [Okamura et al. 01] and suggests a
potential real-world guideline for picking the new frequency. Preliminary
testing by the authors of [Kuchenbecker et al. 06] has also shown that some
users judge the developed acceleration transients as feeling active, so both
the database and input-output transient models were attenuated by 15%.

For this experiment, the parameterized decaying sinusoid (input-output
model) was tuned via informal user testing, while the recorded accelera-
tion transients (database approach) were generated through inversion of
the haptic device’s dynamics. The other two combinations (input-output
model with dynamic compensation and database model with user tuning)
are both viable but were not included in this study. Users rated both of the
tested measurement-based rendering methods equally well, and we believe
that both are valuable approaches. The simple addition of an open-loop
transient at virtual contact, indexed by incoming velocity, significantly im-
proved the realism of hard contact without requiring any changes to the
device or its associated hardware. In another experiment, transients like
these were found to enable reliable discrimination between virtual surfaces
of different materials (rubber, wood, and aluminum) [Okamura et al. 01],



�

�

�

�

�

�

�

�

21.4. Example Application: Cutting Deformable Surfaces 457

indicating that measurement-based feedback of hard contact can improve
user performance of certain tasks, in addition to user perception.

21.3.6 Conclusions

Humans rely on information-laden high-frequency accelerations, in addi-
tion to quasi-static forces when interacting with objects via a handheld
tool. Virtual environments have traditionally struggled to portray such
contact transients due to closed-loop bandwidth and stability limitations,
leaving virtual objects feeling soft and undefined. High frequency accelera-
tion transients, whether modeled via the database or input-output method,
enable a haptic interface’s standard motors to create fingertip accelerations
that feel like real interactions. These models are built from contact acceler-
ation data recorded as a user taps repeatedly on the target surface. When
the user taps on a surface in the virtual environment, the acceleration
transient that should be displayed is determined, using the incoming ve-
locity and the database or empirically-fit equation. The system attempts
to create this high frequency acceleration transient at the stylus using a
transformation that is tuned by user judgment or dynamic compensation,
and the user feels a crisp vibration that resembles that produced by a real,
hard object.

While this section has focused on the database and input-output ap-
proaches to modeling hard contact, it is interesting to note that recent
work by Fiene and Kuchenbecker developed a physics-based model that
provides a theoretical rationale for the widely observed exponentially de-
caying sinusoid shape of contact transients [Fiene and Kuchenbecker 07].
This waveform is the natural response of an under-damped second-order
system, where the stylus and hand are modeled by a mass with a spring
and damper to the user’s desired position, and the surface of the object is
represented by a spring and damper. This research also provided insights
on the role of user grip force and incoming acceleration; both of these vari-
ables change the contact response that should be produced by a haptic
simulation, but incoming velocity produces the strongest effect.

21.4 Example Application: Cutting Deformable
Surfaces

Cutting is the action of separating an object into two parts with a tool.
The tool can be a sharp blade, a pair of scissors, a needle, or a mechanical
instrument that causes significant local deformation inside a small volume
of a deformable object. In this section, we explain the process of haptic



�

�

�

�

�

�

�

�

458 21. Measurement-Based Modeling for Haptic Rendering

rendering of cutting, specifically applied to cutting a sheet of material using
a pair of scissors.

Cutting is a particularly important task in surgery. Surgeons cut when
incising the skin to access internal organs and when separating tumors,
organs, or vessels from their surrounding tissues. In surgery, performing
accurate cuts is crucial to minimize trauma and bleeding. Practicing on
a surgical simulator that provides haptic feedback is a promising training
method for surgeons to learn how to cut tissue without requiring animals or
cadavers (which are expensive and have different tissue properties from live
humans) or endangering actual patients [Delingette 98, Wagner et al. 02,
Satava 01,Mahvash 06b].

21.4.1 Data Acquisition.

The force of cutting with a tool depends on several factors, including the
sharpness of the tool, the way the tool is held, the contact location between
the tool and the object, the material properties of the object, the shape of
the object, and the way the object is supported [Mahvash and Hayward 02].
In addition, cutting causes permanent structural changes inside the surface,
resulting in an irreversible force-displacement response. This means that
the force-displacement response of a cutting tool during forward and back-
ward displacements may be completely different. A large number of tests
would be needed to consider all these factors using the database or input-

Figure 21.6. A two-degree-of-freedom robot controls a pair of scissors to perform
cutting on sample materials, such as paper. A force sensor measures forces applied
to the handle. (Reproduced from [Mahvash et al. 07] c© 2007 IEEE.)



�

�

�

�

�

�

�

�

21.4. Example Application: Cutting Deformable Surfaces 459

F
o
rc
e
(N
)

Angle (Degrees)

Measurement 1
Measurement 2
Measurement 3
Model

Figure 21.7. Three force-angle curves acquired by cutting paper with a pair of
Metzenbaum scissors, and a force-angle curve obtained by the cutting model. The
measured force-angle responses are similar, and the model force response follows
the average of the measured forces. (Reproduced from [Mahvash et al. 07] c© 2007
IEEE.)

output approach to measurement-based modeling. With a physics-based
model, development of a cutting simulation for any object shape can be
performed with knowledge of only a few material properties, which can be
identified through simple experiments. However, physics-based simulation
of cutting using numerical methods (such as the finite element method)
may not be able to run in real time, and, if the physics are not accurate,
may provide the user with unrealistic sensations.

The approach we describe here invokes physics-based approximations to
reduce the number of independent variables involved in process of cutting,
and then to use a combination of the physics-based method and the input-
output method to calculate cutting forces. This approach identifies the
parameters of the cutting model through data acquisition and analysis.
Toward this end, the robotic scissors (Figure 21.6) were created [Mahvash
et al. 07]. This is a two-degree-of-freedom device with a rotational arm and
a translational arm that are able to close the scissors and move its pivot
along a straight line. The pivot displacement and the opening angle are
measured by two encoders. An ATI Nano17 force sensor is attached to the
rotational arm of the robot to measure the cutting forces. The force sensor
was not connected to the upper blade, to prevent possible misalignments
of the set-up from damaging the force sensor. The type of scissors used by



�

�

�

�

�

�

�

�

460 21. Measurement-Based Modeling for Haptic Rendering

the robot can be easily changed, and this work used Metzenbaum scissors
with several different blade sizes. The scissor blade shape was recorded to
obtain an accurate estimate of the contact point between the blade and
object. The robotic scissors have been used to cut 2.3 cm-wide strips of
many different materials, including paper, plastic, cloth, and chicken skin.
During each test, the sample is held along the straight edge of the upper
blade of the scissors by two clamps. The scissors are first opened manually.
Then, a controller moves the pivot of the scissors to a certain distance
from the edge of the sample and closes the scissors at a constant velocity
to cut the sample. When cutting, the scissors do not translate. Sample
data acquired using the system is shown in Figure 21.7.

21.4.2 Modeling

An effective physics-based approximation to model tool cutting considers
the process of cutting as a time sequence of three modes of interaction:
deformation, cutting, and rupture [Mahvash and Hayward 01].

Deformation. A deformation mode starts when the tool contacts the object
and starts to deform it. The interaction remains in this mode as long as
no cut is made or the last cut is not extended. This mode of interaction is
reversible. The force of deformation can be calculated using any of the three
measurement-based modeling methods discussed in this chapter. However,
the input-output approach provides an optimal combination of accuracy
and memory efficiency. The local deflection made by the edge of the tool
is considered as the input, and the force applied to the tool as the output.

Cutting. The cutting mode starts when the object begins to fracture, and
it continues as long as the tool is moved in the direction that compresses
the object. The cutting crack is extended inside the object when the tool
moves forward. A cutting mode transitions to a deformation mode when
the tool is moved backward. The work described in this section employs
a physics-based method to calculate the cutting force. The principle of
conservation of energy applied to a cutting mode concludes that the work
of the tool should be equal to the work of fracture. The work of the tool is
calculated by the tool force multiplied by the tool displacement. The work
of fracture is calculated by the fracture toughness of material multiplied
by the area of the cut made by the same tool displacement. This way,
the cutting force is related to the fracture toughness of the object and the
shape of the cut.

Rupture. In this mode, a cutting crack is instantaneously created in an
object. The tool does not displace significantly in this mode, but the force
applied to the tool may drop significantly. In this section, the above



�

�

�

�

�

�

�

�

21.4. Example Application: Cutting Deformable Surfaces 461

t

h

x

y

Fu

(xc , )h/2

R

y x= ( , )

c

t +dt

+ d

h

x

y

c

xc
x +dxc c

Figure 21.8. The state of the scissors and a sheet of material at times t and t+dt
during cutting. At time t, the sheet is locally deformed. During time period dt,
a small area of the sheet, h dxc, is cut. (Reproduced from [Mahvash et al. 07]
c© 2007 IEEE.)

approach is applied to model cutting of a sheet of material (thickness h)
with a pair of scissors (Figure 21.8) [Mahvash and Hayward 05, Mahvash
et al. 07]. A Cartesian frame is defined at the pivot of the scissors, such
that the x axis is along the symmetry line of the scissors. It is assumed
that the pivot of the scissors does not move or change orientation during
cutting. The opening angle of the scissors is defined by θ and the position
of the edge of the crack made by the scissors is defined by xc.

A deformation mode starts when the scissor blades reach the edge of
the crack inside the sheet of the material. The blades locally deform an
area of the sheet around the crack edge. During deformation, the upper
edge of the crack tip is displaced by the length δ (Figure 21.8). In response
to deformation of the sheet, force fn is applied to the upper blade along
the normal to the blade’s edge at the crack edge. Then, fn is calculated by

fn = g(δ), (21.2)

where g(·) is a nonlinear function of the tip displacement, which can be
modeled from recorded measurements via a database or an input-output
relationship.

The torque caused by fn at the pivot is calculated by

τ = xc fn, (21.3)

assuming the angle between the blade edge and the line of the upper blade
edge is zero (Figure 21.8).

The force felt by the user at the handle is calculated by

fu =
τ

R
=
xc

R
fn, (21.4)

where R is the distance between the pivot and the handle.



�

�

�

�

�

�

�

�

462 21. Measurement-Based Modeling for Haptic Rendering

rupture start

no rupture

1

2

3

4 0

Figure 21.9. Torque-angle responses of cutting with and without rupture modes.
Each cutting process consists of several phases: no contact (0 to 1), deforma-
tion/compression (1 to 2), cutting (2 to 3), and deformation/relaxation (3 to 4).
During the crack extension of cutting with rupture modes (2 to 3), the torque
fluctuates around an average torque predicted by the sharp cutting response.
(Reproduced from [Mahvash et al. 07] c© 2007 IEEE.)

The cutting mode starts when the opening angle of the scissors is
changed from θ to θ + dθ and the crack tip position is moved from xc

to xc + dxc (Figure 21.8). The area of crack extension is dA = h dxc.
Using the principle of conservation of energy concludes that the work of
the tool should be equal to the work of fracture (it is assumed that the
change of deformation energy is zero):

−τdθ = Jc dA = Jc h dxc. (21.5)

Therefore,

τ = −Jc h
dxc

dθ
. (21.6)

Here, dxc

dθ is obtained from the shape of the blade edge, and Jc is the
fracture toughness.

Complete scissor cutting consists of the different modes identified on
the torque-angle curve of Figure 21.9. From point 0 to 1, the blades are
not yet in contact with the sheet, so the torque is zero, τ = 0. From 1 to
2, the blades deform the sheet and the torque τ is obtained by Equations
(21.2) and (21.3). When τ reaches the level of cutting torque defined by
Equation (21.6), cutting starts; δ remains constant, and the crack tip xc is
updated. At point 3, the scissors are opened, and the crack extension stops.
From 3 to 4, a new deformation mode starts, and the torque is calculated
by Equation (21.3). The fracture toughness, Jc, and force-displacement
curves, g(δ), were obtained from measured force-angle curves [Mahvash
et al. 07]. The resulting model (which uses a database) is similar to the
original data shown in Equation (21.7).



�

�

�

�

�

�

�

�

21.4. Example Application: Cutting Deformable Surfaces 463

In the modeling process described above, no rupture mode is considered.
However, another possible interaction sequence for the cutting process is
shown in Figure 21.9, in which the cutting mode is replaced by a sequence
of deformation and rupture modes. The high-frequency torque fluctuations
from 2 to 3 are not completely predictable with current models. It is not
yet clear whether this phenomenon should be integrated with a physics-
based model, or whether it can be captured better with a database or
input-output measurement-based modeling approach.

21.4.3 Rendering: Computing Forces from the Model

The real-time haptics code reads the position and orientation of the hap-
tic device and calculates the forces. One part of the program calculates
the collision between the tool and the object. The output of the collision-
detection program is the initial position of contact between the tool and the
object. The model calculates the forces from the tool position, its orienta-
tion, and its contact point with the object. Specific to scissor cutting, the
program reads the opening angle of the scissors, and the collision detection
program determines whether the scissors have contacted the crack edge.
The cutting model (described in the previous section) then calculates the
cutting forces. The program may simulate friction forces and add them
to the cutting forces before sending force/torque commands to the haptic
device.

Figure 21.10 shows the angle-time response and the force-angle output
of cutting a layer of virtual paper. The cutting model of Figure 21.7 was
used for calculating forces. The force-angle curve of Figure 21.10 is similar
to the force-angle curve obtained during data acquisition using the robotic
scissors.

A
n
g
le
(d
e
g
re
e
s
)

Time (s) Angle (degrees)

F
o
rc
e
(N
)

Figure 21.10. Haptic simulation of scissors cutting paper: (a) Angle-time input of
the user. (b) Force-angle response of the scissors. The model of Figure 21.7 was
used to calculate forces. (Reproduced from [Mahvash et al. 07] c© 2007 IEEE.)



�

�

�

�

�

�

�

�

464 21. Measurement-Based Modeling for Haptic Rendering

21.4.4 Rendering: Generating Desired Forces

For realism, a cutting tool should be integrated with the haptic device to
generate tactile sensations, and hand motions that are consistent with real
cutting. For the application of rendering virtual scissor cutting, the haptic
scissors shown in Figure 21.11 were developed by Okamura, et al. [Okamura
et al. 03, Chial et al. 02]. While the robotic scissors shown earlier were
developed for data acquisition, the haptic scissors are a display device that
can render forces in two degrees of freedom: translational and rotational.
Commercially available haptic devices are also now capable of including a
cutting degree of freedom [Powers 07].

Figure 21.11. Two-degree-of-freedom haptic scissors, which can display both
translational and “between-the-fingers” cutting forces. (Reproduced from [Oka-
mura et al. 03], c© 2003 IEEE.)

The force-angle curve of Figure 21.10(b) shows non-smooth behavior.
This may be due to friction, and non-smooth angular movement of the
scissor blade (which causes switching between deformation and fracture).
Such non-smooth behavior will occur for any human user.

21.4.5 Human Perception and Performance

The physics-based model described above has not undergone rigorous hu-
man subjects testing, but an earlier, database-type rendering has been
evaluated through comparison with real tissue [Greenish et al. 02, Chial
et al. 02]. In [Chial et al. 02], perceptual experiments showed that users of
the haptic scissors ranked the stiffness of real and virtual tissues (rat skin,
liver, tendon, and empty scissors) very similarly. Tests also demonstrated



�

�

�

�

�

�

�

�

21.5. Summary 465

that users with and without surgical experience were generally inept at
identifying tissue type by haptic feedback alone in both real or virtual do-
mains. Subjects commented that the haptic recordings were effective at
displaying different tissue types, but that they did not feel exactly like real
tissues. A possible explanation for this discrepancy is the lack of context
provided when a database-driven model is used.

Experiments comparing simple models and haptic recordings also found
that users of the haptic scissors could not differentiate between a complex
data recording and a simple piecewise linear model [Okamura et al. 03].
This finding demonstrates that force-deflection curves of cutting forces need
not be very precise to feel real. Thus, some surgical simulators, such as
those used for general training, may not require the formulation of a pre-
cise model for cutting forces at all. A general idea of the proper shape of
the curve for each type of tissue may be all that is necessary for an ade-
quate haptic rendering. However, training for cutting in specific surgical
procedures, especially in patient-specific circumstances, should strive to be
as accurate as possible until the necessary level of realism for successful
transfer of skills from simulated to real surgery is better understood.

21.4.6 Conclusion

We presented a physics-based analytical model to calculate force-angle re-
sponses of cutting of a thin sheet of deformable material with a pair of
scissors. The model considers the process of scissor cutting as a time se-
quence of two different modes: deformation and cutting. During deforma-
tion modes, the force-angle response is calculated by a measured force-angle
curve multiplied by a ratio that depends on the location of the crack edge
and the shape of the blades. A fracture-mechanics approach based on the
principle of conservation of energy calculates the forces during cutting. The
forces were obtained by the fracture toughness of the sheet multiplied by
a nonlinear function (obtained from the shape of the scissor blades) of the
opening angle of the scissors and the position of the crack edge. Experimen-
tal results performed on samples of many different materials were used to
confirm the model, including the paper results presented here. The model
was also rendered in a haptic virtual environment, using a haptic interface
whose configuration and degrees of freedom were appropriately matched to
the task.

21.5 Summary
As an approach to haptic rendering, measurement-based modeling allows
the display of high-fidelity, convincing haptic information to human op-



�

�

�

�

�

�

�

�

466 21. Measurement-Based Modeling for Haptic Rendering

erators. Section 21.3 focused on the database and input-output model-
ing approaches applied to tapping on hard surfaces. In the database ap-
proach, a data set is played back to the operator, typically using interpo-
lation between recorded data points, to convey haptic interaction. In the
input-output modeling approach, recorded data is fit to a relatively simple
phenomenological model, with one or more context-sensitive parameters.
In contrast to the database approach, the parameters of an input-output
model are varied based on the motions and forces applied by the human
user. These approaches are particularly useful when the dynamics of phys-
ical interaction between a human (typically wielding a tool) and the real
world are so complex that either (1) a model based on fundamental phys-
ical principles cannot be developed given current scientific understanding,
or (2) a complete theoretical model is so computationally intensive that it
cannot be haptically rendered in real time. Because haptic rendering rates
are typically 1 kHz [Salisbury et al. 04], consideration of computation time
is relevant even in the presence of increasing processor speeds.

There are two main challenges to measurement-based modeling using
the database and input-output approaches. First, the model can only be
said to be “realistic” when the virtual environment interaction matches the
context in which the data was acquired. The designer of a haptic virtual
environment cannot control the motions and forces applied by an arbi-
trary user. To address this, the value of each interaction parameter (speed,
force, material, etc.) is varied during data acquisition, and the model
can be assumed correct only when the virtual environment interaction re-
mains within that range and any interpolation performed is valid. Second,
a database or phenomenological model may not capture all the relevant
contextual information. Experimenters recording data for a measurement-
based model attempt to vary an assumed set of relevant parameters during
data acquisition, but unforeseen parameters may also affect system re-
sponse. If these unknown parameters are not discovered and considered in
the measurement-based modeling process, the realism of the haptic render-
ing will be limited.

Section 21.4 primarily discussed how a physics-based approach has been
used to model the action of cutting deformable surfaces with scissors. In
this case, a model is developed using a fracture mechanics approach based
on the principle of conservation of energy. In our example, only two mate-
rial properties (fracture toughness and force-deflection response) are used,
both of which can be calculated for a particular scissor-tissue interaction
by fitting acquired data. When a physics-based model is chosen wisely, it
can be computationally efficient and easily rendered in haptic real time.
The main drawback of the physics-based approach used here is that it rep-
resents our best understanding of the theory of cutting at this time, and
it thus may not capture all of the behavior observed during real cutting.



�

�

�

�

�

�

�

�

21.5. Summary 467

It also does not explicitly model rupture modes that occur during cutting.
This limitation is similar to that of input-output models, with the advan-
tage that this model is fundamentally based on real physical principles. Of
course, though, the quality of the model depends directly on the quality
of our understanding of the physics. This challenge is addressed by com-
bining the physics-based approach with both database and input-output
models. For example, in the cutting application, the force-deflection curve
was computed using an input-output model.

The future of measurement-based modeling for haptics relies on the de-
velopment of new data acquisition systems and techniques for obtaining
large amounts of haptic information over a range of environment and user
variables, automated techniques for translating those models to database,
input-output, and/or physics-based models. In addition, improved meth-
ods for controlling or compensating for the dynamics of haptic devices are
needed, so that the desired virtual environment properties can be displayed
accurately and stably. While this demand is generally true for all hap-
tic rendering approaches, it becomes crucial for most measurement-based
models, which are usually displayed in an open-loop fashion and contain
high-frequency output that challenges the display capabilities of most hap-
tic devices.

Acknowledgments
The authors would like to acknowledge the contributions of the following in-
dividuals for conversations and collaborations on measurement-based mod-
eling projects: Mark Colton, Mark Cutkosky, Jack Dennerlein, Jonathan
Fiene, Vincent Hayward, Robert Howe, Kristin Jeung, Diana Kim, Günter
Niemeyer, Dinesh Pai, Liming Voo, Joshua Wainer, and Robert Webster.
This work was supported in part by Johns Hopkins University, Stanford
University, McGill University, National Science Foundation Graduate Fel-
lowships, NSF grants EEC-9731748 and EIA-0312551, Whitaker Founda-
tion grant RG-02-91, and NIH grant R01-EB002004.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

Part III
Applications



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

22
Virtual Prototyping

S. Coquillart, M. Ortega, and N. Tarrin

Virtual prototyping refers to the process by which a new design can be
evaluated on a computer without the need to create a physical prototype.
Virtual prototyping spans a wide range of activities, such as esthetical anal-
ysis, interaction, ergonomics, parts assembly, and manipulability. Virtual
prototyping also embraces a large number of industry domains, such as
marketing, micro-nano, oil, automotive, and aeronautic industries. Among
the many benefits of virtual prototyping, some of the most important in-
clude reduced cycle time and reduced cost. It also facilitates concurrent
and efficient engineering processes and can reduce the exposure of users to
dangerous environments.

Depending on the evaluation, emphasis can be put on different aspects
of the simulation. An esthetical analysis will require realistic immersive
visualization; while the evaluation of assembling tasks will most probably
require accurate haptic feedback.

After a short review of the main virtual prototyping approaches, in
particular the solutions requiring haptic feedback simulation and immer-
sive visualization, this chapter presents in more detail a novel first-person
immersive visuo-haptic system called the Stringed Haptic Workbench and
an associated virtual prototyping application that simulates putty applica-
tion for the automotive industry.

22.1 Brief State of the Art
In the literature, two main streams of systems for virtual prototyping are
proposed: the pure immersive visualization systems, and the haptic ones.
In addition, there are also a certain number of systems that combine both.

22.1.1 Immersive Visualization Systems

The ability to visualize prototypes in stereo, in one-to-one, and with a first-
person point of view is expected for a number of virtual prototyping appli-
cations which, among others, concern project review or esthetical analysis.

471



�

�

�

�

�

�

�

�

472 22. Virtual Prototyping

For that purpose, the preferred VR systems are projection-based immer-
sive visualization systems such as CAVE [Cruz-Neira et al. 93] and Walls
(either flat or cylindrical). See [Cruz-Neira and Lutz 99,Riedel et al. 00]
for some examples. Head-mounted displays can also be employed for that
purpose, but the lower comfort they provide makes them less suitable.

Immersive visualization systems have been commonly employed for vir-
tual prototyping since the end of the nineties. In these cases, the main
task is the observation and the visual analysis of a prototype. Interaction
is often limited to navigation, moving a piece, or modifying parameters.
As another example, the car industry commonly uses walls for visualizing
car prototypes in 1:1.

22.1.2 Force-Feedback Systems
A large number of virtual prototyping tasks require force feedback to com-
plete the task. Such tasks include human-in-the-loop assembling/disassem-
bling, maintenance analysis, or comfort analysis. A common trend is to
associate a haptic device together with a visualization system. Most of the
time, the visualization system consists of a workstation screen or a slightly
larger screen. The first force feedback systems were arm systems inspired
by robotics. One of the pioneers, and probably the most well known, is the
Aragonne Arm employed by the University of North Carolina within the
GROPE system [Brooks, Jr. et al. 90,Taylor et al. 93] (see Figure 22.1).
Other arm haptic devices used in virtual prototyping applications include

Figure 22.1. The Grope System [Brooks, Jr. et al. 90] from the University of
North Carolina, using the Aragonne Arm. ( c© 1990 ACM, Inc. Reprinted by
permission)



�

�

�

�

�

�

�

�

22.1. Brief State of the Art 473

Figure 22.2. Six-DOF PHANTOMTM Premium 6-DOF Prototype (Photography
courtesy of the Boeing Company) [Chen 99].

the Sarcos Dextrous Arm Master [Hollerbach et al. 97], which has been
integrated into the University of Utah Alpha1 CAD software platform, or
the Virtuose 6D35-45 from Haption [Duriez et al. 03]. Besides these heavy
and sometimes visually invasive systems, a new generation of light desk-
top haptic devices, often posed on the computer table, are used in virtual
prototyping [Chen 99] (see Figure 22.2). Starting from the desktop config-
urations, the evolution of haptic virtual prototyping systems has followed
two main trends: enlarging the haptic space and improving the grasp.

Enlarging the force-feedback space. In some cases, such as studying acces-
sibility or ergonomics issues, the evaluation requires that the movements
be the same as those that occur when acting on the physical model. It may
thus require a large manipulation space, and consequently, a large haptic
space. For large mock-ups, like automotive or aircraft models, desktop hap-
tic systems (even as large as PHANTOMTM Premium 3.0/6-DOF, which
provides a 0.2 cubic meter workspace) are not large enough. Several haptic
systems with larger workspaces have been proposed. The LHIfAM—Large
Haptic Interface for Aeronautic Maintainability–(see Figure 22.3) has been
proposed for aircraft engine maintainability [Borro et al. 04,Savall et al. 02].
Thanks to its positioning on a gantry, the LHIfAM is a flexible device which
can be relocated at different heights to simulate different maintenance op-
erations. This device is used to track hand movements and provide 6-DOF
force feedback within the whole aircraft virtual engine workspace.

The FCS Haptic Master, with a workspace of approximatively 0.1 cu-
bic meter, also provides force feedback. It has recently been used for the
simulation of a virtual gearshift [Tideman et al. 04] (see Figure 22.4). The
Cybernet Spacepen is used by Ford Research Laboratory for virtual proto-

TMPHANTOM is a trademark of Sensable Technologies Inc.



�

�

�

�

�

�

�

�

474 22. Virtual Prototyping

Figure 22.3. The LHIfAM—Large Haptic Interface for Aeronautic Maintainability
[Borro et al. 04]. ( c© 2004 IEEE)

Figure 22.4. Simulation of a virtual gearshift [Tideman et al. 04], using an FCS
Haptic Master. ( c© 2004 IEEE)

typing of vehicle mechanisms [Buttolo et al. 02]. Considering its workspace
of more than nine cubic meters, it is one of the 6-DOF devices providing
the largest haptic space (see Figure 22.5).

Improving the grasp. Grasp is often of great importance when simulating
operators’ manipulations. It is especially true for ergonomic evaluations.
Unfortunately, grasping is still an open problem. Even if a certain number
of grasp haptic devices (like hand exoskeletons) exist, a good quality per-
ception of the shape of the grasped objects is still difficult to obtain. The



�

�

�

�

�

�

�

�

22.1. Brief State of the Art 475

Figure 22.5. The Haptic Buck using a Cybernet Spacepen [Buttolo et al. 02].
( c© 2002 IEEE)

applications are very recent [Salamin et al. 06] and rare. It appears that
when quality is required, the most commonly adopted solution consists of
plugging a real object, i.e., a prop, on the haptic device end-effector [Tide-
man et al. 04,Halttunen and Tuikka 00] (see Figure 22.4).

22.1.3 Immersive Visuo-Haptic Systems

A large number of virtual prototyping applications require both immersive
visualization and haptic feedback. It is especially the case for ergonomic
evaluations. The main difficulty comes from the integration of immersive
visualization and haptic feedback. Both projection-based and HMD-based
visualization are considered below.

Projection-based visualization. The integration of large scale haptic inter-
faces and projection-based visualization systems (i.e., CAVETM, walls, and
workbenchs) is an open problem, and very few solutions have so far been
proposed with co-location, i.e. superimposition of the visualization and
haptic spaces. In most cases, the solution proposed consists of offsetting
the haptic space from the visualization space so that the haptic system can
be positioned outside of the field of view [Buttolo et al. 02](semi-immersive
mode), [Duriez et al. 03]. However, adding a hand offset in the task has
been shown to lower user performances [Paljic et al. 02] and decrease im-
mersion.

For co-location, the problem originates from the positioning of the hap-
tic device within the visualization space. The haptic device is a physical
object that can hardly be mixed properly with the scene’s virtual objects.
With projection-based immersive visualization systems, physical objects
(including the person’s own body) have to be in front of the virtual ob-
jects. In addition, some large-scale haptic devices will hide part of the



�

�

�

�

�

�

�

�

476 22. Virtual Prototyping

visualization space. Additionally, some large scale haptic devices, like the
Cybernet Spacepen or the LHIfAM, would not fit in a CAVETM.

However, this approach is reachable in some specific cases, and it can be
a good solution. For instance, Tideman et al. [Tideman et al. 04] present a
Virtual Gearshift application where a cab is positioned in front of a large
screen (first person point-of-view is achieved because the driver’s head is
relatively stable) and the gearshift (which is not in the driver’s field of
view) on his right.

HMD-based visualization. The integration of large haptic devices and
HMD-based immersive visualization systems is easier to execute. The HMD
is relatively small and leaves the manipulation space free for positioning
the haptic device. In addition, the haptic device can be hidden from the
user’s view, so that he/she will only feel the end effector. This approach
is proposed for driving simulations, and for the evaluation of the cab (see
Figure 22.5).

22.2 Overview
The work described here proposes a new immersive haptic virtual proto-
typing system based on a projection-based virtual environment. Although
valid for any projection-based system, the chosen one for the study is a
two-screen workbench. The workbench is an interesting immersive configu-
ration for interactive tasks. However, as with most immersive visualization
systems, haptic feedback is missing. The sole proposed solution so far con-
sists of installing an arm force feedback device on one-screen workbenches.
However, this solution has several drawbacks. The arm can perturb the
stereoscopic display, cross virtual objects, or hide parts of the visualization
space. Furthermore, the interaction space is limited by the size of the arm,
which may also damage the screen. Some of these difficulties may even be
worse with a two-screen workbench.

The following sections discuss an alternative, more flexible and well-
suited solution for two-screen workbenches, the Stringed Haptic Work-
bench. As seen in the brief state of the art above, grasp feedback is also of
great importance for virtual prototyping. However, grasp devices do not
yet provide tactile feedback accurate enough for industrial applications.
The most often adopted solution consists of integrating props in the pro-
posed virtual prototyping solutions. However, props can not be positioned
behind a virtual part. In order to solve the occlusion problem, the mixed-
prop concept is introduced. Finally, based on both the Stringed Haptic
Workbench and the mixed-prop concept, an automotive virtual prototyp-



�

�

�

�

�

�

�

�

22.3. The Stringed Haptic Workbench 477

ing application simulating putty application on a car body is described and
evaluated.

22.3 The Stringed Haptic Workbench
As discussed earlier, the integration of first-person visualization and haptic
manipulation is a satisfactory solution. However, the size and occlusion of
haptic devices make the configuration difficult to use. A few solutions have
been presented in the “state of the art” above. We propose an alternative
that makes use of one of the lighter and less visually invasive haptic device,
a stringed haptic interface.

Several stringed haptic interfaces have been proposed
[Williams II et al. 99, Ishii and Sato 94]. These interfaces are composed
of actuators providing a force through a set of strings linked together or
attached to a manipulation tool. A quick look at stringed force feedback
interfaces shows that most of them manifest desirable properties such as
fixed-base (except for the haptic gear) and a large workspace. Additional
properties, such as lightness, safeness, and low cost, are also present. Some
concerns remain, such as the stereoscopic display.

The chosen stringed force feedback interface is the Spidar (SPace Inter-
face Device for Artificial Reality [Ishii and Sato 94]). It has been chosen
for its flexibility and its completion; however, other stringed force feedback
devices could be tested as well. Among the various versions of Spidars [Ishii
and Sato 94,Kim and Neumann 02], one allows either 3-DOF force feedback
on one point (three translations), 3-DOF force feedback on two points (two
fingers from the same hand, or one from each hand), or 6-DOF force feed-
back on one point (three translations, three rotations). This configuration
involves eight motors, one on each vertex of a hexaedric structure (only
four for 3-DOF force feedback on one point). Most of the first versions of
the Spidar have been proposed as desktop configurations.

The installation of a Spidar system on a two-screen workbench, or more
generally, a projection-based virtual environment requires a certain num-
ber of adaptations. The first step consists of positioning the eight motors.
This step is important because the haptic space (space where force feed-
back is returned) is directly linked to the position of the Spidar’s motors.
The first approach consists of positioning the motors on the vertices of a
parallelepiped defined by the six screen vertices. This solution has the
advantage of offering six of the eight motors’ fixation points needed, and of
not making the configuration bulkier than the workbench itself. Unfortu-
nately, with this solution and 3-DOF, the haptic space is far from covering
all the available manipulation space (see [Tarrin et al. 03a] for more de-
tails). In order to provide better coverage of the manipulation space, we



�

�

�

�

�

�

�

�

478 22. Virtual Prototyping

stretch the haptic space down and in the direction of the user. For that
purpose, the four motors lying on the user side are pushed away from the
workbench (see Figure 22.6). Figure 22.7 shows the hardware installation.
In the figure, the strings have been highlighted manually because they were
not visible in the photo.

22.4 The Mixed-Prop
Quality grasp is important, but can hardly be provided by tactile devices,
because they do not provide accurate feedbacks. A prop is often chosen
to provide accurate grasp feedback. However, in the context of projection-
based virtual environments, props have to be adapted. Projection-based
virtual environments do not allow virtual objects to occlude real ones.
Thus, props cannot be moved behind a virtual object with correct occlu-
sions.

In order to solve this problem, mixed props have been introduced in
[Ortega and Coquillart 05]. Mixed props require keeping the part of the
prop held in the hand as a physical prop and substituting the remainder
of the prop by its virtual model. Mixed props provide several additional
benefits:

• Mixed props can minimize the effect of calibration errors. Calibration
errors can be characterized by a different positioning of the virtual
prop (the model of the real prop used in computation) and the phys-
ical one. This may, for instance, lead to collisions detected before the
prop touches a virtual surface. If the part of the prop touching the
surface is virtual, the collision appears when the user expects it from
a visual point of view. However, the calibration problem doesn’t mag-
ically disappear. It occurs at the junction between the virtual and

Figure 22.6. Haptic spaces of the 3-DOF (left) and the 6-DOF (right) Spidar
versions, implied by the motor’s position. ( c© 2005 IEEE)



�

�

�

�

�

�

�

�

22.4. The Mixed-Prop 479

Figure 22.7. Hardware installation of the Spidar on a workbench.
( c©Eurographics Association 2003; reproduced by kind permission of the Eu-
rographics Association)

the real parts of the prop. These two parts appear to move, one from
the other.

• Substituting some parts of the prop with their virtual counterparts
leads to a lighter prop. When the prop is too heavy compared to the
force that the haptic system can return, the reaction force has to be
weakened. Using lighter physical props lowers this risk.

• Mixed props also allow the use of generic graspable parts together
with more specific virtual parts, which can easily be exchanged.

The mixed prop has to be attached to the force feedback interface. If
only 3-DOF force feedback is provided, the four strings coming from the
motors can be attached to any point of the physical part of the prop. If 6-
DOF are provided, the eight motors must be used together with their eight
strings. In order to provide torques, the eight strings have to be attached
to four different points located on a circle. The choice of the circle diameter
takes several parameters into account:



�

�

�

�

�

�

�

�

480 22. Virtual Prototyping

Figure 22.8. Attachment of a Plexiglas cross on the putty gun. ( c© 2005 IEEE)

• Accuracy. a large enough circle is required to ensure good accuracy
and to avoid singularities [Kim and Neumann 02]. A 10 cm diameter
seems to be the minimum; 20 cm is better.

• Size of the prop. the size of the circle must stay reasonable compared
to the prop size. A circle that goes excessively beyond the bounds of
the prop could disturb both the visualization and the manipulation.
It would also make the clamping of the strings onto the prop difficult.
Thus, the size of the circle should not exceed twice the size of the prop.

If the size of the circle is within the range of the object size, and if
the shape of the prop permits, one can attach the strings directly onto
the prop. However, most of the time it is not possible. In this case, we
suggest attaching the strings to a Plexiglas’ cross attached to the prop. The
Plexiglas has been chosen for its rigidity and transparency. See Figure 22.8
for the attachment of a mixed prop putty gun.

22.5 Putty Application—An Automotive Virtual
Prototyping Application

The proposed Stringed Haptic Workbench, together with the mixed prop
concept, opens the doors to new applications requiring a realistic integra-
tion of three important modalities (visualization, force, and tactile feed-
back).

One such application from the automotive industry is described and
evaluated in this section. It concerns putty application with a putty gun.



�

�

�

�

�

�

�

�

22.5. Putty Application—An Automotive Virtual Prototyping Application 481

22.5.1 Description of the Application

During the conception stage, car designers have to make sure that operators
will easily be able to apply putty on metallic junctions of the car body.
Special attention has to be paid to three aspects:

• Accessibility. An accessibility evaluation must be carried out.

• Quality of the junction. Evaluation of the quality of the junction
where the putty is placed. Particular attention needs to be paid to
the risk of having the putty gun slip off of the metallic seam, slowing
down the assembling process.

• Ergonomics. Evaluation of the operators and postures from an er-
gonomic point of view.

Until now, the only solution was to build a mockup of the car. The
process is of course slow and expensive. A cheaper and faster solution
consists of applying the tests in virtual reality to virtual mockups. An
additional advantage is that it can be done earlier in the conception, which
facilitates multiple modifications. The remainder of this section presents
this application in more details.

22.5.2 Hardware and Software Architecture

For this application, the prop is a putty gun. As described above, the
Spidar is attached to the gun via a Plexiglas cross. The gun is treated as a
mixed prop (see previous section). The physical part is the handle, while
the nose is replaced by its virtual counterpart. In addition, a button has
been added under the trigger for detecting when the user wants to lay down
putty. The putty is simply visualized as an extrusion along the nose path.

Figure 22.9. Putty application c©PSA Peugeot Citroën.



�

�

�

�

�

�

�

�

482 22. Virtual Prototyping

Figure 22.10. A putty gun with its virtual nose, casting a shadow on a car body.
( c© 2005 IEEE)

Real-time shadows of the prop have been added. Figure 22.10 shows the
shadow of a putty gun, both the nose and the physical, graspable part. The
string haptic interface is connected to a Xeon 3.2 Hz computer. On this
PC, the application launches the dynamic engine loop (CONTACT [Redon
et al. 02a,Redon et al. 02b]) and the haptic controller one. The computer
communicates by UDP Protocols with a PC cluster. This cluster uses
an OpenSG-based in-house platform to manage the visual display of the
application, head-tracking, and stereo.

22.5.3 Informal Evaluation

The integrated solution presented in this chapter has been informally eval-
uated with the industrial application described in the previous section. As
expected, the combination of immersive visualization, shadows, co-location,
6-DOF force feedback, and props representing the real industrial tools,
greatly improves the realism of the interaction. User gestures are simi-
lar to real ones. PSA Peugeot Citroën representatives conducted informal
studies. They applied virtual putty on a virtual car body, and critical
regions have been determined. They unanimously approved the proposed
solution and considered its potential. The transfer of training to PSA Peu-
geot Citroën is in progress.

22.6 Conclusion
The main advantage of the Stringed Haptic Workbench is the size of its
visual and haptic spaces. It allows first-person haptic manipulation on a
far larger area than with most previous solutions. Moreover, strings are



�

�

�

�

�

�

�

�

22.6. Conclusion 483

extremely discreet. Users focus on the screens, and the strings do not
“catch their eye.” Thus, they appear blurred and are quickly forgotten
while being manipulated. The occlusion is minimal, and any part of the
visualization space is visible.

The Stringed Haptic Workbench is a flexible configuration that permits
various applications. Moreover, the hardware design of this system is safe.
Mobile parts of the Stringed Haptic interface are so light (a few grams)
that even in the worst situations, they cannot damage the screens. User
safety is also improved for the same reason.

The proposed approach has been tested on an automotive industrial
application that is currently being transfered to PSA Peugeot Citroën.
This first application has shown the potentiality of the approach, which is
general enough to be applicable to many other tasks. Some of them are
already under investigation.

Beyond the workbench, the integration of stringed haptic interfaces with
other projection-based virtual environments such as CAVETMis also under
study.

Acknowledgments
This work would not have been possible without a very fruitful collabo-
ration with Professor Sato’s lab. The authors would like to express their
profound appreciation for the support and feedback from the PSA Peugeot
Citroën representatives involved in the project. This work was partially
supported by PERF-RV2 and by the INTUITION European Network of
Excellence (IST NMP-1-507248-2). Thanks also to Inna Tsirlin for a careful
reading of the paper.

Some sections of this chapter are extracted from previous papers. See
[Tarrin et al. 03a,Ortega and Coquillart 05] for more details.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

23
Haptics for Scientific

Visualization
R. Taylor

Several groups around the world are actively pursuing the haptic presen-
tation of scientific data. These groups often include haptic feedback into
systems that already use graphical or auditory data presentation. While
care must be taken to avoid the effects of conflicting cues [Srinivasan
et al. 96, DiFranco et al. 97], visual plus haptic display has been shown
to be a powerful combination.

The particular strengths of haptic display have been twofold. First,
haptic display is the only bidirectional channel between the scientist and
computer. It enables the scientist to simultaneously sense the state of
a system and control its parameters. Second, it has enabled the display
of volumetric data sets without the problems of occlusion seen in visual
displays.

The first part of this chapter presents a number of specific applications
of haptic display in scientific visualization applications (some for training,
some for exploration, and some for experiment steering). Highlighted with
each application are concrete examples of the usefulness of haptics for sci-
entific visualization.

The second part of the chapter presents three classes of techniques that
have been shown to be particularly effective when using haptic display to
support scientific visualization.

23.1 Lessons from Haptic-Enabled Visualization
Applications

This section presents a number of haptic display systems that were used
for scientific visualization, or that provided results that can be useful for
such systems. The order of presentation is roughly chronological, but is
grouped by topic when several similar systems are described.

485



�

�

�

�

�

�

�

�

486 23. Haptics for Scientific Visualization

Figure 23.1. System for display of 2D force fields [Brooks, Jr. et al. 90].

23.1.1 Display of Force Fields

An early haptic feedback application developed at the University of North
Carolina at Chapel Hill (UNC) enabled students to feel the effects of a 2D
force field on a simulated probe and was used in an introductory Physics
course [Brooks, Jr. et al. 90]. The system included a 2D sliding-carriage
device with potentiometers for position measurement and servomotors for
force presentation. Experimental results showed that this feedback im-
proved the understanding of field characteristics by students who were in-
terested in the material.

Students reported that using the haptic display dispelled previous mis-
conceptions, which were not dispelled by visual-only presentation. They
had thought that the field of a (cylindrical) diode would be greater near
the plate than near the cathode, and they thought the gravitation vector
in a three-body field would always be directed at one of the bodies.

23.1.2 The Sandpaper System for Texture Synthesis

Margaret Minsky developed the Sandpaper system for synthesizing texture
in a force-feedback display system, culminating in her 1995 dissertation at
MIT on the subject [Minsky et al. 90,Minsky 95]. This system used a 2D
force-feedback joystick to enable users to feel 2D textures that were either
computed or read from images. The “texture” in this system included both
large-scale surface shape information and small-scale texture information.
Lateral force was presented based on the local slope of the surface height
map, with the joystick pushing in the direction that would be “down”
on the surface. The amount of force was greater when the surface was
more steeply sloped. Even though only lateral forces were presented, users



�

�

�

�

�

�

�

�

23.1. Lessons from Haptic-Enabled Visualization Applications 487

perceived that they were moving a stylus up and down over bumps and
dips in a surface.

Of interest for scientific visualization, screen-based sliders (adjusting
the viscosity or spatial frequency of a computed texture, for example) could
control Sandpaper’s texture parameters. If the value of these parameters
were instead mapped to spatially varying scalar or vector fields defined on
a surface, the result would be a texture field whose properties depended on
(and displayed) the underlying data sets. This has the potential to enable
the display of multiple data sets on the same surface.

The user studies performed with the Sandpaper system can inform the
selection of mappings from data values to texture parameters. Minsky ex-
plored the perception of surface roughness and found that for the case of
small periodic ridges, the roughness percept can be almost entirely pre-
dicted by the maximum lateral force encountered while feeling the sim-
ulation. She also proposed a framework for haptic models based on both
physically based and perceptually-based representations of the haptic prop-
erties of objects and situations [Minsky 95].

23.1.3 Remote Micro-Machining

Collaboration between the University of Tokyo and George Washington
University resulted in a system that provided local visual, haptic, and audi-
tory presentation of the action of a remote milling tool [Mitsuishi et al. 93].
Their goal was the creation of a teleoperation system for remote control
of a milling machine. Due to the latency of transmission and the small
amount of available communication bandwidth, they used an intermediate
model to provide force and auditory feedback. Furthermore, they pointed
out that at very small scales, friction, viscosity, and static charge may
play a much more important role than inertial forces, so direct mapping of
forces may be misleading, and some translation may be required to enable
“natural” operation by the user. This amounts to building a simulation of
milling operation that the user interacts with, and whose parameters are
driven from the actual remote milling operation. Thus, their work gives
an example of visualizing the behavior of a remote milling tool based on a
local model.

The system performed averaging on the force signal to remove a strong
33.3 Hz component due to rotation of the cutting tip. It also examined
the offsets in the tool to determine whether chatter was occurring, and
simulated chatter at the user’s end when it did. Because prediction was
used to overcome latency (which could produce incorrect motions), safeties
were put in place on the device end to prevent over-force or other dangerous
conditions at the tool end. When performing machining operations, the
degrees of freedom of the tool were reduced relative to those of the user



�

�

�

�

�

�

�

�

488 23. Haptics for Scientific Visualization

(the drill would only go up and down, for example) to increase precision
over that of the human motor system. The machinist could also specify
startpoints and endpoints for a milling trajectory and then have the tool
follow a nearest-neighbor path along this trajectory, with speed controlled
by hand.

Tool rotation speed was encoded and displayed to the machinist as a
sound whose tone varied to indicate speed. Sound location also encoded
information, with sounds to the right meaning the tool was moving to the
right. Discontinuous sound caught the machinist’s attention and was used
to emphasize rapid changes in velocity, which might indicate dangerous
conditions.

23.1.4 Molecular Modeling

Ming Ouh-Young at UNC designed and built a haptic feedback system
to simulate the interaction of a drug molecule with its receptor site in
a protein [Brooks, Jr. et al. 90, Ouh-Young 90]. This system, called the
Docker, computed the force and torque between the drug and protein due to
electrostatic charges and interatomic collisions. These forces were presented
to a chemist, pulling the drug towards local energy minima. This task is

Figure 23.2. Molecular docking with haptic feedback [Brooks, Jr. et al. 90,Ouh-
Young 90].



�

�

�

�

�

�

�

�

23.1. Lessons from Haptic-Enabled Visualization Applications 489

very similar to that of other “lock and key” applications where a scientist
moves one object and senses collisions with other objects in the environment

The system presented the force and torque vectors both visually and
using haptic feedback. Experiment showed that chemists could perform the
rigid-body positioning task required to determine the lowest-energy config-
uration of the drug up to twice as quickly with haptic feedback turned on,
compared to using the visual-only representations [Ouh-Young 90]. Sci-
entists also reported that they felt like they had a better understanding
of how the drug fit into the receptor site when they were able to feel the
forces.

The Docker application, like other path-planning applications, required
the presentation of both force and torque to the user. Because the drug
molecule was not a point probe, different portions of it could collide with the
protein at the same time. Extricating the drug from a collision sometimes
required both translation and twisting. If a chemist were provided with
only force (translation) information and no torque (twist) information, they
could be led to move the drug in an improper direction.

The NIH Resource for Macromolecular Modeling and Bioinformatics at
the University of Illinois at Urbana-Champaign has added haptic interac-
tion to its Visual Molecular Dynamics interface to produce an interactive
molecular dynamics (IMD) system [Humphrey et al. 96, Stone et al. 01].
This system permits manipulation of molecules in molecular dynamics sim-
ulations with real-time force feedback and graphical display, and enables
scientists to pull on atoms in a running molecular-dynamic simulation and

Figure 23.3. Visual molecular dynamics with haptic feedback [Humphrey et al. 96,
Stone et al. 01].



�

�

�

�

�

�

�

�

490 23. Haptics for Scientific Visualization

simultaneously feel how much force they are adding to the simulation. With
appropriate scaling between the size of the haptic workspace compared to
simulation space and appropriate force gain, scientists are able to provide
sensitive feedback without introducing forces that destabilize the simula-
tion. Figure 23.3 shows IMD being used to pull a sodium ion through the
gramicidin A channel.

23.1.5 Haptic Visualization for the Blind (and the Sighted)

The Applied Science and Engineering Laboratories at the University of
Delaware have been pursuing haptic visualization in the context of provid-
ing visualization systems that are suitable for use by the blind or visually
impaired [ASEL 98]. The haptic work was coordinated by Jason Fritz, who
completed his master’s thesis on haptic rendering techniques for scientific
visualization in 1996 [Fritz 96]. In it, he describes several results, some of
which are listed here.

Fritz found that the haptic equivalent to the grid lines on a 2D graph
were very helpful in providing scale information and aid in navigation,
without being distracting. His implementation of this was to produce par-
allel planes evenly spaced in the volume that felt like thin walls, through
which the probe penetrates while moving through the volume where data is
displayed. Fritz also discusses using friction and texture to make the sim-
ulated surface feel more realistic and to distinguish features in a data set.
He describes a stochastic model for texture generation that can be used to
create information-rich haptic textures for surfaces [Fritz and Barner 96b].

23.1.6 Volume Visualization

Avila and Sobierajski have developed a system that displays volume data
sets both visually and haptically and enables the user to modify the data
sets [Avila and Sobierajski 96]. Their system has been applied to medical
visualization, art, and scientific visualization. They have shown how the
visual exploration of a complex 3D data set, such as this confocal scan
of a lateral geniculate nucleus (LGN) neuron seen in Figure 23.4, can be
enhanced through the use of haptics. In this example, a scientist was able
to feel the structure of the cell and follow dendrites through complicated
winding paths. A gentle attracting force was used to follow the dendrites,
because repelling forces made dendrite tracking difficult in areas where the
dendrite changes direction often.

23.1.7 Vector and Tensor Visualization

Iwata and Noma at the University of Tsukuba built a haptic feedback
force/torque sensor and HMD system to display volume data [Iwata and



�

�

�

�

�

�

�

�

23.1. Lessons from Haptic-Enabled Visualization Applications 491

Figure 23.4. Haptic display of volume data (an LGN neuron) [Avila and Sobier-
ajski 96].

Noma 93]. The system displays scalar data (the density function) as either
torque about Z depending on density, force depending on density gradient,
or both combined. They found that position error was reduced by a fac-
tor of two, as compared to visual feedback alone, when either or both of
these forces were enabled. They describe one possibility for viewing multi-

Figure 23.5. Visual/haptic interface for the display and exploration of fluid-
dynamics data [Lawrence et al. 00a].



�

�

�

�

�

�

�

�

492 23. Haptics for Scientific Visualization

Figure 23.6. Study of airflow with the aid of haptic feedback [Lundin and Sillen 05,
ReachIn 07].

parameter data (fluid flow) by mapping flow velocity into force and one
component of vorticity into torque around the direction of flow.

A combined visual/haptic interface for the display and exploration of
fluid-dynamics data was developed at the University of Colorado at Boulder
[Lawrence et al. 00a]. Figure 23.5 shows the system in use. In this system,
the custom-designed 5-DOF haptic device was used both for haptic display
and (through buttons on the stylus) to control the visual interface. They
found that adding haptic to the visual display improved understanding of
cluttered, volumetric data sets both for electromagnetic fields and for fluid
dynamics. They found that the haptic display provided a local probe, while
the visual display provided context. In particular, they found that the use
of haptics combined with visualization enabled users to more naturally
explore and understand the structure of shock waves and vortices.

The Norrköping Visualization and Interaction Studio in Sweden collab-
orated with Saab to produce a visually consistent haptic display tool for
the study of computational fluid dynamics (CFD) simulations [Lundin and
Sillen 05]. Their system, which uses the Reachin display [ReachIn 07], is
shown in Figure 23.6 being used to study the airflow around an unmanned
aircraft. The inset image shows the user’s view of the interaction, with a
visual pointer tracking the hand-held stylus location in the environment.
Surface-based haptic feedback from the aircraft model guided engineers to
find points close to wing tips and other interesting parts of the data set,
enabling them to place stream ribbons near the model and move them



�

�

�

�

�

�

�

�

23.1. Lessons from Haptic-Enabled Visualization Applications 493

Figure 23.7. Exploration of volumetric and tensor fields [Ikits et al. 03,Brederson
et al. 00].

over the surface. The system also provided a force to guide the stylus
to follow vortex cores. They found that haptic display enabled investiga-
tion of the entire volume, without occlusion or clutter. These techniques
were particularly effective in the more complicated flow through the human
heart.

The Scientific and Computing Institute at the University of Utah de-
veloped constraint-based techniques to aid in the exploration of volumetric
vector and tensor fields [Ikits et al. 03]. Their system included a 6-DOF-in,
3-DOF-out haptic display, a passive tracked glove input device, and a head-
tracked stereo visual display, all spatially overlapped [Brederson et al. 00].
The system is shown in Figure 23.7 being used to interact with a volumet-
ric vector data set. In this mode, constraint forces are added that only
allow the stylus to move along streamlines whenever a button is pressed.
Another mode, developed for the exploration of diffusion tensor fields, pro-
duces anisotropic drag that is higher in directions where diffusion is slower.
This is useful for the exploration of white-matter fibers in the brain, be-
cause it guides the stylus to move along more likely fiber directions. This
display is done within a framework that uses a proxy probe that follows
the user’s actual motion, but whose motion is modulated by the simulation.
This enables the addition of texture, friction, and oscillations as additional
data display methods.



�

�

�

�

�

�

�

�

494 23. Haptics for Scientific Visualization

23.1.8 Microscope Control

The UNC nanoManipulator (nM) application provided an intuitive inter-
face to scanning-probe microscopes, enabling scientists from a variety of
disciplines to examine and manipulate nanometer-scale structures [Taylor
et al. 93]. The nM displayed a 3D rendering of the data as it arrived in real
time. Using haptic feedback controls, a scientist could feel the surface rep-
resentation to enhance understanding of surface properties, and to modify
the surface directly. The nM greatly increased productivity by acting as a
translator between the scientist and the instrument being controlled [Finch
et al. 95].

Figure 23.8. UNC nanoManipulator application [Taylor et al. 93].

The haptic feedback component of the system was particularly exciting
to the scientists on the team; they loved being able to feel the surface
they were investigating. However, it was during modification that haptic
feedback proved itself most useful, enabling both finer control and whole
new types of experiments. Three particular benefits received by adding
haptic feedback to this application are described here: haptic feedback
proved essential to finding the right spot to start a modification, finding
the path along which to modify, and providing a finer touch than permitted
by the standard scan-modify-scan experiment cycle [Taylor et al. 97].

Finding the right spot. Due to time constants and hysteresis in the piezo-
ceramic positioners used by SPMs to move the tip, the actual tip position
depends on past behavior. The location of the tip for a given control signal
is different if it is scanned to a certain point than if it is moved there and
left still. This makes it difficult to plan modifications accurately based only
on an image made from scanned data.



�

�

�

�

�

�

�

�

23.1. Lessons from Haptic-Enabled Visualization Applications 495

Figure 23.9. Haptic aid for controlling the tip of a scanning-probe microscope.

Haptic feedback enabled scientists to locate objects and features on the
surface by feel while the tip was being held still near the starting point for
modification (see Figure 23.9). Surface features marking a desired region
could be located without relying only on visual feedback from the previous
scan. This let one collaborator position the tip directly over an adenovirus
particle, then increase the force to cause the particle to dimple directly in
the center (several previous visually guided attempts had failed). It also
enabled the tip to be placed between two touching carbon nanotubes to
tease them apart.

Finding the right path. Even given perfect positioners, the scanned image
shows only the surface as it was before a modification began. There is
only one tip on an SPM: it can either be scanning the surface or modifying
it, but not both at the same time. Haptic feedback during modification
enables the scientist to guide changes along a desired path.

The sequence of images in Figure 23.10 shows haptic feedback being
used to maneuver a gold colloid particle across a mica surface, into a gap
that has been etched into a gold wire. (The gap forms a test fixture to
study the energy states of the ball.) The yellow lines indicate where the
scientist pushed with high force. The colloid was fragile; it was easily
destroyed when the tip got completely on top of it, or by many pushes. This
prevented attempts to move it by repeated programmed “kicks.” Haptic
feedback enabled the scientist to tune the modification parameters so that
the tip barely rode up the side of the ball while pushing it. This enabled
the guidance of the ball during pushing, so that only about a dozen pushes
were required.

Haptic feedback was also used to form a thin ring in a gold film. A circle
was scraped to form the inside of the ring, leaving two “snow plow” ridges
to either side. By feeling when the tip bumped up against the outside of



�

�

�

�

�

�

�

�

496 23. Haptics for Scientific Visualization

Figure 23.10. Haptic aid for path guidance with scanning-probe microscopes.

the outer ridge, another slightly larger circle was formed. This formed a
thin gold ring on the surface.

A light touch: observation modifies the system. When deposited on the
surface, carbon nanotubes are held in place by residue from the solution
in which they are dispersed. On some surfaces, the tubes slide freely once
detached from the residue, until they contact another patch of residue or

Figure 23.11. Haptic feedback for finding nanotubes.



�

�

�

�

�

�

�

�

23.2. Useful Techniques for Haptic Display in Scientific Visualization 497

another tube. Even the light touch of scanning causes them to move. By
using only touch mode and switching between imaging and modification
force, scientists were able to move and reorient one carbon tube across
a surface and into position alongside another tube. Once settled against
the other tube, it was stable again, and scanning could be resumed to
image the surface. Haptic feedback and slow, precise hand motion (“haptic
imaging”) enabled the scientist to find the tube at intermediate points when
scanning was not possible. The fact that the surface could not be imaged at
intermediate stages prevented this type of experiment from being performed
using the standard scan-modify-scan cycle.

23.2 Useful Techniques for Haptic Display
in Scientific Visualization

It is important to note that many of the applications listed above went
beyond the straightforward coupling of force and motion. This is not ac-
cidental: the most straightforward coupling is rarely the most effective.
System latency, tool rotation, and human motion precision prevented di-
rect presentation of force and direct control of the tool from being effective
in remote micromachining. Display of the outside of the dentritic structure
made its shape difficult to determine. Direct presentation of velocity in
flow fields didn’t guide the user towards vortex cores. Direct 3D position
control and force feedback in the nanoManipulator caused instability and
uncontrolled manipulation during experiments.

The systems described above used techniques drawn from two broad
classes of techniques: intermediate representations and guiding forces. These
higher-level forces are displayed in place of, or in addition to, straightfor-
ward coupling. Each class of techniques is described next, followed by a
discussion of the display of auxiliary data sets on top of haptic surfaces.

23.2.1 Intermediate Representations

(This section draws heavily from [Mark et al. 96], which provides addi-
tional implementation details for surface-based and point-contact repre-
sentations.)

It has been clearly shown that it is necessary to run the simulation
and graphics loops of virtual environment (VE) systems asynchronously in
order to maintain reasonable display update rates (around 20 Hz) in the
presence of long simulation computations [Shaw and Liang 92,Gossweiler
et al. 93].

Such a decoupling is even more critical for force display, where update
rates of several hundred Hz are required to produce high-quality forces.



�

�

�

�

�

�

�

�

498 23. Haptics for Scientific Visualization

The necessary rate depends somewhat on the characteristics of the force-
feedback device and control algorithm, but, for example, [Adachi et al. 95]
required an update rate of 500 Hz for their system. If the update rate
falls below the required minimum, the user begins to notice high-frequency
discontinuities, and hard surfaces become either soft or unstable.

[Adachi et al. 95] were the first to apply the technique to virtual en-
vironment force-feedback systems. Rather than simply supplying a single
force vector to the force-feedback controller, they supply an intermediate
representation (their term, adopted here) for a force model. This repre-
sentation is updated infrequently by the application code, but is evaluated
at a high update rate by the force-feedback controller. [Stone et al. 01]
uses a spring with adjustable stiffness to couple stylus motions to atom
movements, enabling smooth force display to the user, even though the
simulation may be running at much slower time steps.

The kind of intermediate representation that is most useful depends
on the application. [Mitsuishi et al. 93] used an average force over the
period of rotation of a cutting tip, along with a model of whether the tool
was chattering, as a model of the actual milling operation. [Ikits et al. 03]
provides a local anisotropic drag description that is based on tensor-field
data and simulates the motion of a spring-attached particle through this
field. [Taylor et al. 93] used a local plane approximation to the surface being
scanned by the microscope combined, with smooth transitions between
planes, as described further in [Mark et al. 96].

23.2.2 Guiding Forces

If the task at hand is exploration of an unknown data set to determine its
basic characteristics, then the most straightforward force display methods
are all that can be displayed (gradient for volumetric display, velocity for
vector fields, constant-friction surface for polygonal models). However,
knowing the task that the scientist is trying to perform can suggest more
complex force models that are tuned to that task. These may involve the
computation of auxiliary data sets (usually done as a preprocess to enable
rapid force updates) that are then displayed directly. They may involve
completely non-physical additions to guide the user or indicate regular
spacing.

As with intermediate representations, the most appropriate guiding
force depends on the task. [Mitsuishi et al. 93] constrained the motion of
the milling tool to lie along a specified path, with speed along the path
controlled by hand. [Fritz 96] added a series of easily ruptured planes
to indicate gridlines in a haptic graph. [Avila and Sobierajski 96] added
forces that pulled towards the centers of dentrites to aid the exploration
of neuron structures. [Lawrence et al. 00a] and [Lundin and Sillen 05] each



�

�

�

�

�

�

�

�

23.2. Useful Techniques for Haptic Display in Scientific Visualization 499

added forces that pull the stylus towards vertex core lines in flow simula-
tions. [Lawrence et al. 00a] augments this with a torque that aligns with the
vortex centerline, and [Lundin and Sillen 05] augments this with display
of the underlying geometric model. [Ikits et al. 03] adds constraints that
exactly follow streamlines for vector-field display.

23.2.3 Haptic Display of Auxiliary Data Sets on Surfaces

The routine application of haptic display of surfaces has reached the stage
where computer graphics was in the early days: Phong shading and some
basic texturing operations. Building on techniques suggested by Minsky,
Fritz and others, a team at UNC has studied the use of multiple surface
characteristics to carry information about multiple data sets. The haptic
channels investigated were:

• Compliance (stiffness) of the simulated surface;

• Friction models (coulomb, viscous and drag);

• Adhesion;

• Texture (image-based or procedural, stationary or probabilistic); and

• Surface vibration.

The first step was to determine what the appropriate scaling is for each
display channel, taken independently from the others. This is required
whenever an arbitrary data set is mapped to a haptic channel, so that
linear changes in the data set are mapped to perceptually linear steps in the
display. User studies showed that the perception of bump height, friction,
surface stiffness, and vibration amplitude all followed power-law increases,
with a different coefficient for each channel. [Seeger et al. 00] provides the
details of this mapping.

The next step was to determine how these haptic display channels inter-
act, to see if it is possible to effectively combine the presentation of multiple
scalar fields simultaneously. The results of user studies indicate that the in-
teractions between these channels are somewhat complex, so care is needed
when attempting to convey more than one channel of information on top
of surface shape. Otherwise, variation in one channel can cause unintended
misperceptions on the others. The details of these studies are presented
in [Hollins et al. 04,Hollins et al. 05].

23.2.4 A Note on Scaling

Even when using intermediate representations and guiding forces, it is very
important to adjust the spatial and force scales of the haptic device to



�

�

�

�

�

�

�

�

500 23. Haptics for Scientific Visualization

match those of the task at hand. Just as zooming too far in or out in the
graphics display can produce nonuseful views, zooming the haptic space can
cause problems. In the case of the haptic display, there are two dimensions
to this scaling: force and spatial. A force scale that is too small cannot be
perceived by the scientist, whereas one that is too large can cause instabil-
ity. This interacts with the spatial scaling: too-large motions of the stylus
cause instability at a given force scale, whereas a spatial scale that is too
small does not enable the scientist to reach far enough. For many haptic
applications, stable and high-fidelity feedback requires a spatial scale that
is smaller than the entire data set; this requires systems to include naviga-
tion controls to let scientists move to different regions as they explore their
entire data set.

23.3 Summary
A number of applications of haptic display for scientific visualization have
been described, along with the particular benefits to scientists of adding
haptic display. Many of these applications included display techniques that
go beyond the straightforward mapping of force from their data sets. Two
classes of such forces were described, along with particular examples of
useful mappings.

The applications results indicate the real benefits that can be had by
adding haptic display to a scientific visualization, both to enable bidirec-
tional coupling and to explore volumetric data without occlusion. Haptic
display has been helpful in training, exploration, and experiment steering.
The technique discussion points towards the most effective current and
future mapping techniques for haptic display in scientific visualization.



�

�

�

�

�

�

�

�

24
Haptics in Medical

Applications
M. Harders

24.1 Overview

Indisputably the haptic sense plays a paramount role in the medical pro-
fession. Be it the simple checking of a pulse, the guidance of a biopsy
needle during a lumbar puncture, the palpation of soft tissue for cancer
screening, or the detection of pulsating arteries during open surgery, medi-
cal practitioners are often required to “see” with their hands. Therefore, it
is not surprising that the usage of computer haptics in medicine has been
suggested and explored in the past for almost all stages of a patient’s treat-
ment process, ranging from the initial diagnostic steps to the concluding
rehabilitation phase. A number of possibilities to categorize the various
approaches exist, a few of which are briefly presented here.

Tool- versus hand-based interaction. With regard to hardware requirements
as well as to the diversity of perceivable sensory cues, interaction directly
with one’s hand differs considerably from probing via instruments. Usually,
the former has a higher order of complexity, with currently no satisfactory
solution available. An example would be the simulation of open surgical
procedures in comparison to minimally-invasive interventions.

Abstract data versus real entities. The presentation of haptic feedback can
vary largely, depending on the respective application. One end of the spec-
trum would be the highly accurate replication of soft tissue behavior in
surgical simulation, which tries to make the virtual object indistinguishable
from the real entity, while the other end could be the display of haptics
cues to a user to support human-computer interaction in an interactive
medical segmentation system, where the target would be the maximization
of information flow, and not the faithful reproduction of the realistic feeling
of organs.

501



�

�

�

�

�

�

�

�

502 24. Haptics in Medical Applications

Augmented versus virtual interaction. Similar to the notion of augmented
versus virtual reality, haptic feedback could either be used to enhance or
augment real sensations encountered during telemanipulation, or to present
completely virtual objects, such as guiding cues, during surgical planning.
Since in the former case the real world represents a reference frame onto
which additional information is overlaid, more rigorous requirements with
regard to stability or latency have to be met.

The following section tries to provide a general overview of numerous
related activities of haptics in medicine, grouped by the specific stages in
the medical treatment process. Three more detailed examples of medical
applications are presented thereafter in the remainder of this chapter.

Data segmentation and visualization. Radiological imaging is a central com-
ponent in current medical practice, especially in the diagnostic process. A
key problem in this area is the automatic extraction of information from
the medical image data, which requires an initial data segmentation. Since
subsequent higher-level interpretation steps, such as object recognition and
classification, feature extraction, or automatic quantification, depend on
the quality of the segmentation, considerable effort has been put into im-
proving the latter. In order to support a user in extracting the information
buried in the enormous flood of image data, haptically enhanced human-
computer interaction systems for computerized medical image analysis and
visualization have been a topic of investigation in the past. In [Harders
and Szekely 03,Harders et al. 02], a visuo-haptic tool for segmentation of
the small intestine has been described. Force fields were generated based
on MRI or CT data, as well as from the underlying segmentation algo-
rithms. Processing time could be significantly reduced by providing haptic
feedback.

Related work focusing on semi-automatic segmentation has also been
presented in [Vidholm and Nyström 05,Vidholm et al. 06]. Various haptic
interaction techniques, such as gradient vector flow rendering, have been
examined to support segmentation initialization, such as placement of seed
points or positioning approximate outlines of objects in the dataset. Sim-
ilar techniques are also briefly discussed in [Senger 05]. Apart from the
extraction of objects of interest from the data, the visualization of medical
images can also be supported by haptic feedback. In [Bartz and Gürvit 00],
navigation through segments of arterial blood vessels is enhanced with force
feedback. A related but more advanced visuo-haptic visualization system
for vascular data has also been described in [Yi and Hayward 02]. The
system allows the haptic display of vessel connectivity and guides a user in
tracing vessel branches.

While the mentioned systems have largely been proven to improve the
segmentation process, the integration into clinical practice is still in its



�

�

�

�

�

�

�

�

24.1. Overview 503

infancy. Reasons for this can be found in the considerable cost of haptic
devices—a situation which has been only recently ameliorated—and the
fact that standard radiological image interpretation is still mired in a 2D
display and analysis paradigm.

Telediagnosis. Another focus of current investigations mainly focusing on
diagnostic settings is haptically-enhanced telemedical systems that can be
used to remotely interact with patients. A major line of research in this
respect is remote palpation. In [Kim et al. 05], a device for measuring
and presenting pressure-based human vital signs has been presented. Sig-
nals are acquired with a piezoelectric sensor and fed back to a user via
a PHANTOM haptic device. However, the system is still at a develop-
mental stage. Another strategy is the combination of teletaction systems
with robotic manipulators to perform active remote palpation of patient
tissue. An anthropomorphic robotic hand for breast cancer diagnostics
with tactile sensing and haptic feedback has, for instance, been described
in [Methil-Sudhakaran et al. 05]. Tissue compliance is acquired with an
optical tactile sensor integrated into a robotic hand and then displayed
to a physician through electrotactile stimulation. Related to this, a hap-
tic sensor-actuator system for remote examination has also been presented
in [Khaled et al. 03]. The mechanical consistency of an object is determined
via ultrasound elastography and then displayed to a user via an actuator
array based on electrorheological fluids. Another related setup for multifin-
gered tactile feedback from virtual or remote environments has also been
proposed in [Kron and Schmidt 03]. Early work in this direction focus-
ing on augmentation of minimally invasive palpation to localize arteries or
tumors has already been reported in the 1990s in [Howe et al. 95]. The
underlying idea is to equip surgical instruments with tactile sensors at the
tip and tactile displays in the handle, to enhance a surgeon’s perception
during minimally invasive surgery. This class of approaches will be covered
in more detail below in the context of intra-operative support.

Surgery and therapy planning. A step usually following the initial diagno-
sis and visualization phase is the planning of the necessary therapeutical
procedures. In this context, haptic feedback has been applied to support
surgical planning. In [Giess et al. 98], haptic volume rendering is provided
to assist a user in distinguishing transitions between different liver segments
for resection planning. The additional cues aid the radiologist in the set-
ting of landmarks directly in 3D, thus avoiding the more time-consuming
search for optimal slices in 2D. In [Tsagarakis et al. 06], a multimodal in-
terface for preoperative planning of hip arthroplasty has been introduced,
which integrates immersive stereo display with a prototype haptic device.
Rendered forces assist the surgeon in evaluating access to the surgical site



�

�

�

�

�

�

�

�

504 24. Haptics in Medical Applications

and in placement of implant material. Other related approaches have been
suggested for bone cutting in maxillofacial surgery [Burgert et al. 00] or
for adjusting doses in stereotactic radio-surgery [Olofsson et al. 04]. The
former system provides haptic feedback during the removal or addition of
fatty or bony tissue to optimize the visual appearance of a patient under-
going plastic surgery, while the latter system renders forces based on dose
distributions to optimize radiation treatment. Unfortunately, all these sys-
tems have not left the prototypical stage and are not used in daily clinical
practice.

Intra-operative support. Providing support during an intervention follow-
ing diagnosis and planning steps has been a very active area of investiga-
tion, especially in the field of teleoperated robot-assisted surgery. Excellent
surveys of the numerous existing research activities have been compiled
in the medical robotics literature, e.g., [Taylor and Stoianovici 03, Pott
et al. 05,Cleary and Nguyen 01,Howe and Matsuoka 99]. Nevertheless, a
few selected key activities focusing on haptic feedback will be examined in
the following paragraphs.

Telesurgical robotic systems extend a surgeon’s ability to perform small-
scale manipulation tasks and help to cancel out hand tremor, as for instance
reported in [Taylor et al. 99]. Nevertheless, the lack of haptic feedback is
often seen as a major limitation of these set-ups. While it has been ar-
gued that several interventions have been successfully performed without
feedback, e.g., as reported in [Shennib et al. 98,Mohr et al. 01], operation
times are often found to be longer and exerted forces higher. Therefore,
equipping minimally invasive tools with sensors and actuators has been an
active area of investigation. Examples for enhanced surgical instruments
can be found in [Yao et al. 05, Rosen et al. 03, Scilingo et al. 97], while
work in the context of telesurgical robots has been reported in [Madhani
et al. 98,Hoshino et al. 01,Okamura 04]. Related to this work are projects
examining haptic mechanisms that provide active guidance and augmenta-
tion by working cooperatively with a physician. For instance, the system
described in [Hagmann et al. 04] combines virtual reality techniques with
haptic rendering to support blind needle placement into tissue.

Other work examined the integration of force feedback to provide vir-
tual fixtures [Rosenberg 93] during interventions. This concept has been
tested in the context of robot-assisted coronary artery bypass graft proce-
dures [Park et al. 01] or microsurgical applications [Kragic et al. 05]. An
intelligent tool has been presented in [Nojima et al. 02]. A scalpel was
equipped with a photosensor to detect interfaces between materials. A
haptic mechanism provided forces to prevent a user from penetrating the
detected interfaces. This tool has been used to guide a user while cutting
through a boiled egg, avoiding damage to the yolk.



�

�

�

�

�

�

�

�

24.1. Overview 505

Rehabilitation. Haptically enhanced systems have also been proposed to
support and assess progress during physical rehabilitation after therapy.
Enhancement of patient attention and motivation is a key issue in this
respect. As an example, in [Deutsch et al. 01] a Stewart-platform-type
haptic interface has been used in rehabilitation. Improved clinical measures
of strength and endurance resulted for patients working with the system.
Another example is reported in [Loureiro et al. 01], where patients with
arm impairment following stroke used a haptic system. More details on
the use of haptics in rehabilitation are covered in Chapter 25.

Medical education. Virtual-reality-based simulators are an appealing op-
tion to supplement educational curricula in the medical domain [Liu et al. 03,
Basdogan et al. 07]. First attempts at using computer-based simulations
for education of prospective surgeons had already been carried out at the
beginning of the 1990s, e.g., [Green et al. 91,Satava 93]. An extensive on-
line repository of past and present surgical simulator projects has recently
been established, as indicated in [Leskovsky et al. 06]. These simulation
endeavors have had a considerable influence on the development of the
field of haptics, which is reflected in the number of proprietary, as well as
commercial, devices available specifically for these medical training setups.

The majority of these interfaces aim at laparoscopic interventions. A
four-degrees-of-freedom spherical haptic device, the PantoScope, has been
introduced in [Baumann et al. 98]. It has been developed for the simula-
tion of minimally invasive interventions in laparoscopy. This prototype was
later on improved and commercialized by the Swiss company Xitact. An-
other proprietary input device with five DOF using actual surgical tools for
cholecystectomy has been described in [Kuehnapfel et al. 95]. In [Hayward
et al. 97], the Freedom 7S has been presented—a high fidelity force feed-
back device providing seven degrees of freedom including force feedback for
an interchangeable scissors grip. This prototype is now distributed through
the Canadian company MPB Technologies. Moreover, another prototype
system providing seven degrees of freedom has been discussed in [Tholey
and Desai 06]. A proprietary haptic interface for hysteroscopic interven-
tions has been used in [Montgomery et al. 01]. It was later taken over by
the US company Immersion, resulting in the Hysteroscopy AccuTouch sim-
ulator system. They also built the Laparoscopic Impulse Engine, an early
product which provides four-DOF feedback for surgical simulations. The
device was later on replaced by the Laparoscopic Surgical Workstation,
which incorporates a bi-manual interface with haptic feedback. Further-
more, in [Payandeh and Li 03], a number of design concepts for haptic de-
vices usable in minimally invasive surgery have been surveyed. Additional
developments focusing on endoscopic tools have been reported in [Vlachos
et al. 03, Spaelter et al. 04,Trantakis et al. 04]. A number of specialized



�

�

�

�

�

�

�

�

506 24. Haptics in Medical Applications

devices were also developed for medical application areas other than la-
paroscopy, e.g., for catheter insertion in interventional radiology [Anderson
et al. 02, Ilic et al. 05,Cotin et al. 00], lumbar punctures [Singh et al. 94],
colonoscopy [Ikuta et al. 99,Koerner and Maenner 03,Yi et al. 06], or en-
doscopic retrograde cholangio-pancreatography [Peifer et al. 96].

In addition to rendering contact forces, a focus has also been on provid-
ing feedback for tool handles, e.g., uniaxial forces during insertion of epidu-
ral needles [Brett et al. 97] or feedback during cutting with scissors [Oka-
mura et al. 03]. In contrast to this, some work examined interactive patient
mannequins. In [Riener et al. 04], a mechanical actuator has been attached
to a passive phantom limb to provide force feedback, while also allowing
direct manual exploration of the mockup. Finally, some groups also ex-
amined the connection of surgical instruments to commercially available
haptic devices—almost exclusively using the PHANTOM device—e.g., for
simulation of laparoscopy [Szekely et al. 00], lumbar punctures [Gorman
et al. 00,Dang et al. 01], spine biopsy [Kyung et al. 01,Ra et al. 02,Lathan
et al. 00], or catheter insertion [Zorcolo et al. 00].

For integration of haptic feedback into a surgical simulator system, the
haptic hardware is only one of the necessary elements. In order to render
appropriate feedback, a number of components are needed. The replication

Haptic rendering
pipeline

Tissue
parameters

Collision
detection

Deformation
model Haptic

coupling

Hardware
interface

�
�

�
�

�
�

�
�

Figure 24.1. Haptic rendering pipeline for feedback generation during soft tissue
interaction.



�

�

�

�

�

�

�

�

24.2. Visuo-Haptic Segmentation of Radiological Data 507

of soft tissue interaction, which is the most common in surgical simulation,
requires methods for real-time collision detection and response, soft tissue
deformation algorithms, appropriate tissue parameter setting, and coupling
between the physics simulation and the haptic feedback loop. These ele-
ments can be considered as a haptic rendering pipeline in a surgical simu-
lator, as depicted in Figure 24.1. More details on collision detection can be
found in Chapter 9, while soft tissue interaction is discussed in Chapter 20.

24.2 Visuo-Haptic Segmentation of
Radiological Data

Digital radiological imaging is an indispensable element of modern medicine.
The newest generation of medical image acquisition devices is capable of
producing 3D patient datasets with several thousand high resolution im-
ages. These leaps in the area of image acquisition are, however, not reflected
in the process of image analysis and visualization. In spite of considerable
efforts during the past decades, medical image segmentation is still a major
bottleneck. Neither purely manual nor fully automatic approaches are ap-
propriate for the correct, efficient, and reproducible identification of organs
in volume data. In the current practice, interactive approaches, which try
to merge the advantages of the former techniques, are still the only robust
option. Therefore, extensive research has been invested in recent years into
improving interactive segmentation algorithms.

However, the human computer interface, a substantial part of any inter-
active setup, is only seldomly addressed in the medical context. In order to
alleviate the limitations of visual-only systems, haptically enhanced human

Figure 24.2. Visuo-haptic segmentation system for the extraction of the small
bowel and its centerline.



�

�

�

�

�

�

�

�

508 24. Haptics in Medical Applications

Figure 24.3. Force fields obtained from CT or MRI data guide a user during the
semi-automatic segmentation process.

computer interaction for computerized medical image analysis and visual-
ization has been a topic of recent research. One of the first systems [Harders
and Szekely 03,Harders et al. 02], developed at ETH Zurich in collabora-
tion with the University Hospital Zurich, targeted the highly complex task
of segmentation of the small intestine (Figure 24.2). No satisfying conven-
tional solution existed for this problem. The underlying idea of the project
was to provide guiding force cues to users navigating the tubular struc-
ture of the intestinal system. Such a technique can be compared to the
notion of virtual fixtures, which is sometimes applied in teleoperation to
guide a user in carrying out manual tasks (see e.g. [Rosenberg 93, Sayers
and Paul 94]). In the system, force maps for haptic rendering are based
on gradient fields of 3D Euclidean distance maps of voxel data intensities
(Figure 24.3). The guiding forces support a user during navigation of the
tubular structure of the small intestine and facilitate the initialization of
semi-automatic segmentation methods, such as deformable surfaces.

The usability of this multimodal approach has been shown in several dif-
ferent studies. In a path tracing experiment through an artificial dataset,
users showed a statistically significant performance improvement in the
trial time when using haptically enhanced interaction. In addition, in the
haptic condition, the quality of segmentation was always superior to the
one without force feedback. Similar results were also obtained with real
clinical data. In a pilot study with radiologists, guiding forces were used
to haptically assist the extraction of the centerline of the small intestine.
Based on the latter, a deformable surface model was initialized for the
subsequent automatic segmentation. In the latter stage, the surface mesh
is deformed, subject to a thin-plate-under-tension model. Due to the fi-
delity of the haptically assisted initialization, only a few steps were needed
to approximate the desired organ shape. Using the system, topologically
correct models of the small intestine could be extracted in a fraction of
previously reported manual segmentation times. Based on the extracted
centerlines and segmentations, virtual fly-throughs of the small intestines



�

�

�

�

�

�

�

�

24.3. Immersive Virtual-Reality-Based Hysteroscopy Training 509

Figure 24.4. User studies with the visuo-haptic segmentation system. CT scan
of wooden spheres in phantom tube (left). Artificial lesions in real CT scan
(middle). Extracted centerline through small bowel (right).

were created, thus providing a new tool for diagnostics of gastrointestinal
diseases.

In an additional study, the accuracy of the described system was evalu-
ated with regard to centerline definition and distance measurements, both
in a bowel phantom and in patients. For the phantom study, wooden spher-
ical particles were placed at defined intervals within a polyethylene tube.
After obtaining CT slices of the phantom (Figure 24.4(left)), test partici-
pants from the Zurich University Hospital Radiology department assessed
the locations of the artificial lesions. The relative distances of the latter in
the artificial bowel could be precisely reproduced with the system. In ad-
dition to this study, artificial lesions were also added to datasets obtained
from real patients (Figure 24.4(middle)). The task of the test participants
was to detect and localize these lesions, either with conventional medi-
cal imaging software or with the haptically enhanced segmentation tool.
The complementary approach of visual and haptic user interaction allowed
reliable and complete centerline path definitions of the small bowel (Fig-
ure 24.4(right)). Moreover, all simulated small bowel polyps were readily
detected. Applying the system resulted in slightly shorter review times;
however, the differences were not significant.

24.3 Immersive Virtual-Reality-Based
Hysteroscopy Training

The great potential of surgical simulation has consistently been recognized;
however, the formal integration of VR-based training systems into the med-



�

�

�

�

�

�

�

�

510 24. Haptics in Medical Applications

Figure 24.5. (a)–(d) Hysteroscope inflow and outflow tubes and valves. Re-
sectoscope mechanism, with cutting set-up (1,4), camera (2,3), and instrument
shaft (5).

ical curriculum is still lacking. It is often hypothesized that the lack of a
reasonable level of realism hinders the widespread use of this technology.
In a collaborative project of ETH Zurich, EPF Lausanne, University Hos-
pital Zurich, and ZHW Winterthur, this situation was tackled with a refer-
ence surgical simulator of highest possible fidelity for procedural training.
The focus of these endeavors is the development of a training system for
hysteroscopic interventions. Hysteroscopy is the standard procedure for
visualization and treatment of the inner uterine surface, and is commonly
used in gynecological practice. Although rare, serious complications such as
uterine wall perforation, intrauterine bleeding, or fluid overload syndrome
exist. To reduce the complication rate, specialized simulator training could
be applied to enable rehearsal of manipulative, as well as cognitive, skills.
In order to provide the necessary fidelity, several specialized components
had to be developed. In this respect, the sense of presence plays an im-
portant role in the training effect, which can be achieved. To enable user
immersion into the training environment, the interaction metaphors should
be the same as during the real intervention. A key component in this re-
spect is computer haptics.

The haptic module of the simulator framework serves two major
functions—it provides the interface with which the simulation is controlled,
and it displays force feedback to the user [Harders et al. 07]. An actual sur-
gical instrument has been modified in order to allow natural control of the
intervention. Moreover, a haptic mechanism providing force feedback and
allowing complete removal of the instrument has been integrated [Spaelter
et al. 04].

The interface of the simulation is an original surgical tool, which was
slightly adapted for the system. Figure 24.5 shows the modified hystero-
scope with sensors for the inlet and outlet valve positions, camera angle,
camera focus, and cutting tool position. Signal and power cables of the
sensors are hidden in the unused fluid tubes or standard instrument cables.



�

�

�

�

�

�

�

�

24.3. Immersive Virtual-Reality-Based Hysteroscopy Training 511

Figure 24.6. Haptic interface for hysteroscopy simulation—hysteroscope removed
from hidden mechanism (left), inserted surgical tool (right).

The tool can be completely disassembled and reassembled—for instance,
at the start of a training session, the fluid flow tubes have to be fitted to
the instrument shaft. Moreover, the tool is not fixed to the force feedback
frame. Since complications can already occur during tool insertion into the
cervix, this step is included in the training process. Force feedback is gener-
ated by a haptic mechanism, into which the tool can be seamlessly inserted.
The treatment of the uterus demands a large workspace (±60◦ pitch and
yaw), especially as the anatomy of the uterus can vary within a wide range
between individuals. At the same time, the device has to be compact due
to the confined space within the female dummy torso (Figure 24.6). The
base linkage has two degrees of freedom for spherical displacement around
a virtual pivot point. Inertia is reduced by fixing the actuators of the par-
allel structure to the base. The virtual pivot can be placed in free space
without mechanical connection to linkages. This allows one to hide the
mechanical structure inside the patient dummy torso. A serially attached
head provides tracking and force feedback for the tool translation along
and rotation around the tool axis. A friction drive [Spaelter et al. 06] pro-
vides smooth and slip-free tool translation and rotation during insertion or
complete removal of the surgery tool, which can occur at simulation start,
as well as during the training session. The manipulator can transmit pitch
and yaw torques up to 0.5 Nm, roll torques of 0.02 Nm, and translational
forces of 2 N.

A low-level control scheme tracks the displacement of the surgery tool
and hands it over to the virtual environment via a UDP socket connec-
tion. The control loop for stable and transparent haptic interaction runs
at >1 kHz under the real-time operating system RTAI-Linux. Although
active human motion control capabilities rarely exceed 10 Hz, tactile per-
ception can detect vibrations at much higher frequencies, thus making high



�

�

�

�

�

�

�

�

512 24. Haptics in Medical Applications

Figure 24.7. Elements of haptic interface module: view of complete setup (left),
example scene with dual mesh representation (middle), haptic interface (right).

update rates necessary [Sharpe 88]. Virtual coupling techniques provide a
data exchange between the fast haptic control loop and the slower virtual
environment. In order to increase haptic realism, gravitation, inertia, and
friction of the haptic device are compensated or reduced by control.

For the generation of force feedback, a point-based haptic proxy para-
digm is followed [Ruspini et al. 97]. This technique is applied to single, as
well as multiple, interaction points. The objects in the simulation have a
dual representation—tetrahedral meshes are used for collision detection and
the calculation of tissue deformation, while surface meshes are employed
for visualization and local proxy update [Tuchschmid et al. 06]. Moreover,
tools are approximated by a collection of collision points. Collisions are
detected via a spatial hashing algorithm [Teschner et al. 03]. If a collision
takes place, the force applied to the deformable object and the appropriate
haptic feedback is determined.

Proxy points in the applied model are updated according to the move-
ment of the surgical tool, and, in case of a collision, restricted to the sur-
face of the virtual object, while locally minimizing the distance to the tool.
Based on the penetration depths, the interaction force can be obtained. It
is distributed to the nodes of the contacted surface triangles and provides
the external force vectors for the computation of object deformation. Com-
ponents of the haptic rendering pipeline of the simulator system are shown
in Figure 24.7.

24.4 Multimodal Augmented Reality for Open
Surgery Training

In contrast to simulation of minimally invasive interventions, open surgery
simulators are still in their infancy. Open procedures are considerably more



�

�

�

�

�

�

�

�

24.4. Multimodal Augmented Reality for Open Surgery Training 513

difficult to simulate, since the surgeon usually has direct visual and haptic
contact with the operation site, and his interaction is much less restricted.
So far, only unsatisfactory and strongly limited systems have been devel-
oped. A number of related projects focused on suturing tasks and wound
debridement. In [O’Toole et al. 99], a training framework for vascular
anastomosis was introduced. Visuo-haptic collocation was achieved using
a mirror set-up, including stereo rendering of the scene from a fixed view-
point. Bimanual interaction was possible via two haptic devices. Other
projects focusing on open surgery incisions and suturing were also car-
ried out, e.g., [Webster et al. 01, Berkley et al. 04,Bielser and Gross 02].
However, visuo-haptic collocation, full display of the surgical scene, a user-
controlled viewing position, and direct manual interaction are usually not
integrated. A more immersive and complete simulation of open surgery
was attempted in [Bro-Nielsen et al. 98]. A monitor for scene rendering
was mounted horizontally into a special purpose stand with the head and
legs of a mannequin attached, thus including passive haptic feedback of
the patient to a trainee. Nevertheless, visuo-haptic collocation was not
provided. Most of these open surgery simulators lack immersiveness, since
visual and haptic cues from the virtual patient are strongly limited.

A related successful category of systems are manikin trainers for anes-
thesia [Cooper and Taqueti 04]. These setups provide—usually inside a real
OR environment—life-sized dummy patients that are capable of producing
physiologic signals, react to anesthetic interventions (e.g., administration
of drugs), and can be interfaced to standard anesthetic equipment. More-
over, a number of critical anesthetic situations can be initiated via external
control stations. While effective training for anesthesia personnel can be
provided with these systems (e.g., [Chopra et al. 94,Gaba et al. 98]), sur-
gical training is not accommodated.

Recent work at ETH Zurich examined the possibility of providing an
environment where open surgery training can be carried out in an immer-
sive fashion. This endeavor targets the extension of anesthesia simulators
with augmented reality (AR) technology [Azuma 97]. Using the latter, the
virtual operation site can be augmented onto a real patient dummy. To
provide multimodal feedback in the simulation, haptic interfaces need to
be integrated, thus requiring high accuracy and stability of the overlay pro-
cess. Misalignment of augmented virtual objects would greatly compromise
manipulative fidelity and the sense of presence, and thus reduce the overall
training effect.

The basic paradigm of a multimodal AR setup is to capture a view of
the real scene with a head-mounted camera, superimpose virtual objects in
the image, and display the augmented scene with a head mounted display.
To ensure exact alignment between the real and virtual worlds, the system
needs to determine the relative position between the virtual objects and the



�

�

�

�

�

�

�

�

514 24. Haptics in Medical Applications

Figure 24.8. Set-up for an augmented reality visuo-haptic training system.

user’s head. Therefore, accurate estimation of the head pose, with respect
to an arbitrary world coordinate system in which the virtual objects are
placed, is necessary. The developed AR system comprises an optical posi-
tion tracking device, the Optotrak 3020 manufactured by Northern Digital
Inc., a head-mounted FireWire camera, and a camera-mounted marker. An
overview of the main components and a typical interaction are depicted in
Figure 24.8. The optical tracker consists of three fixed linear cameras,
which detect the infrared LEDs attached to a marker. By triangulation,
the optical system measures the 3D LED position with an RMS accuracy
of 0.2 mm at an optimal distance of 2.25 m. From these measurements, the
orientation and position of the marker are computed. Since the camera and
marker are rigidly attached to each other, the camera-marker transforma-
tion is fixed and can thus be estimated by an offline process using hand-eye
calibration [Bianchi et al. 05]. Experiments resulted in a back-projection
error of approximately two pixels, which is a sufficient starting point for
applying hybrid tracking with image-space error minimization. Given the
camera-marker transformation and the marker pose, the AR system can
estimate the camera pose within the tracker coordinate frame. The IR
tracking data are inherently noisy due to the inaccurate measurements
of the LED positions. The precision of the measurements becomes even
more limited when the head-mounted marker moves. As a consequence,
the registration between the real and the virtual world is affected, causing
instabilities of virtual objects in the augmented images. Therefore, the
estimated camera pose of the IR optical tracker is corrected with a vision-
based approach [Bianchi et al. 06a]. A back-projection error of less than
0.7 pixels can be achieved in less than 1 ms computation time. Moreover,
using additional refinement of 3D landmark positions, the error can be fur-
ther reduced to about 0.3 pixels. This estimated camera pose then finally
allows the visual alignment of the virtual and the real world.



�

�

�

�

�

�

�

�

24.4. Multimodal Augmented Reality for Open Surgery Training 515

Figure 24.9. Interaction in visuo-haptic augmented reality with real and virtual
scene objects via a scalpel mounted to a PHANTOM haptic interface.

In order to allow simultaneous interaction with real and virtual objects
in the multimodal augmented reality environment, visuo-haptic collocation
is a prerequisite. This, for instance, allows interaction with virtual and real
objects in the augmented scene via the same tool. In order to align the
virtual representation of the haptic interaction point with the correct phys-
ical location in the real world, the relationship between the haptic and the
world coordinate system needs to be determined. The first step of the
calibration procedure is to collect 3D point measurements in the coordi-
nate systems of the haptic device and the optical tracker. After acquiring
3D point correspondences, the absolute orientation problem needs to be
solved [Bianchi et al. 06b]. Since additional errors in the estimation of the
haptic-world transformation are introduced due to inaccuracies in haptic
encoder initialization, a two-staged optimization process is followed. Using
this approach, the final calibration results yield an alignment error below
1.5 mm within the whole workspace of the haptic device. Figure 24.9 shows
the interaction with virtual soft tissue embedded into a dummy leg via a
real scalpel attached to the haptic device.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

25
The Role of Haptics in
Physical Rehabilitation

G. C. Burdea

While the majority of today’s haptic interfaces and applications are tar-
geted at the able-bodied user, a rapidly growing field of science studies
the use of this technology in physical rehabilitation. There are many rea-
sons the reader may wish to take a closer look at this application domain.
One reason concerns societal impact, as there are about 70 million peo-
ple with disabilities in the European Union [Bühler 97]. Such therapy is
needed by various patient populations ranging from post-stroke survivors,
to those with traumatic brain injury, cerebral palsy, spinal cord injuries,
musculo-skeletal deficits, and others. The United States alone spends about
$30 billion every year on physical rehabilitation [Patton et al. 06]. Of the
above-mentioned costs, the majority represent labor costs (therapist time),
and economic pressures tend to make rehabilitation interventions shorter
than in prior years.

Rehabilitation science, in contrast to current rehabilitation practice,
has recently shown that intense and longer physical therapy will benefit
even chronic patients through the phenomenon of “brain plasticity.” By
repeating meaningful limb movements, similar to those done in activities of
daily living (ADL), dormant neurons are recruited into new neural paths,
and patients regain some of their lost function. Here robots are ideal, since
they can train patients for the required long duration without tiring (unlike
human therapists), and may eventually lead to a reduction in labor costs.

Robotic systems coupled with virtual reality simulations bring addi-
tional improvements to today’s conventional physical therapy methods,
since they introduce objective measures of performance. Data on total
exercise time, speed and smoothness of movement, peak and average ve-
locities, mechanical work, and endurance are among the variables that can
be stored transparently and used to objectively gauge a patient’s progress.
This is a clear departure from the subjective therapist’s evaluation of a
patient, which is prevalent today.

517



�

�

�

�

�

�

�

�

518 25. The Role of Haptics in Physical Rehabilitation

When robotics is coupled with virtual reality, the resultant rehabilita-
tion becomes fun, since patients can practice in the form of a video game
play. They can also be challenged according to their specific abilities and
can be given auditory or graphics rewards for their performance. The flex-
ibility of virtual reality also means that a number of different simulations
and haptic effects can be produced by the same hardware, thus creating
variety and progression of therapeutic games difficulty to challenge each
patient. It is intuitive that any therapy that motivates the patient will
produce better outcomes, compared to approaches where the patient is dis-
interested, bored, and otherwise mentally detached from the task she/he is
asked to perform.

A more subtle reason to look at haptic applications in physical therapy is
the dual use of the same technology for able-bodied individuals. Such users
will benefit from techniques presented in this chapter by augmenting their
capabilities and thus improving their task performance in virtual reality or
telerobotics applications. After all, disability is a question of degree, and
we are all disabled to some extent.

This chapter starts with a review of robotic systems used in physical
rehabilitation (Section 25.1), followed by a discussion of the specifics of
haptics targeted at the disabled (Section 25.2). Safety issues are clearly
important in systems, such as those described in this chapter, where users
are in close proximity to the haptic interface or robot. Safety issues for the
disabled, which are reviewed in Section 25.3, are even more important, since
patients often have degraded hand-eye coordination or cognitive or reflex
capabilities, and thus are at higher risk compared to able-bodied users. A
look at the future use of haptics in physical rehabilitation concludes this
chapter (Section 25.4).

25.1 Robotic Systems for Physical Rehabilitation
The terms upper extremity and lower extremity are commonly used by
physical therapists to refer to either the upper or the lower limbs. Thus,
upper extremity rehabilitation aims at improving the patient’s shoulder,
elbow, wrist, and fingers (and the patient’s ADLs). Lower extremity train-
ing refers to exercising the patient’s knee, ankle, foot, or the whole leg in
walking. Robots have been used in physical rehabilitation for more than a
decade, and they target all of the above areas of therapy.

25.1.1 Robots for Upper Extremity Physical Rehabilitation

One of the earliest applications of haptics in rehabilitation is the MIT
MANUS system shown in Figure 25.1(a) [Krebs et al. 04]. It consists of



�

�

�

�

�

�

�

�

25.1. Robotic Systems for Physical Rehabilitation 519

(a) (b)

Figure 25.1. Haptic systems for shoulder rehabilitation: (a) Commercial version
of the MIT MANUS [Krebs et al. 04] (Open source material). (b) The Haptic
Master [Loureiro et al. 04]. Reprinted by permission.

a direct-drive SCARA two-degree-of-freedom robot that trains the patient
arm in a plane while monitoring forces at the end effector. The patient rests
the forearm on a special support with safety coupling that detaches in case
of excessive forces. The patient is strapped in a chair in order to prevent
compensatory torso leaning and faces a monoscopic display controlled by
a PC. The robot has its own controller, which implements a back-drivable
impedance control aimed at increasing the patient’s safety. More recent
versions of the MIT MANUS allow the integration of modules for additional
degrees of freedom.

Figure 25.1(b) [Loureiro et al. 04] illustrates the adaptation of the Hap-
tic Master, a general-purpose haptic interface, for use in physical rehabili-
tation. The robot differs from the MIT MANUS, as it has three degrees of
freedom and a cylindrical work envelope. Its control is also different, since
the Haptic Master uses an admittance controller which moves the robot
in response to forces applied by the patient on its end effector. Similar to
the MIT MANUS setting, the patient is strapped in a chair and faces a
monoscopic display showing graphics generated by a PC. These scenes are
updated based on the data received by the PC from the Haptic Master.
Since the work envelope and output forces of this robot are larger than
those of the MIT MANUS, a much more complex apparatus is used to
offload gravity-induced forces from the patient’s extended arm.

Neither of the above robots is able to train the patient’s fingers, which
are essential in ADLs. The only commercially available haptic glove is the
CyberGrasp (shown in Figure 25.2(a)) [McLaughlin et al. 05]. It consists
of an exoskeleton worn on the back of the hand, and five actuators, which
apply one degree of force feedback for each finger through a combination
of cables and pulleys. Finger sensing is done by the CyberGlove on which



�

�

�

�

�

�

�

�

520 25. The Role of Haptics in Physical Rehabilitation

(a) (b)

Figure 25.2. Robots for finger rehabilitation: (a) The CyberGrasp [McLaugh-
lin et al. 05]. Reprinted by permission; (b) the Rutgers Master II [Bouzit
et al. 02]( c©Rutgers University). Reprinted by permission.

the CyberGrasp exoskeleton is retrofitted, and adjustments need to be
made for various hand sizes, using mechanical stops on the exoskeleton
cable guides. When applied in a physical rehabilitation setting, the weight
of the CyberGrasp (about 400 grams) becomes a problem, since patients
who need rehabilitation have a diminished arm weight-bearing capability.
Furthermore, this weight is placed (by necessity) away from the body, which
creates a mechanical amplifier effect.

The requirement for reduced weight is addressed in the prototype Rut-
gers Master II glove shown in Figure 25.2(b) [Bouzit et al. 02], which weighs
about 100 grams. Similar to the CyberGrasp, the Rutgers Master II has
an exoskeleton that provides one degree of force feedback per finger (less
the pinkie). However, it does not require a separate sensing glove, as its
exoskeleton incorporates non-contact position sensors. The glove uses a
direct-drive configuration and compressed air, such that each fingertip is
resisted in flexion with up to 16 N force. The lack of a separate glove makes
its donning faster and easier than the CyberGrasp.

25.1.2 Robots for Lower Extremity Physical Rehabilitation

While robots for upper extremity rehabilitation have existed for over a
decade, those used to train the patient’s walking and ankle control are
more recent. Among them, the best known (and commercially available) is
the Lokomat [Frey et al. 06,Riener et al. 06] shown in Figure 25.3(a), used
for gait training. Patients with spinal cord injury or post-stroke patients
have diminished weight-bearing capacity, which hampers walking. There-



�

�

�

�

�

�

�

�

25.1. Robotic Systems for Physical Rehabilitation 521

(a) (b) (c)

Figure 25.3. Robotic systems for walking rehabilitation: (a) the Lokomat [Riener
et al. 06] ( c© IEEE). Reprinted by permission. (b) The HapticWalker [Schmidt
et al. 05] ( c©ACM). Reprinted by permission. (c) The Mobility Simulator
[Boian 05] ( c©Rutgers University). Reprinted by permission.

fore, therapists use treadmills and passive body weight supports (BWSs) in
the form of a harness and elastic element to reduce the weight the patient’s
legs have to support by 60 to 80%. The Lokomat uses the same treadmill
+ BWS approach, but adds two important elements. The first is a pair of
leg exoskeleton robots, which assist the gait cycle with speeds up to about
3 km/h. The robots greatly reduce the therapist’s physical effort and thus
allow longer therapy than otherwise possible. The second improvement
over non-robotic approaches to gait training is the addition of an active
(actuator) based BWS in addition to the passive one. The combination of
passive + active BWS results in much more uniform weight unloading dur-
ing walking, and optimal gait training. Recently, the Lokomat has added
advanced biofeedback, which immerses the patient in a virtual environ-
ment. The patient views the scene of a hiking trail and obstacles that need
to be negotiated. If the foot is not lifted high enough, haptic and sound
feedback of the collision with the obstacle are produced. A fan provides
tactile feedback (in the form of wind) proportional with the patient’s walk-
ing speed. Thus the patient trains in a meaningful environment, which
is adjustable to his/her performance and helps highlight proper walking
patterns.

Treadmill training cannot realistically reproduce walking on uneven ter-
rain, such as up and down the stairs. A system that addresses this limita-
tion is the HapticWalker seen in Figure 25.3(b) [Schmidt et al. 05]. Sim-
ilar to the Lokomat, the HapticWalker consists of two exoskeleton robots
that move the patient’s legs, coupled with a BWS. The robots incorporate
direct-drive electric motors capable of assisting walking up to a speed of 5
km/h. The HapticWalker design uses hybrid serial (large workspace) and
parallel (large payload) kinematics. Two actuators connected in parallel



�

�

�

�

�

�

�

�

522 25. The Role of Haptics in Physical Rehabilitation

move the foot either up/down or front/back. A third actuator is used to
tilt the foot.

Even more degrees of freedom may be needed for realistic haptics and
purposeful training. For example, quick horizontal translations overim-
posed to gait are needed to simulate walking on ice. A robot that can
reproduce such haptic effects is the mobility simulator prototype seen in
Figure 25.3(c) [Boian 05]. Similar to the Lokomat and the HapticWalker,
this robot incorporates a BWS system. However, each foot sits on top of a
Rutgers Mega Ankle Stewart Platform with direct-drive pneumatic actua-
tors [Boian et al. 04]. Thus, each foot is moved in six degrees of freedom,
which allows training for walking on even or uneven terrain (mud, gravel,
ice). To provide gait training associated with ADLs, the patient faces a
large (monoscopic) display showing a street crossing. The patient has to
cross at the pedestrian stop light under various surface, time to cross, and
visibility conditions. Distractions, in the form of street noises (honking)
or impatient drivers pushing onto the street, are provided for additional
training difficulty. Due to the fact that the bases of the two Rutgers Mega
Ankle platforms are fixed and their dimensions are more compact than
those of the HapticWalker, the step length is smaller that normal values,
which is a drawback of the current design.

25.2 Specifics of Haptic Feedback for the
Disabled

Haptic feedback used in physical therapy is different from that provided
to able-bodied users due to the force and motor coordination deficits of
the disabled. In domains not related to rehabilitation, haptic feedback is
usually in the form of resistive forces which complement graphics and other
simulation modalities. Such resistive forces are required to more realisti-
cally simulate object compliance, weight, inertia, and surface properties
(roughness, stickiness, and friction).

Haptic feedback in physical therapy is more demanding, since it needs to
adapt to each patient’s functioning level and each therapy session. Further-
more, certain types of haptic feedback (such as vibrations) that adversely
affect normal training can prove beneficial in physical therapy. The dis-
cussion here is focused on two aspects that play a central role in haptic
feedback for physical therapy, namely assistive haptics and disturbances.

25.2.1 Assistive Haptics

Dues to the weakened upper or lower extremities of various patient popula-
tions, such as those with neurological disorders (stroke, spinal cord injury,



�

�

�

�

�

�

�

�

25.2. Specifics of Haptic Feedback for the Disabled 523

(a) (b)

Figure 25.4. Assistive haptics used to train ankle strength in children with cere-
bral palsy: (a) System view showing the Rutgers Ankle robot. (b) Screen image
highlighting the ideal trajectory the robot is using to pilot the plane while patient
is passive ( c©Rutgers University). Reprinted by permission.

cerebral palsy), the haptic interface needs to assist the patient in per-
forming the simulated task. An example is the use of the Rutgers Ankle
robot [Girone et al. 01] in the training of patients with cerebral palsy. Pa-
tients sit facing a PC display while their foot is strapped on the mobile
platform of the Rutgers Ankle Stewart Platform-like robot. The simula-
tion depicts an airplane that has to fly through a series of hoops while
under patient control. In prior studies done with stroke patients, the robot
provided purely resistive spring-like forces [Mirelman et al. 06]. This is
not possible with children with CP, since at the start of each rehabilita-
tion session their ankle needs to be stretched and moved over its range
of motion, with the patient being passive. While in conventional ther-
apy, this is done manually by the physical therapist: here the robot pilots
the airplane over an ideal sinusoidal path (see Figure 25.4(a)–(b). During
this time, the patient is completely passive. Subsequently, the patient is
asked to progressively exert more torques to tilt the foot up/down while
the robot creates a “haptic tunnel.” Small corrective forces are applied to
keep the airplane within an acceptable (threshold-determined) neighbor-
hood of the ideal path. In subsequent rehabilitation sessions, while the
patient’s ankle exertion capability increases, the robot will switch off assis-
tance and eventually apply resistive forces, which will challenge the patient
more.

Another example of graded assistance by a robot is the upper extremity
training provided by the MIT-MANUS system. As seen in Figure 25.1(a),
the patient is asked to move the robot handle in a plane, such that a cor-



�

�

�

�

�

�

�

�

524 25. The Role of Haptics in Physical Rehabilitation

responding cursor on an associated display moves to a highlighted dot out
of eight possible targets [Hogan and Krebs 04]. The robot implements
an impedance control, which calculates a point that moves on an ideal
path to the target while monitoring the position of the end effector. A
spring-like force attempts to minimize the distance between the handle
position and the moving ideal location on the ideal path. Tests showed
this therapy to be useful; however, it did not adapt sufficiently to each
patient’s condition. This lack of adaptation was due to the fact that the
speed of the ideal point on the nominal path was kept constant. A subse-
quent improvement in the haptic feedback provided by the MIT-MANUS
was an adaptive impedance controller which implements a “virtual slot”
running between the ideal position and the target position. The walls of
the virtual slot are “springy” to provide assistance in case of inappropri-
ate movements away from the ideal path. Furthermore, the back wall of
the virtual slot moves to the target with a velocity that assures a fixed
duration for a minimum-jerk trajectory. This back wall assists the pa-
tient if he or she lags behind the ideal position on the path. However,
if the patient can move faster than the virtual slot back wall, he or she
is free to do so (while getting no assistance from the robot). The du-
ration of the ideal movement is set automatically based on the patient’s
past performance. If the patient was able to consistently move faster than
the back wall of the virtual slot, then the simulation is made faster, re-
quiring faster arm movements to stay ahead of the robot. Tests showed
that this improved therapeutic haptic feedback which was between four
to ten times more efficacious than the fixed impedance controller initially
used.

25.2.2 Haptic Disturbances to Help Motor Control and
Recovery

Haptic disturbances are effects overlaid in the simulation in order to in-
crease therapy difficulty or induce desired after effects. Air turbulence
was simulated when piloting the airplane during a storm by oscillating
the Rutgers Ankle in the horizontal plane [Boian et al. 03]. Progressively
more turbulence determined gradually faster swaying of the robot, while
the amplitude of the vibrations was kept fixed. Tests showed that patients
gradually learned to cope with these haptic disturbances, eventually being
able to clear 100% of the target hoops. This is indicative of improved
ankle control, which results in diminished reinjury due to accidents or
falls.

Another type of haptic disturbance is illustrated by the graphs in Fig-
ure 25.5 [Patton et al. 04]. The curves represent planar arm-reaching move-
ments towards one of six targets while holding a robot arm. Initial undis-



�

�

�

�

�

�

�

�

25.2. Specifics of Haptic Feedback for the Disabled 525

(a) (b) (c)

(d) (e)

Figure 25.5. Hand trajectories in horizontal plane illustrating aftereffects of sys-
tematic haptic disturbances: (a) unperturbed baseline; (b) early training with
disturbance; (c) final training; (d) aftereffects when disturbance was removed; (e)
final washout. Dotted lines are the initial baseline; bold lines represent average
movements [Patton et al. 04] ( c© IEEE). Reprinted by permission.

turbed “baseline” reach movements for a healthy user are plotted in Fig-
ure 25.5(a), followed by subject’s movements when first confronted with a
steady lateral force. Gradually the subject learns to cope with these forces,
such that by the end of training (Figure 25.5(c)), the arm moves in straight
lines again despite the presence of disturbances. Figure 25.5(d) illustrates
the aftereffects of haptic disturbances, as soon as the lateral forces are re-
moved. It can be seen that the arm moves over trajectories, which curve in
the opposite direction to the previously applied lateral forces. With contin-
uing repetitions, the trajectory straightens out again, such that aftereffects
disappear (or “wash out”). While washing out of learned movements is
common with able-bodied users, this is not the case for the disabled [Mat-
suoka et al. 04]. For the disabled, the effects induced by haptic disturbances
do not wash out, because the training leads the patient to activate different
sets of muscles. Once the distorting haptic effects disappear at the end of
training, the disabled continue to use the new coordinated movements that
they learned, using the muscles that had previously been unused.



�

�

�

�

�

�

�

�

526 25. The Role of Haptics in Physical Rehabilitation

25.3 Safety Issues in Haptics for Rehabilitation
While the haptic interface mediates interactions with virtual environments,
the forces applied on the user are real. Robots designed for industrial
applications, capable of high output forces and large accelerations, pose
a real risk when used as haptic interfaces. Even robots designed from
the start for physical rehabilitation applications may be dangerous to the
patient, since they need to apply large enough forces and torques to make
therapy meaningful.

The start of this chapter pointed out that the user’s safety is even more
important for the disabled. Their slower defensive reflexes, diminished
awareness of surroundings, diminished sensory capability (blurred vision,
degraded proprioception), and diminished cognitive capacity put the dis-
abled at increased risk when involved in haptics-assisted rehabilitation. It
is thus important to look at ways to design computerized physical rehabil-
itation systems that address the patient’s safety concerns mentioned here.

The first line of defense, commonly used in industrial applications, is
the provision of safety switches that disable the robot in case of danger.
In rehabilitation settings, there should be several such manual switches,
one for the patient and one for the attending therapist, who can stop the
simulation in case of danger.

Manual switches, however, are not sufficient in a rehabilitation appli-
cation, due to the slow human response. Additional measures are the
integration of sensors and limit switches in the haptic interface itself. This
is the approach taken in the design of the HapticWalker patient’s foot at-
tachment, as seen in Figure 25.6(a) [Schmidt et al. 04]. The patient wears a
shank strap connected to an ankle goniometer through a lever. If the ankle
dorsiflexion angle exceeds a prescribed limit, the controller monitoring the
goniometer executes an emergency shutdown. Additional safety measures
are the thrust pieces that snap in holes that incorporate emergency stop
switches. These are built in the supporting plate under the foot, both front
and back, and excessive forces detach the thrust pieces and thus trigger a
shutdown of the robot.

The above example illustrates the redundancy principle used in good
safety design. Several layers of safety measures are necessary in case one
layer fails, and designers have to foresee such sensor failures. [Roderick and
Carignan 05] describe how they improved the exoskeletons designed for
shoulder therapy in order to incorporate redundant layers of safety. Their
preliminary analysis identified hazards related to the movement of the pa-
tient’s arms outside safe position ranges with excessive velocity, or hazards
due to excessive torques applied to the patient. Their initial hardware
design used an incremental encoder to measure joint values and provide
feedback to the servo controller for that joint haptic feedback motor. This



�

�

�

�

�

�

�

�

25.3. Safety Issues in Haptics for Rehabilitation 527

(a) (b)

(c)

Figure 25.6. Safety methods used when applying haptics in physical rehabilita-
tion: (a) Sensors and mechanical limit switches incorporated in the foot support
of the HapticWalker [Schmidt et al. 04] ( c© IEEE 2004). Reprinted by permission.
(b) Electro-rheologic actuator couplings incorporated in a haptic interface for
arm rehabilitation [Furusho et al. 05] ( c© IEEE 2005). Reprinted by permission.
(c) Predictive real-time modeling used to prevent patient-robot collisions [Feuser
et al. 05] ( c© IEEE 2005). Reprinted by permission.

design would not prevent motion outside safe ranges if the encoder failed.
Thus, the improved design added a second position sensor (an absolute
encoder) at each joint. The divergence between the values reported by the
two position sensors is monitored to detect failure. The same hardware is
used in joint velocity monitoring; thus redundancy is assured in order to
prevent excessive joint velocities. In order to build redundancy in force
control, the design adds a power amplifier thus senses the power draw of
the feedback actuator motor. A motor power divergence check is done in
software to detect when the requested output set by the servo controller
does not correspond to the motor actual current draw.

Figure 25.6(b) illustrates another approach to increase the safety of a
robot used in arm rehabilitation [Furusho et al. 05]. Instead of connect-



�

�

�

�

�

�

�

�

528 25. The Role of Haptics in Physical Rehabilitation

ing the actuator directly to the robot joint, the designers use an electro-
rheologic (ER) coupling. The ER fluid changes its viscosity in proportion
to the electrical field applied, which in turn is controlled by the robot con-
troller. Hence it is possible to modulate slippage, thus limiting the poten-
tially dangerous output torques. In case of power loss, the link is decoupled
and the robot arm becomes completely back-drivable. In order to further
improve safety, haptic interface arm inertia (which does not disappear even
when power is lost) is minimized by placing the actuators at the base of
the robot and passively counterbalancing the robot arm with weights.

A departure from the previous designs, which relied on robot actuators
and internal sensors to improve the patient’s safety, is the system illustrated
in Figure 25.6(c) [Feuser et al. 05]. It uses a pair of cameras to create a
simplified model of the environment consisting of 3D primitives (sphere,
cylinder, prism). The robot is modeled as a series of linked 3D objects,
and obstacles (including the patient) are also modeled with primitives.
Such a simplified model facilitates real-time updates that are performed
any time a new object is added or the patient moves. The robot control
software performs collision detection using vertex-to-vertex distance cal-
culation (it is thus necessary to convert the primitives to a sparse vertex
lattice) [Gilbert et al. 88]. Once the real-time collision detection determines
that distances in the updated virtual model fall below a threshold, the real
robot is stopped before colliding with the patient.

25.4 Looking at the Future

It is expected that haptics will play an increasing role in physical rehabili-
tation in the years to come. Based on initial study data, it is expected that
the technology will prove efficacious, especially when robotics is coupled
with game-like virtual reality training. The penetration of the technology
into widespread clinical use will benefit from lower cost hardware, such as
game consoles and cheaper haptic interfaces.

Another direction of future growth is the nascent area of telerehabili-
tation, where therapy is provided at a distance (eventually in the patient’s
home). It is common in today’s rehabilitation practice for the physical
therapist to manually manipulate (move, stretch, warm up) the patient’s
affected limbs. Doing so at a distance will make at-home exercises more
meaningful for the patient, without requiring the physical therapist to be
co-located. Innovative approaches are clearly required to overcome the
problems due to current network limited quality of service (jitter, time
delays) in order to implement remote touch.



�

�

�

�

�

�

�

�

25.4. Looking at the Future 529

Acknowledgments
The author’s research reported here was supported by grants from the
National Science Foundation (BES-9708020 and BES-0201687), from the
National Institutes of Health (5R21EB00653302), and the New Jersey Com-
mission on Science and Technology (R&D Excellence Grant).



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

26
Modeling and Creative

Processes
M. C. Lin and W. V. Baxter

Haptic interfaces can augment the visual and auditory display of informa-
tion, enhancing our understanding of complex structures, and increasing
the level of immersion in a virtual environment. They have been shown
to be an effective means of human-system communication for several sci-
entific and engineering applications, including molecular docking [Brooks,
Jr. et al. 90], surgical training [Gibson 98b], virtual prototyping [Nahvi
et al. 98], and manipulation of nano materials [Taylor et al. 93]. In this
chapter, we examine their use in providing a natural, intuitive user interface
for engaging in creative processes with computer systems. By creative pro-
cess, we refer to any activity that involves translating creative imagination
or conceptual design into more concrete forms.

Most of the existing commercial computer systems for modeling, sculpt-
ing, painting and drawing use just the 2D input and output devices typical
of current desktop computing environments. They often lack the capability
of direct 3D interaction. Even if users can directly manipulate the image
on screen, their movements at any one time are limited by the number
of degrees of freedom of the input device. This can interfere with users’
expression of their creativity, due to the resulting difficulty in translating
conceptual designs into digital forms. Furthermore, existing commercial
computer systems and recent research on the automatic generation of digi-
tal forms have mainly emphasized the appearance of the final products and
not the creative process itself. However, the word creative also describes a
fusion of feeling and action, sight and touch, purpose and intent, beyond
merely producing an original form that gives an artistic impression. The
process is often as important to the artist as the product.

Through various case studies, we show that haptic interfaces can be
used to complement the existing user interfaces by focusing on capturing
the touch, action, and feel of creative processes. Thereby, touch-enabled
3D user interfaces to 3D modeling and painting systems can provide a more
expressive interaction by enabling the users to interactively create original,

531



�

�

�

�

�

�

�

�

532 26. Modeling and Creative Processes

Figure 26.1. Haptic painting system setup: an artist using a haptic stylus to paint
directly on the virtual canvas using dAb. ( c© 2002 IEEE)

digital forms, such as 3D models or other art work with a true 3D user
interface.

In this chapter, we will first present a general overview of various sys-
tems using haptic interfaces for 3D modeling and painting systems. Next,
we will focus on two of our own digital media systems that simulate the cre-
ative process of modeling, 2D and 3D painting with virtual touch as shown
in Figure 26.1 and Figure 26.2. Most users of these two systems found
that haptic interaction offers a natural and expressive mechanism for ma-
nipulating artistic tools and virtual models. Haptic interaction also helps
provide the intuitive and familiar feel of real-world manipulation, resulting
in reduced training time and improved skill transfer.

Figure 26.2. Haptic modeling and painting system set-up: a user creating a model
on a large display with ArtNova. ( c© 2002 IEEE)



�

�

�

�

�

�

�

�

26.1. Case Studies of Existing Systems 533

26.1 Case Studies of Existing Systems
In this section, we briefly describe several recent computer painting and
digital sculpting systems that use haptic interfaces to provide a more nat-
ural 3D interface.

26.1.1 Computer Painting

There has been a substantial amount of work relating to 2D as well as 3D
painting on the computer. A survey of previous 2D painting research can be
found in [Baxter et al. 01]. There are now several commercial 3D painting
systems12 as well. Most use awkward or non-intuitive mechanisms for map-
ping existing 2D textures onto 3D objects, or require that a texture for the
model be provided. None offers the natural painting style to which many
traditional artists and designers are accustomed. None allows the user to
directly manipulate the brush as he or she would a physical paintbrush to
generate desired painting effects. Most of the more advanced commercial
tools for 2D and 3D digital art, e.g., Painter,3 support pen-based input
with sophisticated 5-DOF tablet devices. However, most still use only the
position and pressure parameters, ignoring the extra two tilt degrees of
freedom.

Johnson et al. introduced a method for painting a texture directly onto
a trimmed NURBS model using a haptic interface [Johnson et al. 99]. Its
simple and intuitive interface supports a natural painting style; however,
its parameterization technique is mainly designed for NURBS and does
not apply to polygonal meshes, which are the most commonly supported
primitive on current graphics workstations.

26.1.2 Digital Sculpting

Only recently have commercial haptic sculpting systems, such as FreeForm,4

been introduced. FreeForm uses a volumetric representation to model vir-
tual clay and has a suite of curving tools for electronic sculpting at pre-
defined resolutions.

There are also other digital sculpting systems based on multiresolution
voxel representations. For example, Raviv and Elber proposed freeform
sculpting using zero sets of scalar trivariate functions [Raviv and Elber 99].
Real-time visualization of this system is achieved by applying the march-
ing cubes algorithm incrementally. McDonnell, Qin, and Wlodarczyk use
subdivision solids with a spring network to simulate the semi-elasticity of

1http://www.righthemisphere.com/products/dp3d/Deep3D UV/index.html
2http://www.pixologic.com/zbrush/
3http://www.corel.com/servlet/Satellite/us/en/Product/1166553885783
4http://www.sensable.com/products-freeform-systems.htm



�

�

�

�

�

�

�

�

534 26. Modeling and Creative Processes

clay [McDonnell et al. 01]. The user can manipulate the clay by several
means, including pulling with force feedback using “rope tools.” Perry and
Frisken developed a digital sculpting system, Kizamu, based on adaptively
sampled distance fields (ADFs), a volumetric shape representation [Perry
and Frisken 01]. Kizamu also exploited hardware to accelerate rendering
using either polygon or point primitives.

Unlike most of the existing haptic sculpting systems that are based on
volumetric representations [McDonnell et al. 01,?,Raviv and Elber 99,?],
our modeling system uses subdivision surfaces as the underlying geometric
representation, with a spring-based surface resistance force for deforming
the model surfaces. Recently, researchers at Ford have also proposed a
similar surface sculpting paradigm by manipulating the control points of
NURBS along fixed directions [Buttolo et al. 00]. Our approach enables
global shape design with local control, provides multiresolution editing with
ease, and operates on simple triangular meshes.

26.2 Haptic-Enhanced Painting with
3D Deformable Brushes

In the area of painting, we have developed a novel system that allows artists
to create 2.5D digital paintings, i.e., paintings with relief. The system is
designed around a physically based, deformable 3D brush model, which
can be controlled by the artist using a haptic input device. We have also
developed several bidirectional paint models of varying complexity that
enable easy loading of complex paint blends onto the brush head, providing
an intuitive means of creating a wide variety of expressive marks on the
virtual canvas.

The incorporation of haptic feedback into the system enhances the sense
of realism and provides valuable tactile cues that enable the user to better
manipulate the brush, giving the users much the same level of control in
creating complex brush strokes that they would have with a real, physical
brush. In the following sections we describe briefly the main components
of our painting system, called dAb, and discuss the haptic component in
greater detail.

Figure 26.3. System architecture of dAb. ( c© 2001 ACM)



�

�

�

�

�

�

�

�

26.2. Haptic-Enhanced Painting with 3D Deformable Brushes 535

26.2.1 System Overview

Our basic system runs on a standard PC with a commodity OpenGL 3D
graphics accelerator, and interfaces to a haptic device with 6-degree-of-
freedom (6-DOF) input and 3-DOF force output. A more recent enhance-
ment to dAb can also leverage the processing capabilities of modern GPUs
to perform collision detection, paint simulation, and accurate color calcu-
lations. Our system supports the PHANTOMTM haptic armatures from
SensAble Technologies. Figure 26.1 shows the physical set-up of our sys-
tem. A schematic diagram is shown in Figure 26.3 to illustrate the overall
flow of data through the system.

User interface. The dAb user interface presents the artist with a virtual
canvas that occupies a majority of the screen. Using the space bar as a
toggle, a user can bring up the virtual palette for paint mixing and brush
cleaning, or can put the palette aside to paint directly on the canvas. The
user is also presented with a wide selection of virtual brushes that mimic
the different types and shapes of brushes used in traditional painting. A
simple menu is available for saving and loading previously painted canvases,
undoing a brush stroke, quickly drying the canvas partially or completely,
etc.

3D virtual brushes. Paintbrushes are often regarded as the most important
tools at an painter’s disposal, so an adequate model of the brush is critical
to the success of our painting simulation.

To model a 3D paintbrush requires both a geometric representation
and a model for its dynamic behavior. The requirements of an interactive
haptic painting system place constraints on the design: the brush dynamics
must run at interactive rates and remain stable under all types of user
manipulation.

We model two categories of brush heads. Both are based on a sparse
deformable spring-mass particle system skeleton, and in both cases it is
only the underlying skeleton that is simulated using physics. The first type
of brush head consists of a subdivision surface [Zorin et al. 97] wrapped
around the skeleton, which is ideal for creating smooth, clean strokes. The
second consists of a collection of hundrends of thin polygonal strips, whose
deformations are interpolated from the positions of the skeletal spines. This
type of brush is suitable for creating the rough, scratchy look that comes
from brushes used with too little paint. Examples of both brush types can
be seen in Figure 26.4.

The particle system reproduces the basic motion and behavior of a
brush head, while the deformable geometry skinned around this skeleton
represents the actual shape of the head. We have worked with two main
techniques for simulating the brushes. Originally [Baxter et al. 01] we



�

�

�

�

�

�

�

�

536 26. Modeling and Creative Processes

Figure 26.4. We show our 3D model (skeletal structure and surface mesh) for
several types of brushes frequently used in traditional painting, and give examples
of strokes generated with each. ( c© 2004 IEEE)

used an approximated implicit integration method based on a numerical
technique for cloth simulation [Desbrun et al. 99] to take large integration
steps while maintaining stability. More recently we developed a technique
based on quasistatic energy minimization which yields deformations that
are more stable and more realistic [Baxter and Lin 04b].

The brush models are simple; however, they succeed in capturing the
essential qualitative behavior of physical brushes, while keeping computa-
tional costs to a minimum. Using the above 3D brush modeling approach,
we are able to recreate the different types and shapes of brushes commonly
used in traditional painting and mimic their physical behavior. Figure 26.4
shows the structures used for each brush type we provide, and the defor-
mation of each as it makes contact with the canvas. All the brushes used
by our system are stored as simple text files that contain a description of
the brush geometry and physical properties.

Paint models. Complementing our expressive brushes, we have developed
several paint models that are capable of reproducing complex effects inter-
actively. We briefly summarize the key points of those models here.

All of our paint models incorporate various attributes such as wetness,
opacity, relief, and volume. They support many operations and techniques
while maintaining complete interactivity: paint blending with variable wet-
ness and opacity, bi-directional paint transfer between the brush and the
canvas, glazing over old paint, and painting with a thick impasto style.

Users can also generate similar results using other advanced painting
programs. However, with our system and our paint models, they need only
manipulate the virtual brushes much as they would real brushes in order
to directly and intuitively create various paint effects.

The versatility and expressiveness of our models is enhanced greatly by
supporting bi-directional transfer of paint, meaning that the brush not only
deposits paint, but it also picks up pigment off the canvas as one paints.



�

�

�

�

�

�

�

�

26.2. Haptic-Enhanced Painting with 3D Deformable Brushes 537

We determine the footprint for transfer to and from the canvas using a
simple GPU-accelerated technique. In our collision response system, we
allow the brush to penetrate the canvas slightly. Then, using the GPU, we
render the polygons of the brush surface in orthographic projection with
the near clipping plane set at the canvas. The polygons are rendered with
texture maps representing the paint and attributes from the bristle surface.
The resulting image gives both the footprint, as well as the distribution of
color and volume. Blending operations then transfer paint from the brush
to the canvas, and from the canvas back to the brush. The textures on
both the brush surface and virtual canvas must be updated to simulate
paint transfer and mixing. For the details of these paint models, please
refer to [Baxter et al. 01,Baxter et al. 04b,Baxter et al. 04a].

26.2.2 Haptic Display

The final component of the system is the haptic display. Though much
effort has gone into finding solutions for the difficult problem of to how to
display rigid contact stably and accurately, in the case of haptic display
of paintbrushes, non-rigid contact is desirable. Since most haptic devices,
which use physical motors, are better at displaying soft contacts than rigid
ones, painting is actually a task well suited to these devices.

In our work we separate the calculation of haptic response from the
brush deformation, since the two have different requirements. For the
dynamic deformation, we primarily desire a technique which can create
plausible brush stroke shapes on the canvas. Many implementations of
this brush deformation component are possible–we have implemented two
ourselves–but not all implementations will necessarily contain reliable force
data. For example, the non-dynamical deformation constraints used by our
approximated implicit solver [Desbrun et al. 99] are acceptable for approx-
imating the visual aspects of brush behavior, but are not appropriate for
haptic force simulation. Furthermore, the update rate required for haptic
feedback is much higher than that required by the deformation simula-
tion. Consequently, we decouple the force simulation from brush dynamics
simulation, allowing the brush deformation module to be modified indepen-
dently, and we simplify the force computation to run easily at kHz rates,
even when competing for the CPU with the dynamics and paint subsys-
tems.

Basic force model. The main idea behind our decoupled force models is
to rely only on the undeformed brush shape in all calculations. The only
dynamic information required is the current rigid body transformation for
the brush, which is available from the haptic device at haptic rates. Given



�

�

�

�

�

�

�

�

538 26. Modeling and Creative Processes

the current location of the brush, and its undeformed geometry, we can
calculate a feedback force very quickly based on a simplified spring model.

Our simplest force model uses a piecewise linear function of the penetra-
tion depth of the undeformed brush geometry. Let po be the 3D coordinates
of the brush head origin, the point where the brush handle and head meet.
Let pd be the coordinates of the deepest penetrating part of the brush head,
and let pt be a fixed point on the undeformed brush head that maximizes
‖pt − po‖. Let c be a point on the surface of the canvas, and let n be its
outward pointing unit normal. Define the penetration depth of the brush
head to be dp = n · (c−pd), and the maximum possible penetration depth
of the brush head to be dmax = n · (c − pt). Then we model the force as:

fb(dp, dmax) =

⎧⎨⎩
0 if dp ≤ 0,
nf1dp/dmax if 0 < dp ≤ dmax,
n(f1 + f2(dp − dmax)/dmax) if dp > dmax,

(26.1)

where f1 is a small positive constant that models the light spring of bristles
and f2 is a larger positive constant that simulates collision of the actual
brush handle with the canvas. The spring constants are normalized by
dmax so that the same absolute force, f1, is delivered when the handle first
hits the canvas, regardless of the brush length or orientation. The value of
f1 can be changed to simulate brushes of varying stiffness.

Compressive effects. When a real brush contacts the canvas at close to
a right angle, the stiff bristles initially act as strong compressive springs,
transmitting an abrupt force to the handle. As more pressure is applied,
the bristles buckle and the compressive force reduces, as bending forces take
over. When the brush makes a contact at an oblique angle, compressive
effects play a lesser role in the force felt.

The basic force model above does not attempt to capture this effect.
To do so, we extend the piecewise linear function, Equation (26.1), to a
piecewise Hermite curve. This curve is defined by a series of control tuples
that specify the force magnitude (value) and the linear stiffness (slope) of
the spring model as a function of penetration depth at that point. We
currently use four points to define our piecewise curve, which was derived
from empirical observation of how a brush head behaves under compression:
an initial compressive phase, a gentler mid-bend phase, and finally, a rapid
stiffening as the handle starts to get close to the canvas.

We modulate the stiffness at the initial control point by a function of
the angle of contact with value on the unit interval, [0,1]. Given θ, the
angle between the canvas normal and negated bristle direction vector, the



�

�

�

�

�

�

�

�

26.2. Haptic-Enhanced Painting with 3D Deformable Brushes 539

factor we use is

γ =
{

cos2(2θ) if −π
4 < θ < π

4
0 otherwise . (26.2)

This results in a compressive force that is strongest when a brush contacts
the canvas at a right angle and tapers off to zero as the brush approaches
a 45 degree angle to the canvas.

Frictional forces. The final component of the force delivered to the user is
a tangential resistance. We model friction f t simply, as a viscous damping
force opposite the current brush velocity, vb, which is added to the other
feedback forces:

f t = kt (vb − n(n · vb)) ,

where kt is the coefficient of friction. Currently we do not model Coulomb
friction. Paint tends to act as a viscous lubricant, eliminating most Coulomb
friction, so this omission is reasonable. It becomes less realistic for nearly
dry brushes that the user might expect to feel “sticky.”

Though small in magnitude, frictional forces have a large effect on the
user’s perceived ability to control the brush, by damping small oscillations
in the user’s hand.

Further work. In addition to the simple models cited above, we have also
developed a haptic model based on fluid dynamics calculations [Baxter
and Lin 04a]. This model is primarily intended for interactive evaluation
of simulations and scientific visualization, but we also have experimented
with using it in conjunction with the fluid-based paint model in [Baxter
et al. 04a].

26.2.3 System Demonstration

The dAb system provides the user with an artistic setting that is conceptu-
ally equivalent to a real-world painting environment. It offers an interactive
painting experience that puts the user more in touch with the materials and
the process of painting. We have attempted to provide a minimalistic inter-
face that requires as few arcane buttons, key-presses, and complex controls
as possible, yet still offers a great deal of expressive power so that the user
can focus on the art, and not the interface. Several users have tested dAb
and were able to start creating original art work within minutes, but were
captivated for hours.

Figure 26.5 shows some example paintings that have been created by
amateur artists using dAb. Please refer to http://gamma.cs.unc.edu/dAb
for more images that users have created with dAb, a paper describing



�

�

�

�

�

�

�

�

540 26. Modeling and Creative Processes

Figure 26.5. Paintings created by dAb users Rebecca Holmberg (top) and
Eriko Baxter (bottom), using the haptic interface. ( c© 2001 ACM)



�

�

�

�

�

�

�

�

26.3. Haptic Modeling and 3D Painting 541

the full technical details of the original system, video demonstrations, and
links to later enhancements to the brush and paint simulation subsystems
developed more recently.

26.3 Haptic Modeling and 3D Painting
In this section, we present an integrated system for 3D painting and mul-
tiresolution modeling with a haptic interface and accompanying user-centric
viewing. An artist or a designer can use this system to create and refine a
three-dimensional multiresolution polygonal mesh, and to further enhance
its appearance by directly painting color and textures onto its surface. The
system allows users to naturally create complex forms and patterns aided
not only by visual feedback, but also by their sense of touch. Next, different
components of our system, inTouch, are presented.

26.3.1 System Architecture

Based on the system architecture proposed in [Gregory et al. 00a], in-
Touch consists of a haptic server and a graphical client. The server runs
a PHANTOMTM Desktop force-feedback device, using our H-COLLIDE
[Gregory et al. 99b] library for collision detection. The contact information
output by H-COLLIDE is used for both model editing and painting. A copy
of the model is retained on both the haptic server and graphical client, and
calculations that deform the model are duplicated on both applications,
so that the geometric changes need not be passed over the network. An
overview of our system architecture is shown in Figure 26.6.

To deform and shape the model interactively, the user simply chooses
the edit level (resolution) and attaches the probe to the surface. The defor-
mation update process uses the force vector currently being displayed by
the PHANTOM to move the current surface point at the selected edit level.
These geometric changes are then propagated up, according to subdivision
rules, to the highest level of the mesh. Once the highest level mesh has
been modified, the graphical and H-COLLIDE data structures need to be
updated to reflect the change.

For 3D painting, H-COLLIDE is used to establish the contact point of
the haptic stylus with the surface of the object. The stylus is then used as
a virtual paintbrush with the user’s preferred brush size, color, and falloff.
The brush size is stretched relative to the amount of force being applied
by the stylus, in a manner similar to real painting. In contrast to dAb, the
shape of the brush footprint for ArtNova is fixed, due to the difficulty in
computing the intersection region between a deformable brush and a 3D



�

�

�

�

�

�

�

�

542 26. Modeling and Creative Processes

Figure 26.6. System architecture of inTouch. ( c© 2002 IEEE)

object at interactive rates. We are investigating algorithmic techniques to
address this problem.

26.3.2 User Interface

The inTouch system allows the user to edit the geometry and the surface
appearance of a model by sculpting and painting with a haptic interface.
The user sees the model being edited, the tool being used, and a menu
that can be operated using either the haptic tool or a mouse. Each type
of model manipulation is indicated by a different tool. For example, the
user moves the object with a mechanical claw, paints with a paintbrush,
and deforms with a suction cup.

As an alternative to the claw tool for moving the object, the user’s view-
point can be adaptively changed using the viewing techniques described in
Section 26.3.5. An automatic repositioning feature lets the user move the
last touched point on the model to the center of the viewing area using a
single keystroke, and there is a flying mode activated and controlled by the
haptic device.

To edit the model, the user simply places the tool against the model,
presses the PHANTOMTM button, and moves the tool. As the surface is



�

�

�

�

�

�

�

�

26.3. Haptic Modeling and 3D Painting 543

Figure 26.7. The graphical user interface of ArtNova: the user is performing a
deformation on a painted toroidal base mesh. ( c© 2000 IEEE)

edited, the user can feel a resisting force and see the surface deform. The
edit resolution (the choice of mesh Mi to modify directly) is presented to
the user as a bump size.

For painting there are a continuous color picker, sliders for brush width
and falloff of paint opacity, and a choice of textures for texture painting.
The width of the stroke can also be changed by adjusting the pressure
applied when painting.

A basic undo feature is provided for deformations and painting, and
there are provisions for saving models and screen shots. A snapshot of the
system set-up is shown in Figure 26.2, and the graphical user interface is
shown in Figure 26.7.

26.3.3 Multiresolution Modeling

The model editor is strongly influenced by Zorin et al. [Zorin et al. 97].
In this system, a subdivision framework is used to represent geometry. A
coarse, triangular base mesh M0 and several meshes at finer resolutions
Mi (i > 0) are stored. By a single stage of Loop subdivision, each mesh
Mi uniquely determines a finer mesh M sub

i+1. M sub
i+1 is used as a reference

mesh for the definition of Mi+1. Every vertex in the actual mesh Mi+1

corresponds to a vertex of M sub
i+1, but differs from it by a displacement

vector stored with the vertex. In this way, the user can choose to edit at a
specific resolution by moving vertices of a given mesh Mi. Vertices at finer



�

�

�

�

�

�

�

�

544 26. Modeling and Creative Processes

levels retain their displacement vectors and are thus carried along by the
motion of the subdivided surface.

In principle, the user can modify Mi without changing Mi−1 at all,
since the vertices of Mi are different from the vertices of M sub

i (obtained
by subdividing Mi−1). However, a smoothing step using a method given by
Taubin [Taubin 95] can be performed to modify coarser levels. In this way,
for instance, an accumulation of edits at a high resolution, all tending to
raise up one side of the model, can result in a repositioning of the coarser
level vertices to better reflect the new overall geometry of the model.

Model deformation. Surface deformation is performed by moving a single
triangle of the edit mesh Mi. When the user begins a deformation, the
point of contact with the surface determines a unique triangle at the edit
resolution, and a unique reference point on that triangle. For each frame,
the successive positions of the tool tip define a motion vector m, which
is used to move the three vertices of the selected triangle. Each vertex
is moved in the direction of m, and by a distance scaled so that vertices
nearer the current point of the tool tip are moved farthest. More precisely,
the distance di from the reference point to each vertex vi is computed, and
the movement vector mi for each vertex is given by

mi =
(

1 − di

d0 + d1 + d2

)
m.

More details are given in [Gregory et al. 00a].

Simulating surface resistance forces. When the user places the tool against
the model, there is a restoring force generated by the haptic rendering li-
brary, based on collision information from H-COLLIDE [Gregory et al. 99b].
When the user begins deforming the surface, the restoring forces are turned
off, and the initial 3-space location of the tool tip, p0, is recorded. The
user is then free to move the tool in any direction. To provide feedback, a
Hooke’s law spring force is established between the tool tip and p0, given
by

f = −k(ptip − p0),

where ptip is the current location of the tool tip and k is a small spring
constant.

The spring constant is chosen so that the user can move the tip a sizable
distance in screen space before the force becomes a substantial hindrance.
When the user releases the button, the spring force is turned off and the
usual restoring forces are turned on with the surface in its new position.

Because our force model is based on the initial position of the tool,
the force computation is decoupled from the position of the surface. This



�

�

�

�

�

�

�

�

26.3. Haptic Modeling and 3D Painting 545

provides a smoother feel to the user than computing the force from the
instantaneous distance to the surface that is being moved, because com-
puting the surface deformation is slower than the desired kHz force update
rate.

26.3.4 3D Painting

The inTouch system supports 3D painting of solid color strokes and tex-
tures [Foskey et al. 02] on arbitrary polygonal meshes. Whenever applying
a 2D texture to a surface in 3D, one is faced with the problem of choosing
an appropriate parameterization of the surface. We determine a param-
eterization locally, using the direction of the brush stroke. The stroke is
recorded as a series of straight segments in space between successive tip
locations. Within one segment, distance from the plane orthogonal to the
tail of the segment determines an increment to the s coordinate, and dis-
tance from the segment determines the t coordinate. The s coordinate is
accumulated over the course of a chain of segments making up a stroke.
Both coordinates are multiplied by a user-adjustable factor to give the
texture the desired scale on the model, and then taken modulo the di-
mensions of the patch. Although the texture will repeat along a stroke,
the user can break up the periodicity by starting new strokes and altering
stroke orientation. To paint a solid color, we simply ignore the s coordi-
nate and use the t coordinate in a falloff function to blend the new color
with the background. This algorithm can be further accelerated by modern
graphics hardware to copy texture and determine the texture coordinate
information. For more details, please refer to our technical report available
online.

26.3.5 Automatic Viewpoint Adjustment

As the user performs painting or modeling tasks over the entire model,
the user will need to edit back-facing portions of the model from time to
time. Typically the user repositions the model by performing a “grab and
turn” operation using the application. Taking a step toward better fusion
of visual and haptic display, we have developed several novel user-centric
viewing techniques that make this task easier, faster, and more efficient,
by seamlessly integrating them with any kind of haptic edit operations,
based on the user’s gestures. In addition to using the force feedback de-
vice for haptic manipulation, we also use it implicitly as a mechanism for
users to adjust the viewpoint while simultaneously performing force display.
Therefore, the user never has to explicitly switch between haptic editing
and camera placement.

By automatically repositioning the camera based on the configuration
(i.e., position and orientation) of the haptic probe, the region of interest



�

�

�

�

�

�

�

�

546 26. Modeling and Creative Processes

on the model surface is placed at the center of the view. Please refer
to [Otaduy and Lin 01] for the mathematical formulations of viewpoint
transformation and adaptive camera placement computation.

26.3.6 System Demonstration

Several users with little or no experience in using modeling or painting
systems were able to create interesting models using inTouch, with little
training. Figure 26.8 is one example of the models created using
inTouch.

The combination of arbitrarily fine features and large deformation would
be difficult to achieve with volumetric representations used in earlier work.
Our spring-based force model for surface resistance is simple yet effective.
Most of the users found the added force model to be an improvement over
no surface tension. Several users also commented that the force feedback
was useful in detecting and maintaining contact with the model surfaces, es-
pecially when performing highly detailed painting. In addition, they found
the 3D texture-mapped painting feature easy to use, and had little trouble
getting visually pleasing results.

A video demonstrating the use of inTouch and its enhanced system,
ArtNova, a report describing the details of the algorithmic design, and
other images created with this system are available at http://gamma.cs.
unc.edu/inTouch and http://gamma.cs.unc.edu/ArtNova.

Figure 26.8. A rooster model created by Stpehen Ehmann using inTouch.
( c© 2000 IEEE)



�

�

�

�

�

�

�

�

26.4. Discussion 547

26.4 Discussion
In this section, we list our observations and discuss the impact of haptics
on the design of dAb and inTouch.

• Touch is overloaded by sight. Because of the demanding update rate
required for haptics, the force display used in our applications is rela-
tively simple compared to other physically based simulation methods.
Yet these simple force models proved to be effective. This is partially
due to the fact that a user’s sense of touch is overloaded by viewing
a visually complex graphical display. We have observed several users
who believed they were feeling much more complex force feedback
than was truly being generated, e.g., textured models.

• Natural, simple interfaces that exploit skill transfer help reduce train-
ing time. Haptic interfaces provide a natural, familiar way to interact
with a computer system. Pushing against digital clay with a stick and
painting with a virtual brush are interaction modes that make use of
real world interaction skills. To better facilitate skill transfer, the
design of end-effectors should resemble the tools emulated.

• High-DOF input devices are easier to control with force feedback. Po-
sitioning, deforming, and painting objects all become intuitive oper-
ations with 6-DOF user input. However, an absence of constraints
on movement is a hindrance to the user. Humans rely on objects at
hand to provide positioning aids. A haptic tool can provide some of
the necessary constraints. The sense of touch informs the user when
the virtual tool is in contact with an object, and can help the user
keep the tool in contact with the surface by maintaining pressure. In
contrast, attempting to follow a curve in space along a surface with
only visual guidance is quite difficult.

• Haptic devices provide both input and output simultaneously. As an
example, user-centric viewing can be automated using this fact. The
higher-DOF input of haptic devices can be exploited to capture the
user’s intentions and thus automatically provide proper views of the
region of interest while displaying forces.

• Frictional forces are important. Tangential friction, or rather the lack
thereof, is quite noticeable in haptic applications. Lack of friction
rendering gives surfaces a feel that is overly smooth. Friction also
assists users in controlling their virtual tools.

• Current haptic devices have limitations. Haptic devices are quite ex-
pensive compared to other commodity input devices, such as mice.
They also have intrinsic device limitations, such as fixed workspace



�

�

�

�

�

�

�

�

548 26. Modeling and Creative Processes

volume, limits on joint motion, and limits on the magnitudes and
response times of forces. Some inertia in a haptic mechanism is un-
avoidable and can interfere with recreating the feel of a lightweight
tool. Finally, some users express concerns about fatigue after pro-
longed use. These are potential areas for future research.

26.5 Future Work
In this chapter, we described the use of haptic interaction in emulating
creative processes to generate digital forms, and presented two specific case
studies on the development of such interfaces for computer painting and 3D
modeling applications in detail. Based on preliminary user feedback, we
observe that the addition of haptic interaction can considerably improve
the ease and expressiveness of these types of systems. We believe that a
haptic interface, coupled with physically based modeling of creative media
can offer a new paradigm for digital design, virtual prototyping, education,
and training.

There are several possible future research directions. These include im-
proved physical models for brush deformation; haptic feedback of surface
textures; physically based modeling of additional painting tools, artistic
media, and diverse paint models; more realistic model deformation inte-
grated with tactile cues; and haptic sensation of non-physical attributes
(such as anticipation of a collision event). Finally, an extensive, formal
user study is needed to carefully evaluate and assess the contribution of
various elements of these systems.



�

�

�

�

�

�

�

�

Bibliography

[Abarbanel and McNeely 96] R. Abarbanel and W. A. McNeely. “FlyThru the Boeing
777.” In ACM SIGGRAPH Visual Proceedings: the Art and Interdisciplinary
Programs of SIGGRAPH, p. 124. New York: ACM Press, 1996.

[Abbott and Okamura 05] J. J. Abbott and A. M. Okamura. “Effects of Position Quan-
tization and Sampling Rate on Virtual Wall Passivity.” IEEE Transactions on
Robotics 21:5 (2005), 952–964.

[Abhyankar and Bajaj 88] S.S. Abhyankar and C. Bajaj. “Computations with Algebraic
Curves.” In Lecture Notes in Computer Science, Vol. 358, pp. 279–284. Berlin:
Springer Verlag, 1988.

[Ackroyd et al. 02] K. Ackroyd, M. J. Riddoch, G. W. Humphreys, S. Nightingale, and
S. Townsend. “Widening the Sphere of Influence: Using a Tool to Extend Ex-
trapersonal Visual Space in a Patient with Severe Neglect.” Neurocase 8 (2002),
1–12.

[Adachi et al. 95] Y. Adachi, T. Kumano, and K. Ogino. “Intermediate Representation
for Stiff Virtual Objects.” In Proc. Virtual Reality Annual Symposium, pp. 203–120.
Washington, D.C.: IEEE Computer Society, 1995.

[Adachi 93] Y. Adachi. “Touch and Trace on the Free-Form Surface of Virtual Object.”
In Virtual Reality Annual International Symposium, pp. 162–168. Wshington, D.C.:
IEEE Computer Society, 1993.

[Adams and Hannaford 98] Richard J. Adams and Blake Hannaford. “A Two-Port
Framework for the Design of Unconditionally Stable Haptic Interfaces.” In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1254–
1259. Washington, D.C.: IEEE Computer Society, 1998.

[Adams and Hannaford 99] R. J. Adams and B. Hannaford. “Stable Haptic Interaction
with Virtual Environments.” IEEE Transactions on Robotics and Automation 15:3
(1999), 465–474.

[Adams and Hannaford 02] R. J. Adams and B. Hannaford. “Control Law Design for
Haptic Interfaces to Virtual Reality.” IEEE Transactions on Control Systems Tech-
nology 10:1 (2002), 3–13.

[Adams et al. 98] Richard J. Adams, Manuel R. Moreyra, and Blake Hannaford. “Sta-
bility and Performance of Haptic Displays: Theory and Experiments.” In Pro-
ceedings ASME International Mechanical Engineering Congress and Exhibition,
pp. 227–234. New York: ASME, 1998.

[Agarwal et al. 00] P. Agarwal, L. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir.
“Penetration Depth of Two Convex Polytopes in 3D.” Nordic J. Computing 7
(2000), 227–240.

549



�

�

�

�

�

�

�

�

550 Bibliography

[Agarwal et al. 04] P. Agarwal, L. Guibas, A. Nguyen, D. Russel, and L. Zhang. “Col-
lision Detection for Deforming Necklaces.” Computational Geometry: Theory and
Applications 28:2-3 (2004), 137–163.

[Aglioti et al. 96] S. Aglioti, N. Smania, M. Manfredi, and G. Berlucchi. “Disownership
of Left Hand and Objects Related to it in a Patient with Right Brain Damage.”
NeuroReport 8 (1996), 293–296.

[Agus et al. 02] M. Agus, A. Giachetti, E. Gobbetti, G. Zanetti, N. W. John, and R. J.
Stone. “Mastoidectomy Simulation with Combined Visual and Haptic Feedback.”
In Proceedings of Medicine Meets Virtual Reality Conference, pp. 17–23. Amster-
dam: IOS Press, 2002.

[Alart and Curnier 91] P. Alart and A. Curnier. “A Mixed Formulation for Frictional
Contact Problems Prone to Newton Like Solution Methods.” Computer Methods
in Applied Mechanics and Engineering 92 (1991), 353–375.

[Allin et al. 02] S Allin, Y. Matsuoka, and R. Klatzky. “Measuring Just Noticeable
Differences for Haptic Force Feedback: Implications for Rehabilitation.” In Haptic
Interfaces for Virtual Environment and Teleoperator Systems, 2002, pp. 299–302.
Washington, D.C.: IEEE Computer Socciety, 2002.

[An and Kwon 06] Jinung An and Dong-Soo Kwon. “Stability and Performance of Hap-
tic Interfaces with Active/Passive Actuators: Theory and Experiments.” Interna-
tional Journal of Robotics Research 25:11 (2006), 1121–1136.

[Anderson et al. 02] J. Anderson, C. Chui abd Y. Cai, Y. Wang, Z. Li, X. Ma,
W. Nowinski, M. Solaiyappan, K. Murphy, P. Gailloud, and A. Venbrux. “Vir-
tual Reality Training in Interventional Radiology: The Johns Hopkins and Kent
Ridge Digital Laboratory Experience.” Seminars in Interventional Radiology 19:2
(2002), 179–185.

[Anitescu et al. 99] M. Anitescu, F. Potra, and D. Stewart. “Time-Stepping for Three-
Dimentional Rigid Body Dynamics.” Computer Methods in Applied Mechanics and
Engineering 177:3–4 (1999), 183–197.

[Armel and Ramachandran 03] K. C. Armel and V. S. Ramachandran. “Projecting
Sensations to External Objects: Evidence from Skin Conductance Response.” Pro-
ceedings of the Royal Society B 270 (2003), 1499–1506.

[Armstrong-Hélouvry et al. 94] B. Armstrong-Hélouvry, P. Dupont, and C. Canudas-
de-Wit. “A Survey of Models, Analysis Tools and Compensation Methods for the
Control of Machines with Friction.” Automatica 30:7 (1994), 1083–1138.

[Arvo and Kirk 89] J. Arvo and D. Kirk. “A Survey of Ray Tracing Acceleration Tech-
niques.” In An Introduction to Ray Tracing, edited by Andrew Glassner pp. 201–
262. San Francisco, CA: Morgan Kaufmann, 1989.

[ASEL 98] ASEL, 1998. Available from World Wide Web (http://www.asel.udel.edu/
sem/research/haptics/).

[Astley and Hayward 98] Oliver Astley and Vincent Hayward. “Multirate Haptic Simu-
lation Achieved by Coupling Finite Element Meshes Through Norton Equivalents.”
In Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 989–994. Washington, D.C.: IEEE Computer Society, 1998.

[Austen et al. 01] E. L. Austen, S. Soto-Faraco, J. P. J. Pinel, and A. F. Kingstone.
“Virtual Body Effect: Factors Influencing Visual-Tactile Integration.” Abstracts of
the Psychonomic Society 6:2 (2001), 54.

[Austen et al. 04] E. L. Austen, S. Soto-Faraco, J. T. Enns, and A. Kingstone. “Misloca-
tions of Touch to a Fake Hand.” Cognitive, Affective, & Behavioural Neuroscience
4 (2004), 170–181.



�

�

�

�

�

�

�

�

Bibliography 551

[Avila and Sobierajski 96] R. S. Avila and L. M. Sobierajski. “A Haptic Interaction
Method for Volume Visualization.” In Proceedings of IEEE Visualization, pp. 197–
204. Washington, D.C.: IEEE Computer Society, 1996.

[Azañón and Soto-Faraco 07] E. Azañón and S. Soto-Faraco. “Alleviating the ‘Crossed-
Hands’ Deficit by Seeing Uncrossed Rubber Hands.” Experimental Brain Research
182:4 (2007), 537–548.

[Azuma 97] Ronald T. Azuma. “A Survey of Augmented Reality.” Presence: Teleop-
erators and Virtual Environments 6:4 (1997), 355–385.

[Balaniuk 00] Remis Balaniuk. “Building a Haptic Interface based on a Buffer Model.”
In Proceedings of the IEEE International Conference on Robotics and Automation.
Washington, D.C.: IEEE Computer Society, 2000.

[Baraff 89] D. Baraff. “Analytical Methods for Dynamic Simulation of Non-penetrating
Rigid Bodies.” Proc. SIGGRAPH ’89, Computer Graphics 23:3 (1989), 223–232.

[Baraff 90] D. Baraff. “Curved Surfaces and Coherence for Non-Penetrating Rigid Body
Simulation.” Proc. SIGGRAPH ’90, Computer Graphics 24:4 (1990), 19–28.

[Baraff 92] D. Baraff. “Dynamic Simulation of Non-Penetrating Rigid Body Simula-
tion.” Ph.D. thesis, Cornell University, 1992.

[Baraff 94] D. Baraff. “Fast Contact Force Computation for Nonpenetrating Rigid Bod-
ies.” In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual
Conference Series, edited by Andrew Glassner, pp. 23–34. New York: ACM Press,
1994.

[Barbagli et al. 03] F. Barbagli, D. Prattichizzo, and K. Salisbury. “Dynamic Local
Models for Stable Multi-Contact Haptic Interaction with Deformable Objects.” In
Proc. of Haptics Symposium, p. 109. Washington, D.C.: IEEE Computer Society,
2003.

[Barbič and James 05] Jernej Barbič and Doug James. “Real-Time Subspace Integra-
tion for St. Venant-Kirchhoff Deformable Models.” ACM Transactions on Graphics
24:3 (2005), 982–990.

[Barbič and James 07] Jernej Barbič and Doug L. James. “Time-Critical Distributed
Contact for 6-DoF Haptic Rendering of Adaptively Sampled Reduced Deformable
Models.” In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pp. 171–180. Aire-la-Ville, Switzerland: Eurographics Associa-
tion, 2007.

[Barequet et al. 96] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. “Box-
tree: A Hierarchical Representation of Surfaces in 3D.” In Proc. of Eurographics
’96, pp. 387–396. Aire-la-Ville, Switzerland: Eurographics Association, 1996.

[Barnhill et al. 87] R. Barnhill, G. Farin, M. Jordan, and B. Piper. “Surface/Surface
Intersection.” Computer Aided Geometric Design 4:3 (1987), 3–16.

[Bartz and Gürvit 00] D. Bartz and Ö. Gürvit. “Haptic Navigation in Volumetric
Datasets.” In Proc. of PHANToM User Research Symposium, pp. 43–47, 2000.

[Bartz and Gürvit 00] D. Bartz and Ö. Gürvit. “Haptic Navigation in Volumetric
Datasets.” Phantom User Research Symposium.

[Basch et al. 99] J. Basch, J. Erickson, L. Guibas, J. Hershberger, and L. Zhang. “Ki-
netic Collision Detection between Two Simple Polygons.” In Proc. of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 102–111. Amsterdam:
Elsevier Science Publishers, 1999.

[Basdogan and Srinivasan 02] C. Basdogan and M. A. Srinivasan. “Haptic Rendering In
Virtual Environments.” In Handbook of Virtual Environments, edited by K. Stan-
ney, pp. 117–134. Boca Raton, FL: CRC Press, 2002.



�

�

�

�

�

�

�

�

552 Bibliography

[Basdogan et al. 97] C. Basdogan, C. Ho, and M. A. Srinivasan. “A Ray-Based Haptic
Rendering Technique for Displaying Shape and Texture of 3D Objects in Virtual
Environments.” Winter Annual Meeting of ASME 61 (1997), 77–84.

[Basdogan et al. 04] C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, and M. A.
Srinivasan. “Haptics in Minimally Invasive Surgical Simulation and Training.”
IEEE Computer Graphics and Applications 24:2 (2004), 56–64.

[Basdogan et al. 07] C. Basdogan, M. Sedef, M. Harders, and S. Wesarg. “Virtual Re-
ality Supported Simulators for Training in Minimally Invasive Surgery.” IEEE
Computer Graphics and Applications 27:2 (2007), 54–66.

[Battaglia et al. 03] P. W. Battaglia, R. A. Jacobs, and R. N. Aslin. “Bayesian Inte-
gration of Visual and Auditory Signals for Spatial Localization.” Journal of the
Optical Society of America A 20 (2003), 1391–1397.

[Baumann et al. 98] R. Baumann, W. Maeder, D. Glauser, and R. Clavel. “Force Feed-
back for Minimally Invasive Surgery.” In MMVR, pp. 564–579. Amsterdam: IOS
Press, 1998.

[Baxter and Lin 04a] William Baxter and Ming Lin. “Haptic Interaction with Fluid Me-
dia.” In The Proceedings of Graphics Interface ’04, pp. 81–88. Waterloo, Ontario,
Canada: Canadian Human-Computer Communications Society, 2004.

[Baxter and Lin 04b] William V. Baxter and Ming C. Lin. “A Versatile Interactive 3D
Brush Model.” In Proceedings of the Computer Graphics and Applications, 12th
Pacific Conference, pp. 319–328. Washington, D.C.: IEEE Computer Society, 2004.

[Baxter et al. 01] W. Baxter, V. Scheib, M. Lin, and D. Manocha. “DAB: Haptic Paint-
ing with 3D Virtual Brushes.” In Proceedings of SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, edited by E. Fiume, pp. 461–
468. Reading, MA: Addison-Wesley, 2001.

[Baxter et al. 04a] William V. Baxter, Yuanxin Liu, and Ming C. Lin. “A Viscous Paint
Model for Interactive Applications.” Computer Animation and Virtual Worlds
15:3–4 (2004), 433–442.

[Baxter et al. 04b] William V. Baxter, Jeremy Wendt, and Ming C. Lin. “IMPaSTo: A
Realistic Model for Paint.” In Proceedings of the 3rd International Symposium on
Non-Photorealistic Animation and Rendering, pp. 45–56. New York: ACM Press,
2004.

[Beckmann et al. 90] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. “The R*-
Tree: An Efficient and Robust Access Method for Points and Rectangles.” In Proc.
SIGMOD Conf. on Management of Data, pp. 322–331. New York: ACM Press,
1990.

[Beit et al. 06] M. Beit et al. “A Piezoelectric Tactile Display Using Travelling Lamb
Wave.” In EUROHAPTICS 2006. Washington, D.C.: IEEE Computer Society,
2006.

[Bell et al. 94] J. Bell, S. Bolanowski, and M. H. Holmes. “The Structure and Function
of Pacinian Corpuscles: A Review.” Progress in Neurobiology 42:1 (1994), 79–128.

[Bensmäıa and Hollins 03] S. J. Bensmäıa and M. Hollins. “The Vibrations of Texture.”
Somatosensory & Motor Research 20 (2003), 33–43.

[Bensmäıa and Hollins 05] S. J. Bensmäıa and M. Hollins. “Pacinian Representations
of Fine Surface Texture.” Perception & Psychophysics 67 (2005), 842–854.

[Bensmäıa et al. 05] S. J. Bensmäıa, M. Hollins, and J. Yau. “Vibrotactile Information
in the Pacinian System: A Psychophysical Model.” Perception & Psychophysics
67 (2005), 828–841.



�

�

�

�

�

�

�

�

Bibliography 553

[Berkley et al. 99] J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, and
M. Ganter. “Fast Finite Element Modeling for Surgical Simulation.” In Proceedings
of Medicine Meets Virtual Reality, pp. 55–61. Amsterdam, IOS Press, 1999.

[Berkley et al. 04] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, and S. Weghorst.
“Real-Time Finite Element Modeling for Surgery Simulation: An Application to
Virtual Suturing.” IEEE Transactions on Visualization and Computer Graphics
10:3 (2004), 1–12.

[Berlucchi and Aglioti 97] G. Berlucchi and S. Aglioti. “The Body in the Brain: Neural
Bases of Corporeal Awareness.” Trends in Neurosciences 20 (1997), 560–564.

[Bertelson and de Gelder 04] P. Bertelson and B. de Gelder. “The Psychology of Mul-
timodal Perception.” In Crossmodal space and crossmodal attention, edited by
C. Spence & J. Driver, pp. 141–177. Oxford, UK: Oxford University Press, 2004.

[Bianchi et al. 05] G. Bianchi, C. Wengert, M. Harders, P. Cattin, and G. Szekely.
“Camera-Marker Alignment Framework and Comparison with Hand-Eye Calibra-
tion for Augmented Reality Applications.” In ISMAR ’05, pp. 188–189. Washing-
ton, D.C.: IEEE Computer Society, 2005.

[Bianchi et al. 06a] G. Bianchi, C. Jung, B. Knoerlein, G. Szekely, and M. Harders.
“High-Fidelity Visuo-Haptic Interaction with Virtual Objects in Multi-Modal AR
Systems.” In ISMAR’06, pp. 187–196. Washington, D.C.: IEEE Computer Society,
2006.

[Bianchi et al. 06b] G. Bianchi, B. Knoerlein, G. Szekely, and M. Harders. “High Preci-
sion Augmented Reality Haptics.” In Proc. of EuroHaptics’06, pp. 169–178. Wash-
ington, D.C.: IEEE Computer Society, 2006.

[Bielser and Gross 02] D. Bielser and M. Gross. “Open Surgery Simulation.” In Proc.
of Medicine Meets Virtual Reality, pp. 57–63. Amsterdam: IOS Press, 2002.

[Biggs and Srinivasan 02] J. Biggs and M. Srinivasan. “Tangential versus Normal Dis-
placements of Skin: Relative Effectiveness for Producing Tactile Sensations.” In
10th Symp. On Haptic Interfaces for Virtual Envir. and Teleoperator Systs.,
pp. 121–128. Washington, D.C.: IEEE Computer Society, 2002.

[Blinn 78] J. F. Blinn. “Simulation of Wrinkled Surfaces.” Proc. SIGGRAPH ’78,
Computer Graphics, 12:3 (1978), 286–292.

[Boian et al. 03] R. Boian, J. Deutsch, C. Lee, G. Burdea, and J. Lewis. “Haptic Ef-
fects for Virtual Reality-based Post-Stroke Rehabilitation.” In Proceedings of the
Eleventh Symposium on Haptic Interfaces For Virtual Environment And Teleop-
erator Systems, pp. 247–253. Washington, D.C.: IEEE Computer Society, 2003.

[Boian et al. 04] R. Boian, M. Bouzit, G. Burdea, and J. E. Deutsch. “Dual Stewart
Platform Mobility Simulator.” In Proceedings of IEEE EMBS, pp. 4848–4851.
Washington, D.C.: IEEE Computer Society, 2004.

[Boian 05] R. Boian. “Robotic Mobility Rehabilitation System Using Virtual Reality.”
Ph.D. thesis, Rutgers University, ECE Dept., 2005.

[Bolanowski et al. 88] S. J. Bolanowski, G. A. Gescheider, R. T. Verrillo, and C. M.
Checkosky. “Four Channels Mediate the Mechanical Aspects of Touch.” Journal
of the Acoustical Society of America 84:5 (1988), 1680–1694.

[Bonneton 94] B. Bonneton. “Pantograph Project, Chapter: Implementation of a Vir-
tual Wall.” Technical report, Center for Intelligent Machines, McGill University,
1994.

[Borgefors 86] G. Borgefors. “Distance Transformations on Digital Images.” Computer
Vision Graphics Image Processing 34 (1986), 344–371.



�

�

�

�

�

�

�

�

554 Bibliography

[Borro et al. 04] D. Borro, J. Savall, A. Amundarain, and J.J. Gil. “A Large Haptic
Device for Aircraft Engine Maintainability.” IEEE Computer Graphics and Appli-
cations 24:6 (2004), 70–74.

[Botvinick and Cohen 98] M. Botvinick and J. Cohen. “Rubber Hands ‘Feel’ Touch that
Eyes See.” Nature 391 (1998), 756.

[Bouma and Vanecek 91] W. Bouma and G. Vanecek. “Collision Detection and Anal-
ysis in a Physically Based Simulation.” Proceedings Eurographics Workshop on
Animation and Simulation, pp. 191–203. Aire-la-Ville, Switzerland: Eurographics
Association, 1991.

[Bouzit et al. 02] M. Bouzit, G. Burdea, G. Popescu, and R. Boian. “The Rutgers Mas-
ter II-New Design Force-Feedback Glove.” IEEE/ASME Transactions on Mecha-
tronics 7:2 (2002), 256–263.

[Boyse 79] J. W. Boyse. “Interference Detection Among Solids and Surfaces.” Commu-
nications of the ACM 22 (1979), 3–9.

[Bradshaw and O’Sullivan 02] G. Bradshaw and C. O’Sullivan. “Sphere-Tree Construc-
tion using Dynamic Medial Axis Approximation.” In Proceedings of ACM Sympo-
sium on Computer Animation, pp. 33–40. New York: ACM Press, 2002.

[Brebbia et al. 84] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element
Techniques: Theory and Applications in Engineering, Second edition. New York:
Springer-Verlag, 1984.

[Brederson et al. 00] J. Brederson, M. Ikits, Christopher, R. Johnson, and C. D. Hansen.
“The Visual Haptic Workbench.” Fifth PHANToM Users Group Workshop, pp. 46–
49, 2000.

[Breen et al. 00] D. Breen, S. Mauch, and R. Whitaker. “3D Scan Conversion of CSG
Models into Distance, Closest-Point and Color Volumes.” Proc. of Volume Graph-
ics, pp. 135–158. Washington, D.C.: IEEE Computer Society, 2000.

[Brett et al. 97] P. Brett, T. Parker, A. Harrison, T. Thomas, and A. Carr. “Simula-
tion of Resistance Forces Acting on Surgical Needles.” Journal of Engineering in
Medicine 211:4 (1997), 335–347.

[Bridson et al. 02] Robert Bridson, Ronald Fedkiw, and John Anderson. “Robust Treat-
ment of Collisions, Contact and Friction for Cloth Animation.” Proc. SIGGRAPH
’02, Transactions on Graphics 21:3 (2002), 594–603.

[Brisben et al. 99] AJ Brisben, SS Hsiao, and KO Johnson. “Detection of Vibration
Transmitted Through an Object Grasped in the Hand.” Journal of Neurophysiology
81 (1999), 1548–1558.

[Bro-Nielsen and Cotin 96] Morten Bro-Nielsen and Stephane Cotin. “Real-time Volu-
metric Deformable Models for Surgery Simulation using Finite Elements and Con-
densation.” Computer Graphics Forum 15:3 (1996), 57–66.

[Bro-Nielsen et al. 98] M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, and H. Con-
nacher. “VR Simulation of Abdominal Trauma Surgery.” In Medicine Meets Virtual
Reality, pp. 117–123. Amsterdam: IOS Press, 1998.

[Bro-Nielsen 96] Morten Bro-Nielsen. “Surgery Simulation Using Fast Finite Elements.”
Lecture Notes in Computer Science 1131 (1996), 529–534.

[Brooks, Jr. et al. 90] F. P. Brooks, Jr., M. Ouh-Young, J. J. Batter, and P. J. Kil-
patrick. “Project GROPE: Haptic Displays for Scientific Visualization.” Proc.
SIGGRAPH ’90, Computer Graphics 24:4 (1990), 177–185. http://doi.acm.org/10.
1145/97879.97899.



�

�

�

�

�

�

�

�

Bibliography 555

[Brown and Colgate 98] J. Michael Brown and J. Edward Colgate. “Minimum Mass
for Haptic Display Simulations.” In Proceedings ASME International Mechanical
Engineering Congress and Exhibition, pp. 85–92. New York: ASME, 1998.

[Brown 95] J. Michael Brown. “A Theoretical and Experimental Investigation into the
Factors Affecting the Z-Width of a Haptic Display.” Master’s thesis, Northwestern
University, Evanston, IL, 1995.

[Bühler 97] C. Bühler. “Robotics for Rehabilitation: Factors for Success from a Euro-
pean Perspective.” Rehabilitation Robotics Newsletter, 1997.

[Burdea 96] G. C. Burdea. Force and Touch Feedback for Virtual Reality. New York:
Wiley Interscience, 1996.

[Burgert et al. 00] O. Burgert, T. Salb, and R. Dillmann. “A Haptic System for Simu-
lation and Planning of Plastic Surgeries.” In Proceedings of the ITEC, 2000.

[Buttolo et al. 00] P. Buttolo, P. Stewart, and Y. Chen. “Force-Enabled Sculpting of
CAD Models.” In Proc. of ASME DCS. New York: ASME, 2000.

[Buttolo et al. 02] P. Buttolo, P. Stewart, and A. Marsan. “A Haptic Hybrid Controller
for Virtual Prototyping of Vehiclemechanisms.” In Proceedings of Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 249. Wash-
ington, D.C.: IEEE Computer Society, 2002.

[Cameron and Culley 86] S. Cameron and R. K. Culley. “Determining the Minimum
Translational Distance Between Two Convex Polyhedra.” In Proceedings of Inter-
national Conference on Robotics and Automation, pp. 591–596. Washington, D.C.:
IEEE Computer Society, 1986.

[Cameron 90] S. Cameron. “Collision Detection by Four-Dimensional Intersection Test-
ing.” In Proceedings of International Conference on Robotics and Automation,
pp. 291–302. Washington, D.C.: IEEE Computer Society, 1986.

[Cameron 91] S. Cameron. “Approximation Hierarchies and S-bounds.” In Proceedings.
Symposium on Solid Modeling Foundations and CAD/CAM Applications, pp. 129–
137. New York: ACM Press, 1991.

[Cameron 96] Stephen Cameron. “A Comparison of Two Fast Algorithms for Comput-
ing the Distance between Convex Polyhedra.” IEEE Transactions on Robotics and
Automation 13:6 (1996), 915–920.

[Cameron 97] S. Cameron. “Enhancing GJK: Computing Minimum and Penetration
Distance between Convex Polyhedra.” In IEEE International Conference on
Robotics and Automation, pp. 3112–3117. Washington, D.C.: IEEE Computer So-
ciety, 1997.

[Campion and Hayward 05] G. Campion and V. Hayward. “Fundamental Limits in the
Rendering of Virtual Haptic Textures.” In Proc. of the World Haptics Conference,
pp. 263–270. Washington, D.C.: IEEE Computer Society, 2005.

[Campion et al. 05] Campion et al. “The Pantograph Mk-II: A Haptic Instrument.” In
Proc. of IEEE International Conference on Intelligent Robots and Systems (IROS),
pp. 193–198. Washington, D.C.: IEEE Computer Society, 2005.

[Canny 86] J. F. Canny. “Collision Detection for Moving Polyhedra.” IEEE Trans.
PAMI 8 (1986), 200–209.

[Cascio and Sathian 01] C. J. Cascio and K. Sathian. “Temporal Cues Contribute to
Tactile Perception of Roughness.” The Journal of Neuroscience 21 (2001), 5289–
5296.

[Catmull 74] Edwin E. Catmull. “A Subdivision Algorithm for Computer Display of
Curved Surfaces.” Ph.D. thesis, Dept. of CS, U. of Utah, 1974.



�

�

�

�

�

�

�

�

556 Bibliography

[Çavuşoğlu and Tendick 00] M. C. Çavuşoğlu and F. Tendick. “Multirate Simulation
for High Fidelity Haptic Interaction with Deformable Objects in Virtual Environ-
ments.” In Proc. IEEE Int’l. Conf. on Robotics and Automation, pp. 2458–2464.
Washington, D.C.: IEEE Computer Society, 2000.

[Chambers et al. 04] C. D. Chambers, M. G. Stokes, and J. B. Mattingley. “Modality-
Specific Control of Strategic Spatial Attention in Parietal Cortex.” Neuron 44
(2004), 925–930.

[Chang et al. 00] Y. H. Chang, H. W. C. Huang, C. M. Hamerski, and R. Kram. “The
Independent Effects of Gravity and Inertia on Running Mechanics.” J. Experimen-
tal Biology 203 (2000), 229–238.

[Chasles 31] M. Chasles. “Note sur les Propriétés Générales du Système de Deux Corps
Semblables Entre Eux, Placés d’une Manière Quelquonque Dans l’Espace; et sur
le Déplacement Fini, ou Infiniment Petit d’un Corps Solide Libre.” Bulletin des
Sciences Mathematiques de Ferussac XIV (1831), 321–336.

[Checcacci et al. 03] D. Checcacci, J. M. Hollerbach, R. Hayward, and M. Bergamasco.
“Design and Analysis of a Harness for Torso Force Application in Locomotion
Interfaces.” In Eurohaptics, pp. 53–67. Washington, D.C.: IEEE Computer Society,
2003.

[Chen and Sun 02] H. Chen and H. Sun. “Real-time Haptic Sculpting in Virtual Volume
Space.” In Proc. ACM Symposium on Virtual Reality Software and Technology,
pp. 81–88. New York: ACM Press, 2002.

[Chen et al. 00] K. W. Chen, P. A. Heng, and H. Sun. “Direct Haptic Rendering of Iso-
surface by Intermediate Representation.” In Proc. of ACM Symposium on Virtual
Reality Software and Technology, pp. 188–194. New York: ACM Press, 2002.

[Chen 99] E. Chen. “Six Degree-of-Freedom Haptic System for Desktop Virtual Pro-
totyping Applications.” In Proceedings of the First International Workshop on
Virtual Reality and Prototyping, pp. 97–106, 1999.

[Chial et al. 02] V. Chial, S. Greenish, and A. M. Okamura. “On the Display of Hap-
tic Recordings for Cutting Biological Tissues.” In Proceedings of the 10th IEEE
International Symposium on Haptic Interfaces for Virtual Environment and Tele-
operator Systems, pp. 80–87. Washington, D.C.: IEEE Computer Society, 2002.

[Choi and Cremer 00] M. Choi and J. Cremer. “Geometrically-Aware Interactive Ob-
ject Manipulation.” Computer Graphics Forum 19:1 (2000), 65–76.

[Choi and Tan 02] S. Choi and H. Z. Tan. “An Analysis of Perceptual Instability during
Haptic Texture Rendering.” In Proceedings of the 10th International Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 1261–
1268. Washington, D.C.: IEEE Computer Society, 2002.

[Choi and Tan 03a] S. Choi and H. Z. Tan. “Aliveness: Perceived Instability from a
Passive Haptic Texture Rendering System.” In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2678–2683. Washington, D.C.:
IEEE Computer Society, 2003.

[Choi and Tan 03b] S. Choi and H. Z. Tan. “An Experimental Study of Perceived Insta-
bility during Haptic Texture Rendering: Effects of Collision Detection Algorithm.”
In Proceedings of the 11th International Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems, pp. 197–204. Washington, D.C.: IEEE
Computer Society, 2003.

[Choi and Tan 04] S. Choi and H. Z. Tan. “Toward Realistic Haptic Rendering of Sur-
face Textures.” IEEE Computer Graphics and Applications 24:2 (2004), 40–47.



�

�

�

�

�

�

�

�

Bibliography 557

[Chong and Mattingley 00] T. Chong and J. B. Mattingley. “Preserved Cross-Modal
Attentional Links in the Absence of Conscious Vision: Evidence from Patients with
Primary Visual Cortex Lesions.” Journal of Cognitive Neuroscience 12 (2000), 38.

[Chopra et al. 94] V. Chopra, B. Gesink, J. de Jong, J. Bovill, J. Spierdijk, and
R. Brand. “Does Training on an Anaesthesia Simulator Lead to Improvement
in Performance.” Br J Anaesth 73:1 (1994), 293–297.

[Christensen et al. 98] R. Christensen, J. M. Hollerbach, Y. Xu, and S. Meek. “Inertial
Force Feedback for a Locomotion Interface.” Proc. ASME Dynamic Systems and
Control Division 64 (1998), 119–126.

[Christensen et al. 00] R. R. Christensen, J. M. Hollerbach, Y. Xu, and S. G. Meek.
“Inertial–Force Feedback for the Treadport Locomotion Interface.” Presence: Tele-
operators and Virtual Environments 9 (2000), 1–14.

[Chung and Wang 96] K. Chung and W. Wang. “Quick Collision Detection of Polytopes
in Virtual Environments.” In Proc. of ACM Symposium on Virtual Reality Software
and Technology, PP. 125–132. New York: ACM Press, 1996.

[Cirak and West 05] Fehmi Cirak and Matthew West. “Decomposition Contact Re-
sponse (DCR) for Explicit Finite Element Dynamics.” International Journal for
Numerical Methods in Engineering 64:8 (2005), 1078–1110.

[Cleary and Nguyen 01] K. Cleary and Ch. Nguyen. “State of the Art in Surgical
Robotics: Clinical Applications and Technology Challenges.” Computer Aided
Surgery 6 (2001), 312–328.

[Cohen and Schumaker 85] Elaine Cohen and L. L. Schumaker. “Rates of Convergence
of Control Polygons.” Computer Aided Geometric Design 2 (1985), 229–235.

[Cohen et al. 95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. “I-COLLIDE: An
Interactive and Exact Collision Detection System for Large-Scale Environments.”
In Proc. of ACM Interactive 3D Graphics Conference, pp. 189–196. New York:
ACM Press, 1995.

[Colby et al. 93] C. L. Colby, J.-R. Duhamel, and M. E. Goldberg. “Ventral Intrapari-
etal Area of the Macaque: Anatomic Location and Visual Response Properties.”
Journal of Neurophysiology 69 (1993), 902–914.

[Colgate and Brown 94] J. Edward Colgate and J. Michael Brown. “Factors Affecting
the Z-Width of a Haptic Display.” In IEEE International Conference on Robotics
and Automation, pp. 3205–3210. Washington, D.C.: IEEE Computer Society, 1994.

[Colgate and Hogan 88] J. Edward Colgate and Neville Hogan. “Robust Control of
Dynamically Interacting Systems.” International Journal of Control 48:1 (1988),
65–88.

[Colgate and Schenkel 97] J. Edward Colgate and Gerd G. Schenkel. “Passivity of a
Class of Sampled-Data Systems: Application to Haptic Interfaces.” Journal of
Robotic Systems 14:1 (1997), 37–47.

[Colgate et al. 93a] J. E. Colgate, P. E. Grafing, M. C. Stanley, and G. Schenkel. “Im-
plementation of Stiff Virtual Walls in Force-Reflecting Interfaces.” In Proc. IEEE
Virtual Reality Annual International Symposium (VRAIS), pp. 202–208. Washing-
ton, D.C.: IEEE Computer Society, 1993.

[Colgate et al. 93b] J. Edward Colgate, Michael C. Stanley, and Gerd G. Schenkel. “Dy-
namic range of achievable impedances in force reflecting interfaces.” In Telema-
nipulator Technology and Space Telerobotics, pp. 199–210. Bellingham, WA: SPIE,
1993.



�

�

�

�

�

�

�

�

558 Bibliography

[Colgate et al. 95] J. E. Colgate, M. C. Stanley, and J. M. Brown. “Issues in the Haptic
Display of Tool Use.” In Proc. of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 140–145. Washington, D.C.: IEEE Computer Society,
1995.

[Collins et al. 00] D. F. Collins, K. M. Refshauge, and S. C. Gandevia. “Sensory Integra-
tion in the Perception of Movements at the Human Metacarpophalangeal Moint.”
The Journal of Physiology 529:2 (2000), 505–515.

[Colton and Hollerbach 07] M. B. Colton and J. M. Hollerbach. “Haptic Models of an
Automotive Turn-Signal Switch: Identification and Playback Results.” In Proceed-
ings of the Second Joint Eurohaptics Conference and IEEE Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (World Haptics),
pp. 243–248. Washington, D.C.: IEEE Computer Society, 2007.

[Colwell et al. 98] C. Colwell, H. Petrie, D. Kornbrot, A. Hardwick, and S. Furner. “Use
of a Haptic Device by Blind and Sighted People: Perception of Virtual Textures
and Objects.” Third TIDE Congress Technology for Inclusive Design and Equality.
Amsterdam: IOS Press, 1998.

[Connor and Johnson 92] C. E. Connor and K. O. Johnson. “Neural Coding of Tactile
Texture: Comparison of Spatial and Temporal Mechanisms for Roughness Percep-
tion.” Journal of Neuroscience 12 (1992), pp. 3414–3426.

[Constantinescu et al. 04] D. Constantinescu, S. E. Saludean, and E. A. Croft. “Haptic
Rendering of Rigid Body Collisions.” In Proc. of 12th IEEE International Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pp. 2–8. Washington, D.C.: IEEE Computer Society, 2004.

[Constantinescu et al. 05] D. Constantinescu, S. E. Salcudean, and E. A. Croft. “Local
Model of Interaction for Haptic Manipulation of Rigid Virtual Worlds.” Interna-
tional Journal of Robotics Research 24:10 (2005), 789–804.

[Cooper and Taqueti 04] J. Cooper and V. Taqueti. “A Brief History of the Develop-
ment of Mannequin Simulators for Clinical Education and Training.” Qual. Saf.
Health Care 13:1 (2004), 11–18.

[Cordier and Magnenat-Thalmann 02] F. Cordier and N. Magnenat-Thalmann. “Real-
Time Animation of Dressed Virtual Humans.” Computer Graphics Forum 21:3
(2002), 327–335.

[Costantini and Haggard 07] M. Costantini and P. Haggard. “The Rubber Hand Illu-
sion: Sensitivity and Reference Frame for Body Ownership.” Consciousness and
Cognition 16 (2007), 229–240.

[Cotin et al. 98] Stephane Cotin, Herve Delingette, and Nicholas Ayache. “Efficient
Linear Elastic Models of Soft Tissues for Real-time Surgery Simulation.” Techni-
cal Report RR-3510, Inria, Institut National de Recherche en Informatique et en
Automatique, 1998.

[Cotin et al. 99] S. Cotin, H. Delingette, and N. Ayache. “Realtime Elastic Deforma-
tions of Soft Tissues for Surgery Simulation.” IEEE Transactions On Visualization
and Computer Graphics 5:1 (1999), 62–73.

[Cotin et al. 00] S. Cotin, S. Dawson, D. Meglan, D. Shaffer, M. Ferrell, R. Bardsley,
F. Morgan, T. Nagano, J. Nikom, M. Walterman, and J. Wendlandt. “ICTS, an
Interventional Cardiology Training System.” In Medicine Meets Virtual Reality,
pp. 59–65. Amsterdam: IOS Press, 2000.

[Cottle et al. 92] R. W. Cottle, J. S. Pang, and R. E. Stone. “The Linear Complemen-
tarity Problem.” San Diego, CA: Academic Press, 1992.



�

�

�

�

�

�

�

�

Bibliography 559

[Craig 68] J. C. Craig. “Vibrotactile Spatial Summation.” Perception and Psy-
chophysics 4 (1968), 351–54.

[Cruz-Neira and Lutz 99] C. Cruz-Neira and R. R. Lutz. “Using Immersive Virtual
Environments for Certification.” IEEE Software Journal 16:4 (1999), 26–30.

[Cruz-Neira et al. 93] C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. “Surround-Screen
Projection-Based Virtual Reality: The Design and Implementation of the CAVE.”
In Proceedings of SIGGRAPH ’93, Computer Graphics Proceedings, Annual Con-
ference Series, edited by James T. Kajiya, pp. 135–142. New York: ACM Press,
1993.

[Cuisenaire 99] O. Cuisenaire. “Distance Transformations: Fast Algorithms and Ap-
plications to Medical Image Processing.” Ph.D. thesis, Universite Catholique de
Louvain, 1999.

[Dachille et al. 99] F. Dachille, H. Qin, A. Kaufman, and J. El-Sanat. “Haptic Sculpting
of Dynamic Surfaces.” In ACM Symposium on Interactive 3D Graphics, pp. 103–
110. New York: ACM Press, 1999.

[Dahl 76] P. Dahl. “Solid Friction Damping of Mechanical Vibrations.” AIAA Journal
14:12 (1976), 1675–1682.

[Dang et al. 01] T. Dang, T. Annaswamy, and M. Srinivasan. “Development and Evalu-
ation of an Epidural Injection Simulator with Force Feedback for Medical Training.”
In Medicine Meets Virtual Reality, pp. 97–102. Amsterdam: IOS Press, 2001.

[Danielsson 80] P. E. Danielsson. “Euclidean Distance Mapping.” Computer Graphics
and Image Processing 14 (1980), 227–248.

[Darken et al. 97] R. Darken, W. Cockayne, and D. Carmein. “The Omni-Directional
Treadmill: A Locomotion Device for Virtual Worlds.” In Proc. UIST, pp. 213–221.
New York: ACM Press, 1997.

[d’Aulignac et al. 00] Diego d’Aulignac, Remis Balaniuk, and Christian Laugier. “A
Haptic Interface for a Virtual Exam of a Human Thigh.” In Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 2452–2457. Washing-
ton, D.C.: IEEE Computer Society, 2000.

[Delingette 98] H. Delingette. “Toward Realistic Soft-Tissue Modeling in Medical Sim-
ulation.” Proceedings of the IEEE 86:3 (1998), 512–523.

[van den Bergen 97] G. van den Bergen. “Efficient Collision Detection of Complex De-
formable Models using AABB Trees.” J. Graphics Tools 2:4 (1997), 1–14.

[Denny 03] M. Denny. “Solving Geometric Optimization Problems using Graphics Hard-
ware.” Computer Graphics Forum 22:3 (2003), 441–451.

[Desbrun et al. 99] M. Desbrun, P. Schröder, and A. Barr. “Interactive Animation of
Structured Deformable Objects.” In Proc. of Graphics Interface ’99, pp. 1–8. San
Francisco, CA: Morgan Kaufmann, 1999.

[Desoer and Vidyasagar 75] C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-
Output Properties. New York: Academic Press, 1975.

[Deutsch et al. 01] Judith Deutsch, Jason Latonio, Grigore Burdea, and Rares Boian.
“Post-Stroke Rehabilitation with the Rutgers Ankle System: A Case Study.” Pres-
ence 10:4 (2001), 416–430.

[di Pellegrino et al. 97] G. di Pellegrino, E. Làdavas, and A. Farnè. “Seeing Where Your
Hands Are.” Nature 388 (1997), 730.

[DiFranco et al. 97] D. E. DiFranco, G. L. Beauregard, and M. A. Srinivasan. “The
Effect of Auditory Cues on the Haptic Perception of Stiffness in Virtual Environ-
ments.” In Proceedings of the ASME Dynamic Systems and Control Division,
pp. 17–22. New York: ASME, 1997



�

�

�

�

�

�

�

�

560 Bibliography

[Diller 01] T. T. Diller. “Frequency Response of Human Skin in Vivo to Mechanical
Stimulation.” Master’s thesis, Massachusettes Institute of Technology, Cambridge,
MA, 2001.

[DiMaio and Salcudean 03] S. P. DiMaio and S. E. Salcudean. “Needle Insertion Model-
ing and Simulation.” IEEE Transactions on Robotics and Automation 19:5 (2003),
864–875.

[Diolaiti and Niemeyer 06] Nicola Diolaiti and Günter Niemeyer. “Wave Haptics: Pro-
viding Stiff Coupling to Virtual Environments.” In IEEE Symposium on Haptic
Interfaces, pp. 185–192. Washington, D.C.: IEEE Computer Society, 2006.

[Diolaiti et al. 06] Nicola Diolaiti, Günter Niemeyer, Federico Barbagli, and J. Kenneth
Salisbury. “Stability of Haptic Rendering: Discretization, Quantization, Time-
Delay and Coulomb Effects.” IEEE Transactions on Robotics 22 (2006), 256–268.

[Dobkin and Kirkpatrick 90] D. P. Dobkin and D. G. Kirkpatrick. “Determining the
Separation of Preprocessed Polyhedra: A Unified Approach.” In Proc. 17th Inter-
nat. Colloq. Automata Lang. Program., Lecture Notes in Computer Science, 443,
pp. 400–413. New York: Springer-Verlag, 1990.

[Dobkin et al. 93] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. “Computing
the Intersection-Depth of Polyhedra.” Algorithmica 9 (1993), 518–533.

[Drewing et al. 04] K. Drewing, M. O. Ernst, S. J. Lederman, and R. L. Klatzky.
“Roughness and Spatial Density Judgments on Visual and Haptic Textures us-
ing Virtual Reality.” In EuroHaptics Conference, pp. 203–206. Washington, D.C.:
IEEE Computer Society, 2004.

[Driver and Spence 04] J. Driver and C. Spence. “Crossmodal Spatial Attention: Evi-
dence from Human Performance.” In Crossmodal Space and Crossmodal Attention,
edited by C. Spence & J. Driver, pp. 179–220. Oxford, UK: Oxford University Press,
2004.

[Dupont et al. 00] P. Dupont, B. Armstrong, and V. Hayward. “Elasto-Plastic Fric-
tion Model: Contact Compliance and Stiction.” In Proceedings American Control
Conference, pp. 1072–1077. Washington, D.C.: IEEE Computer Society, 2000.

[Dupont et al. 02] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter. “Single
State Elasto-Plastic Friction Models.” IEEE Transactions on Automatic Control
47:5 (2002), 787–792.

[Duriez et al. 03] C. Duriez, C. Andriot, and A. Kheddar. “Interactive Haptics for
Virtual Prototyping of Deformable Objects: Snap-In Tasks Case.” In EUROHAP-
TICS. Washington, D.C.: IEEE Computer Society, 2003.

[Duriez et al. 04] C. Duriez, C. Andriot, and A. Kheddar. “A Multi-Threaded Ap-
proach for Deformable/Rigid Contacts with Haptic Feedback.” In Proc. of Haptics
Symposium, pp. 272–279. Washington, D.C.: IEEE Computer Society, 2004.

[Duriez et al. 06] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot. “Realistic Haptic
Rendering of Interacting Deformable Objects in Virtual Environments.” IEEE
Transactions on Visualization and Computer Graphics 12 (2006), 36–47.

[Dworkin and Zeltzer 93] P. Dworkin and D. Zeltzer. “A New Model for Efficient Dy-
namics Simulation.” Proceedings Eurographics Workshop on Animation and Sim-
ulation, pp. 175–184. New York: Springer-Verlag, 1993.

[Edelsbrunner 83] H. Edelsbrunner. “A New Approach to Rectangle Intersections, Part
I.” Internat. J. Comput. Math. 13 (1983), 209–219.

[Ehmann and Lin 00] S. Ehmann and M. C. Lin. “Accelerated Proximity Queries
Between Convex Polyhedra Using Multi-Level Voronoi Marching.” In Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2101–
2106. Washington, D.C.: IEEE Computer Society, 2000.



�

�

�

�

�

�

�

�

Bibliography 561

[Ehmann and Lin 01] S. Ehmann and M. C. Lin. “Accurate and Fast Proximity Queries
Between Polyhedra Using Convex Surface Decomposition.” Computer Graphics
Forum (Proc. of Eurographics’2001) 20:3 (2001), 500–510.

[Ehrsson et al. 04] H. H. Ehrsson, C. Spence, and R. E. Passingham. “That’s My Hand!
Activity in Premotor Cortex Reflects Feeling of Ownership of a Limb.” Science 305
(2004), 875–877.

[Ehrsson et al. 07] H. H. Ehrsson, K. Wiech, N. Weiskopf, R. J. Dolan, and R. Pass-
ingham. “Threatening a Rubber Hand That You Feel Is Yours Elicits a Cortical
Anxiety Response.” Proceedings of the National Academy of Sciences, USA 104
(2007), 9828–9833.

[El-Sana and Varshney 00] J. El-Sana and A. Varshney. “Continuously-Adaptive Haptic
Rendering.” In Virtual Environments 2000, pp. 135–144. New York: Springer-
Verlag, 2000.

[Ellis et al. 96] R. E. Ellis, N. Sarkar, and M. A. Jenkins. “Numerical Methods For the
Haptic Presentation of Contact: Theory, Simulations, and Experiments.” Proceed-
ings of the ASME Dynamic Systems and Control Division 58 (1996), 413–420.

[Ellis et al. 97] R.E. Ellis, N. Sarkar, and M. A. Jenkins. “Numerical Methods for the
Force Reflection of Contact.” ASME Transactions on Dynamic Systems, Modeling,
and Control 119:4 (1997), 768–774.

[Erickson et al. 99] J. Erickson, L. Guibas, J. Stolfi, and L. Zhang. “Separation Sen-
sitive Collision Detection for Convex Objects.” In Proc. of SODA, pp. 327–336.
Philadelphia, PA: SIAM, 1999.

[Ericson 04] C. Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan
Kaufmann, 2004.

[Eriksson et al. 05] M. Eriksson, H. Flemmer, and J. Wikander. “A Haptic and Virtual
Reality Skull Bone Surgery Simulator.” In Proceedings of World Haptics, 2005.

[Ernst and Banks 02] M. O. Ernst and M. S. Banks. “Humans Integrate Visual and
Haptic Information in a Statistically Optimal Fashion.” Nature 415 (2002), 429–
433.

[Ezawa and Okamoto 89] Y. Ezawa and N. Okamoto. “High-Speed Boundary Element
Contact Stress Analysis using a Super Computer.” In Proc. of the 4th International
Conference on Boundary Element Technology, pp. 405–416. Southampton, UK:
WIT Press, 1989.

[Farnè and Làdavas 00] A. Farnè and E. Làdavas. “Dynamic Size-Change of Hand
Peripersonal Space Following Tool Use.” NeuroReport 11 (2000), 1645–1649.

[Farnè et al. 03] A. Farnè, M. L. Demattè, and E. Làdavas. “Beyond the Window:
Multisensory Representation of Peripersonal Space across a Transparent Barrier.”
International Journal of Psychophysiology 50 (2003), 51–61.

[Felippa 00] C. A. Felippa. “A Systematic Approach to the Element-Independent Coro-
tational Dynamics of Finite Elements.” Technical Report, Center for Aerospace
Structures, 2000.

[Feuser et al. 05] J. Feuser, O. Ivlev, and A. Gräser. “Collision Prevention for Reha-
bilitation Robots with Mapped Virtual Reality.” iN Proceedings of the 9th Inter-
national Conference on Rehabilitation Robotics, pp. 461–464. Washington, D.C.:
IEEE Computer Society, 2005.

[Fiene and Kuchenbecker 07] J. Fiene and K. J. Kuchenbecker. “Shaping Event-Based
Haptic Transients Via an Improved Understanding of Real Contact Dynamics.”
In Proceedings of the Second Joint Eurohaptics Conference and IEEE Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems (World
Haptics), pp. 170–175. Washington, D.C.: IEEE Computer Society, 2007.



�

�

�

�

�

�

�

�

562 Bibliography

[Fiene and Niemeyer 06] J. Fiene and G. Niemeyer. “Event-Based Haptic Representa-
tion of Small Surface Features.” In Proceedings of the ASME International Me-
chanical Engineering Congress and Exposition. New York: ASME, 2006.

[Fiene et al. 06] J. Fiene, K. J. Kuchenbecker, and G. Niemeyer. “Event-Based Haptic
Tapping with Grip Force Compensation.” In Proceedings of the 14th IEEE Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pp. 117–123. Washington, D.C.: IEEE Computer Society, 2006.

[Finch et al. 95] M. Finch, V. Chi, and R. M. Taylor II. “Surface Modification Tools in
a Virtual Environment Interface to a Scanning Probe Microscope.” In Proceedings
of the ACM Symposium on Interactive 3D Graphics, pp. 20–25. New York: ACM
Press, 1995.

[Fischer and Gotsman 05] I. Fischer and C. Gotsman. “Fast Approximation of High
Order Voronoi Diagrams and Distance Transforms on the GPU.” Technical report
CS TR-07-05, Harvard University, 2005.

[Fisher and Lin 01] S. Fisher and M. C. Lin. “Deformed Distance Fields for Simulation
of Non-Penetrating Flexible Bodies.” In Proc. of EG Workshop on Computer
Animation and Simulation, pp. 99–111. New York: Springer-Verlag, 2001.

[Foskey et al. 02] M. Foskey, M. A. Otaduy, and M. C. Lin. “ArtNova: Touch-Enabled
3D Model Design.” In Proc. of IEEE Virtual Reality Conference, pp. 119–126.
Washington, D.C.: IEEE Computer Society, 2002.

[Franzén 66] O. Franzén. “On Summation: A Psychophysical Study of the Tactual
Sense.” In Quarterly Progress and Status Report, Speech Transmission Laboratory,
pp. 14–25. Stockholm, Sweden: Roayl Institute of Technology, 1966.

[Frey et al. 06] M. Frey, G. Colombo, M. Vaglio, R. Bucher, M. Jörg, and R. Riener. “A
Novel Mechatronic Body Weight Support System.” IEEE Transactions of Neural
Systems and Rehabilitation Engineering 14:3 (2006), 311–321.

[Frisken et al. 00] S. Frisken, R. Perry, A. Rockwood, and R. Jones. “Adaptively Sam-
pled Distance Fields: A General Representation of Shapes for Computer Graphics.”
In Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings, Annual Con-
ference Series, edited by Kurt Akeley, pp. 249–254. Reading, MA: Addison-Wesley,
2000.

[Frisoli et al. 06] A. Frisoli, F. Barbagli, E. Ruffaldi, K. Salisbury, and M. Bergamasco.
“A Limit-Curve Based Soft Finger god-object Algorithm.” In Haptic Interfaces for
Virtual Environment and Teleoperator Systems, 2006 14th Symposium on Haptics,
pp. 217–223. Washington, D.C.: IEEE Computer Society, 2006.

[Fritz and Barner 96a] J. P. Fritz and K. E. Barner. “Haptic Scientific Visualization.”
Proceedings of the First PHANToM Users Group Workshop, 1996.

[Fritz and Barner 96b] J. Fritz and K. Barner. “Stochastic Models for Haptic Tex-
ture.” In Proceedings of the SPIE International Symposium on Intelligent Systems
and Advanced Manufacturing - Telemanipulator and Telepresence Technologies III.
Bellingham, WA: SPIE, 1996.

[Fritz 96] J. P. Fritz. “Haptic Rendering Techniques for Scientific Visualization.” Ph.D.
thesis, Electrical Engineering, University of Delaware, 1996.

[Fuhrmann et al. 03] A. Fuhrmann, C. Gross, and V. Luckas. “Interactive Animation of
Cloth including Self Collision Detection.” Journal of WSCG 11:1 (2003), 203–208.

[Furusho et al. 05] J. Furusho, K. Koyanagi, K. Nakanishi, Y. Fujii, K. Domen,
K. Miyakoshi, U. Ryu, S. Takenaka, and A. Inoue. “A 3-D Exercise Machine for
Upper-Limb Rehabilitation Using ER Actuators with High Safety.” In Proceedings
of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
pp. 455–460. Washington, D.C.: IEEE Computer Society, 2005.



�

�

�

�

�

�

�

�

Bibliography 563

[Gaba et al. 98] D. Gaba, S. Howard, B. Flanagan, B. Smith K. Fish, and R. Botney.
“Assessment of Clinical Performance during Simulated Crises using Both Technical
and Behavioral Ratings.” Anesthesiology 89:1 (1998), 8–18.

[Galfano and Pavani 05] G. Galfano and F. Pavani. “Long-Lasting Capture of Tactile
Attention by Body Shadows.” Experimental Brain Research 166 (2005), 518–527.

[Galoppo et al. 06] N. Galoppo, M. A. Otaduy, P. Mecklenburg, M. Gross, and M. C.
Lin. “Fast Simulation of Deformable Models in Contact Using Dynamic Defor-
mation Textures.” In Proc. of ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pp. 73–82. Aire-la-Ville, Switzerland: Eurographics Associ-
ation, 2006.

[Galoppo et al. 07a] N. Galoppo, M. A. Otaduy, S. Tekin, M. Gross, and M. C. Lin.
“Soft Articulated Characters with Fast Contact Handling.” In Proc. of Eurograph-
ics, pp. 243–253. Aire-la-Ville, Switzerland: Eurographics Association, 2007.

[Galoppo et al. 07b] N. Galoppo, S. Tekin, M. A. Otaduy, M. Gross, and M. C. Lin.
“Interactive Haptic Rendering of High-Resolution Deformable Objects.” In Proc.
of HCI International, pp. 215–223. New York: Springer-Verlag, 2007.

[Gamzu and Ahissar 01] E. Gamzu and E. Ahissar. “Importance of Temporal Cues
for Tactile Spatial-Frequency Discrimination.” The Journal of Neuroscience 21:18
(2001), 7416–7427.

[Garcia-Alonso et al. 94] A. Garcia-Alonso, N. Serrano, and J. Flaquer. “Solving the
Collision Detection Problem.” IEEE Computer Graphics and Applications 14:3
(1994), 36–43.

[Garland and Heckbert 97] M. Garland and P. S. Heckbert. “Surface Simplification us-
ing Quadric Error Metrics.” In Proceedings of SIGGRAPH 97, Computer Graphics
Proceedings, Annual Conference Series, edited by Turner Whitted, pp. 209–216.
Reading, MA: Addison Wesley, 1997.

[Gauss 29] K. F. Gauss. “Uber ein neues allgemeines Grundgesatz der Mechanik.” Jour-

nal f’́ur die Reine und Angewandte Mathematik 4 (1829), 232–235.

[Gibson et al. 97] S. F. Gibson, J. Samosky, A. Mor, C. Fyock, W. E. L. Grimson,
T. Kanade, R. Kikinis, H. C. Lauer, N. McKenzie, S. Nakajima, T. Ohkami, R. Os-
borne, and A. Sawad. “Simulating Arthroscopic Knee Surgery using Volumetric
Object Representations, Real-Time Volume Rendering and Haptic Feedback.” In
Proceedings of CVRMed-MRCAS, pp. 369–378. London: Springer-Verlag, 1997.

[Gibson 95] S. F. Gibson. “Beyond Volume Rendering: Visualization, Haptic
Exploration and Physical Modeling of Voxel-based Objects.” Technical Report
TR 95-004, MERL, 1995.

[Gibson 97] S. F. Gibson. “3D ChainMail: A Fast Algorithm for Deforming Volumetric
Objects.” In ACM Symposium on Interactive 3D Graphics, pp. 149–154. New York:
ACM Press, 1997.

[Gibson 98a] S. Gibson. “Using Distance Maps for Smooth Representation in Sampled
Volumes.” In Proc. of IEEE Volume Visualization Symposium, pp. 23–30. Wash-
ington, D.C.: IEEE Computer Society, 1998.

[Gibson 98b] S. F. Gibson. “Volumetric Object Modeling for Surgical Simulation.”
Medical Image Analysis 2:2 (1998), 121–132.

[Giess et al. 98] C. Giess, H. Evers, and H. Meinzer. “Haptic Volume Rendering in Dif-
ferent Scenarios of Surgical Planning.” In Third PHANToM Users Group Work-
shop, 1998.



�

�

�

�

�

�

�

�

564 Bibliography

[Gilbert and Ong 94] E.G. Gilbert and C.J. Ong. “New Distances for the separation and
penetration of objects.” In Proceedings of International Conference on Robotics
and Automation, pp. 579–586. Washington, D.C.: IEEE Computer Society, 1994.

[Gilbert et al. 88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A Fast Procedure
for Computing the Distance between Objects in Three-Dimensional Space.” IEEE
J. Robotics and Automation RA-4 (1988), 193–203.

[Gillespie and Cutkosky 96] R. Brent Gillespie and Mark R. Cutkosky. “Stable User-
Specific Haptic Rendering of the Virtual Wall.” In ASME International Mechanical
Engineering Conference and Exposition, DSC, pp. 397–406. New York: ASME,
1996.

[Gillespie and Rosenberg 94] B. Gillespie and L. Rosenberg. “Design of High-fidelity
Haptic Display for One-dimensional Force Reflection Applications.” In Telemanip-
ulator and Telepresence Technology, Proceedings of the SPIE East Coast Confer-
ence, pp. 44–54. Bellingham, WA: SPIE, 1994.

[Girone et al. 01] M. Girone, G. Burdea, M. Bouzit, V. G. Popescu, and J. Deutsch. “A
Stewart Platform-based System for Ankle Telerehabilitation.” Autonomous Robots,
Special Issue on Personal Robotics (invited article) 10 (2001), 203–212.

[Glassmire 06] John Glassmire. “Study and Design of a Variable Friction Haptic Dis-
play.” Master’s thesis, Northwestern University, Evanston, IL, 2006.

[Golub and Loan 96] Gene H. Golub and Charles F. Van Loan. Matrix Computations,
Third edition. Baltimore and London: Johns Hopkins University Press, 1996.

[Gorman et al. 00] P. Gorman, T. Krummel, and R. Webster et al. “A Prototype Haptic
Lumbar Puncture Simulator.” In Proc MMVR, pp. 106–108. Amsterdam: IOS
Press, 2000.

[Gosline et al. 06] A. H. Gosline, G. Campion, and V. Hayward. “On the Use of Eddy
Current Brakes as Tunable, Fast Turn-On Viscous Dampers For Haptic Rendering.”
In Proceedings of Eurohaptics, pp. 229–234. Washington, D.C.: IEEE Computer
Society, 2006.

[Gosselin et al. 05] F Gosselin, T Jouan, J Brisset, and C Andriot. “Design of a Wear-
able Haptic Interface for Precise Finger Interactions in Large Virtual Environ-
ments.” In Haptic Interfaces for Virtual Environment and Teleoperator Systems,
2005. WHC 2005. First World Haptics Congress, pp. 202–207. Washington, D.C.:
IEEE Computer Society, 2005.

[Gossweiler et al. 93] R. Gossweiler, C. Long, S. Koga, and R. Pausch. “DIVER: A
DIstributed Virtual Environment Research Platform.” IEEE Symposium on Re-
search Frontiers in Virtual Reality, pp. 10–15. Washington, D.C.: IEEE Computer
Society, 1993.

[Gottschalk et al. 96] S. Gottschalk, M. Lin, and D. Manocha. “OBB-Tree: A Hierar-
chical Structure for Rapid Interference Detection.” In Proceedings of SIGGRAPH
96, Computer Graphics Proceedings, Annual Conference Series, edited by Holly
Rushmeier, pp. 171–180. Reading, MA: Addison Wesley, 1996.

[Gottschalk 99] S. Gottschalk. “Collision Queries using Oriented Bounding Boxes.”
PhD Thesis, The University of North Carolina at Chapel Hill, 1999.

[Govindaraju et al. 04] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha.
“Fast Computation of Database Operations using Graphics Processors.” In Proc.
of ACM SIGMOD. New York: ACM Press, 2004.

[Govindaraju et al. 05] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul,
Rasmus Tamstorf, Russell Gayle, Ming Lin, and Dinesh Manocha. “Interactive
Collision Detection between Deformable Models using Chromatic Decomposition.”
Proc. SIGGRAPH ’05, Transactions on Graphics 24:3 (2005) 991–999.



�

�

�

�

�

�

�

�

Bibliography 565

[Govindaraju et al. 06] N. Govindaraju, I. Kabul, M. C. Lin, and D. Manocha. “Fast
Continuous Collision Detection among Deformable Models using Graphics Proces-
sors.” In Proc. of Eurographics Symposium on Virtual Environments, pp. 5–14.
Aire-la-Ville, Switzerland: Eurographics Association, 2006.

[Govindaraju et al. 07] N. Govindaraju, I. Kabul, M. C. Lin, and D. Manocha. “Fast
Continuous Collision Detection among Deformable Models using Graphics Proces-
sors.” Computers & Graphics 31:1 (2007), 5–14.

[Gratton et al. 92] G. Gratton, M. G. Coles, and E. Donchin. “Optimizing the Use of In-
formation: Strategic Control of Activation of Responses.” Journal of Experimental
Psychology: General 121 (1992), 480–506.

[Graziano and Botvinick 02] M. S. A. Graziano and M. M. Botvinick. “How the Brain
Represents the Body: Insights from Neurophysiology and Psychology.” In Attention
and Performance XIX: Common Mechanisms in Perception and Action, edited by
W. Prinz and B. Hommel, pp. 136–157. Oxford, UK: Oxford University Press, 2002.

[Graziano and Gross 93] M. S. A. Graziano and C. G. Gross. “A Bimodal Map of Space:
Somatosensory Receptive Fields in the Macaque Putamen with Corresponding Vi-
sual Receptive Fields.” Experimental Brain Research 97 (1993), 96–109.

[Graziano et al. 94] M. S. A. Graziano, G. S. Yap, and C. G. Gross. “Coding of Visual
Space by Premotor Neurons.” Science 266 (1994), 1054–1057.

[Graziano et al. 97] M. S. A. Graziano, X. T. Hu, and C. G. Gross. “Coding the Loca-
tions of Objects in the Dark.” Science 277 (1997), 239–241.

[Graziano et al. 00] M. S. A. Graziano, D. F. Cooke, and C. S. R. Taylor. “Coding the
Location of the Arm by Sight.” Science 290 (2000), 1782–1786.

[Graziano 99] M. S. A. Graziano. “Where Is My Arm? The Relative Role of Vision and
Proprioception in the Neuronal Representation of Limb Position.” Proceedings of
the National Acadamy of Sciences USA 96 (1999), 10418–10421.

[Green and Salisbury 97] D. F. Green and J. K. Salisbury. “Texture Sensing and Sim-
ulation Using the PHANToM: Towards Remote Sensing of Soil Properties.” In
Proceedings of the Second PHANToM Users Group Workshop, 1997.

[Green et al. 91] P.E. Green, T.A. Piantanida, J.W. Hill, I.B. Simon, and R.M. Satava.
“Telepresence: Dexterous Procedures in a Virtual Operating Field.” Amer Surg 57
(1991), 192.

[Greenish et al. 02] S. Greenish, V. Hayward, T. Steffen, V. Chial, and A. M. Okamura.
“Measurement, Analysis and Display of Haptic Signals During Surgical Cutting.”
Presence 11:6 (2002), 626–651.

[Gregory et al. 98] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. “Real-Time Col-
lision Detection for Haptic Interaction Using a 3-DoF Force Feedback Device.”
Technical report, Department of Computer Science, University of North Carolina,
1998. A preliminary version of this paper appeared in the Proceedings of IEEE
VR’99.

[Gregory et al. 99a] A. Gregory, S. Ehmann, and M. C. Lin. “inTouch: Interactive
Multiresolution Modeling and 3D Painting with a Haptic Interface.” Technical
report, Department of Computer Science, University of North Carolina, 1999.

[Gregory et al. 99b] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. “H-COLLIDE:
A Framework for Fast and Accurate Collision Detection for Haptic Interaction.”
In Proceedings of Virtual Reality Conference 1999, pp. 38–45. Washington, D.C.:
IEEE Computer Society, 1999.



�

�

�

�

�

�

�

�

566 Bibliography

[Gregory et al. 00a] A. Gregory, S. Ehmann, and M. C. Lin. “inTouch: Interactive
Multiresolution Modeling and 3D Painting with a Haptic Interface.” In Proc. of
IEEE VR Conference, pp. 45–52. Washington, D.C.: IEEE Computer Society, 2000.

[Gregory et al. 00b] A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, and D. Manocha.
“Six Degree-of-Freedom Haptic Display of Polygonal Models.” In Proc. of IEEE
Visualisation, pp. 139–146. Washington, D.C.: IEEE Computer Society, 2000.

[Groh and Sparks 96] J. M. Groh and D. L. Sparks. “Saccades to Somatosensory Tar-
gets. 2. Motor Convergence in Primate Superior Colliculus.” Journal of Neurophys-
iology 75 (1996), 428–438.

[Grow and Hollerbach 06] D. I. Grow and J. M. Hollerbach. “Harness Design and Cou-
pling Stiffness for Two-Axis Torso Haptics.” In Proc. Symposium on Haptic Inter-
faces for Virtual Environments and Teleoperation, pp. 83–88. Washington, D.C.:
IEEE Computer Society, 2006.

[Guendelman et al. 03] E. Guendelman, R. Bridson, and R. Fedkiw. “Nonconvex Rigid
Bodies with Stacking.” Proc. SIGGRAPH ’03, Transactions on Graphics 22:3
(2003), 871–878.

[Guest et al. 02] S. Guest, C. Catmur, D. Lloyd, and C. Spence. “Audiotactile Interac-
tions in Roughness Perception.” Experimental Brain Research 146 (2002), 161–171.

[Guibas et al. 99] L. Guibas, D. Hsu, and L. Zhang. “H-Walk: Hierarchical Distance
Computation for Moving Convex Bodies.” In Proc. of ACM Symposium on Com-
putational Geometry, pp. 265–273. New York: ACM Press, 1999.

[Guskov et al. 99] I. Guskov, W. Sweldens, and P. Schroder. “Multiresolution Signal
Processing for Meshes.” In Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, edited by Alyn Rockwood, pp. 325–334.
Reading, MA: Addison Wesley Longman, 1999.

[Hager 89] William W. Hager. “Updating the Inverse of a Matrix.” SIAM Review 31:2
(1989), 221–239.

[Hagmann et al. 04] E. Hagmann, P. Rouiller, P. Helmer, S. Grangea, and C. Baur.
“A Haptic Guidance Tool for CT-Directed Percutaneous Interventions.” In Engi-
neering in Medicine and Biology Society, pp. 2746–2749. Washington, D.C.: IEEE
Computer Society, 2004.

[Halttunen and Tuikka 00] V. Halttunen and T. Tuikka. “Augmenting Virtual Pro-
totyping with Physical Objects.” In Proceedings of the Working Conference on
Advanced Visual Interfaces, pp. 305–306. New York: ACM Press, 2000.

[Hannaford et al. 01] Blake Hannaford, Jee-Hwan Ryu, and Yoon S. Kim. “3 - Stable
Control of Haptics.” In Touch in Virtual Environments: Proceedings USC Work-
shop on Haptic Interfaces, edited by Margret McLaughlin. Upper Saddle River,
NJ: Prentice Hall, 2001.

[Hansen and Larsen 98] K. V. Hansen and O. V. Larsen. “Using Region-of-Interest
Based Finite Element Modeling for Brain-Surgery Simulation.” Lecture Notes in
Computer Science 1496 (1998), 305–316.

[Harders and Szekely 03] Matthias Harders and Gabor Szekely. “Enhancing Human
Computer Interaction in Medical Segmentation.” Proceedings of the IEEE, Special
Issue on Multimodal Human Computer Interfaces 91:9 (2003), 1430–1442.

[Harders et al. 02] Matthias Harders, Simon Wildermuth, and Gabor Szekely. “New
Paradigms for Interactive 3D Volume Segmentation.” Journal of Visualization and
Computer Animation 13 (2002), 85–95.



�

�

�

�

�

�

�

�

Bibliography 567

[Harders et al. 07] M. Harders, U. Spaelter, P. Leskovsky, G. Szekely, and H. Bleuler.
“Haptic Interface Module for Hysteroscopy Simulator System.” In Proc. of
Medicine Meets Virtual Reality, pp. 167–169. Amsterdam: IOS Press, 2007.

[Harris 63] C. S. Harris. “Adaptation to Displaced Vision: Visual, Motor, or Proprio-
ceptive Change?” Science 140 (1963), 812–813.

[Hartmann 85] Friedel Hartmann. The Mathematical Foundation of Structural Mechan-
ics. New York: Springer-Verlag, 1985.

[Harwin and Wall 99] W. S. Harwin and S. A. Wall. “Mechatronic Design of a High
Frequency Probe for Haptic Interaction.” In Proceedings 6th International Confer-
ence on Mechatronics and Machine Vision in Practice, pp. 111–118. Washington,
D.C.: IEEE Computer Society, 1999.

[Hasegawa and Sato 04] S. Hasegawa and M. Sato. “Real-Time Rigid Body Simulation
for Haptic Interactions Based on Contact Volume of Polygonal Objects.” In Proc.
of EUROGRAPHICS’04, pp. 529–538. Aire-la-Ville, Switzerland: Eurographics
Association, 2004.

[Hashimoto et al. 94] H. Hashimoto, M. Boss, Y. Kuni, and F. Harashima. “Intelligent
Cooperative Manipulation System using Dynamic Force Simulator.” In Proc. IEEE
International Conference on Robotics and Automation, pp. 2598–2603. Washing-
ton, D.C.: IEEE Computer Society, 1994.

[Hasser and Cutkosky 02] C. J. Hasser and M. R. Cutkosky. “System Identification
of the Human Hand Grasping a Haptic Knob.” In Proc. of Haptics Symposium,
pp. 180–189. Washington, D.C.: IEEE Computer Society, 2002.

[Hauth and Strasser 03] M. Hauth and W. Strasser. “Corotational Simulation of De-
formable Solids.” Journal of WSCG 12:1-3 (2003), 137–145.

[Hay et al. 65] J. C. Hay, Jr. H. L. Pick, and K. Ikeda. “Visual Capture Produced by
Prism Spectacles.” Psychonomic Science 2 (1965), 215–216.

[Hayward and Armstrong 00] V. Hayward and B. Armstrong. “A New Computational
Model Of Friction Applied To Haptic Rendering.” In Experimental Robotics VI,
Lecture Notes in Control and Information Sciences, 250, edited by P. Corke and
J. Trevelyan, pp. 403–412. New York: Springer-Verlag, 2000.

[Hayward and Astley 96] V. Hayward and O. R. Astley. “Performance Measures for
Haptic Interfaces.” In Robotics Research: The 7th International Symposium, edited
by G. Giralt and G. Hirzinger, pp. 195–207. New York: Springer Verlag, 1996.

[Hayward and Cruz-Hernandez 00] V. Hayward and J. Cruz-Hernandez. “Tactile Dis-
play Device using Distributed Lateral Skin Stretch.” In Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, pp. 1309–1314. New
York: ASME, 2000.

[Hayward et al. 97] V. Hayward, P. Gregorio, O. Astley, S. Greenish, M. Doyon,
L. Lessard, J. McDougall, I. Sinclair, S. Boelen, X. Chen, J.-P. Demers, J. Poulin,
I. Benguigui, N. Almey, B. Makuc, and X. Zhang. “Freedom-7: A High Fidelity
Seven Axis Haptic Device with Application to Surgical Training.” In International
Symposium on Experimental Robotics, pp. 445–456. London: Springer-Verlag, 1997.

[Head and Holmes 11] H. Head and G. Holmes. “Sensory Disturbances from Cerebral
Lesions.” Brain 34 (1911), 102–254.

[Heidelberger et al. 04] B. Heidelberger, M. Teschner, R. Keisner, M. Mueller, and
M. Gross. “Consistent Penetration Depth Estimation for Deformable Collision
Response.” In Proc. of Vision, Modeling and Visualization, pp. 315–322. Berlin:
Akademische Verlagsgesellschaft, 2004.



�

�

�

�

�

�

�

�

568 Bibliography

[Held and Durlach 93] R. Held and N. Durlach. “Telepresence, Time Delay and Adap-
tation.” In Pictorial Communication in Virtual and Real Environments, edited by
S. R. Ellis, M. K. Kaiser, and A. C. Grunwald, pp. 232–246. London: Taylor and
Francis, 1993.

[Held et al. 95] M. Held, J.T. Klosowski, and J.S.B. Mitchell. “Evaluation of Collision
Detection Methods for Virtual Reality Fly-Throughs.” In Canadian Conference on
Computational Geometry, pp. 205–210, 1995.

[Held et al. 96] M. Held, J. Klosowski, and J. S. B. Mitchell. “Real-Time Collision
Detection for Motion Simulation within Complex Environments.” In Proc. ACM
SIGGRAPH ’96 Visual Proceedings, p. 151. New York: ACM Press, 1996.

[Herzen et al. 90] B. V. Herzen, A. H. Barr, and H. R. Zatz. “Geometric Collisions for
Time-Dependent Parametric Surfaces.” Computer Graphics 24:4 (1990), 39–48.

[Ho et al. 99] C. Ho, C. Basdogan, and M. A. Srinivasan. “An Efficient Haptic Ren-
dering Technique for Displaying 3D Polyhedral Objects and Their Surface Details
in Virtual Environments.” Presence: Teleoperators and Virtual Environments 8:5
(1999), 477–491.

[Ho et al. 00] C. Ho, C. Basdogan, and M. A. Srinivasan. “Ray-based Haptic Render-
ing: Interactions Between a Line Probe and 3D Objects in Virtual Environments.”
International Journal of Robotics Research 19:7 (2000), 668–683.

[Ho et al. 04] P. P. Ho, B. D. Adelstein, and H. Kazerooni. “Judging 2D versus 3D
Square-Wave Virtual Gratings.” In Proceedings of the 12th International Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pp. 176–183. Washington, D.C.: IEEE Computer Scoiety, 2004.

[Hoff et al. 99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. “Fast Computa-
tion of Generalized Voronoi Diagrams Using Graphics Hardw are.” In Proceedings
of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Proceed-
ings, pp. 277–286. Reading, MA: Addison Wesley Longman, 1999.

[Hoff et al. 01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. “Fast and Simple 2D
Geometric Proximity Queries using Graphics Hardware.” In Proc. of ACM Sym-
posium on Interactive 3D Graphics, pp. 145–148. New York: ACM Press, 2001.

[Hoff et al. 02] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. “Fast 3D Geometric
Proximity Queries Between Rigid and Deformable Models Using Graphics Hard-
ware Acceleration.” Technical Report TR02-004, Department of Computer Science,
University of North Carolina, 2002.

[Hoffmann 89] C. M. Hoffmann. Geometric and Solid Modeling. San Francisco, CA:
Morgan Kaufmann, 1989.

[Hogan and Krebs 04] N. Hogan and H. Krebs. “Interactive Robots for Neuro-
Rehabilitation.” Restorative Neurology and Neuroscience 22 (2004), 349–358.

[Hogan 85] N. Hogan. “Impedance Control: An Approach to Manipulation, Part I -
Theory, Part II - Implementation, Part III - Applications.” Journal of Dynamic
Systems, Measurement and Control 107 (1985), 1–24.

[Hollerbach et al. 97] J. Hollerbach, E. Cohen, W. Thompson, R. Freier, D. Johnson,
A. Nahvi, D. Nelson, and T. Thompson II. “Haptic Interfacing for Virtual Pro-
totyping of Mechanical CAD Designs.” In CDROM Proc. of ASME Design for
Manufacturing Symposium. New York: ASME, 1997.

[Hollerbach et al. 00] J. M. Hollerbach, Y. Xu, R. Christensen, and S. C. Jacobsen.
“Design Specifications for the Second Generation Sarcos Treadport Locomotion
Interface.” In Proc. ASME Dynamic Systems and Control Division, DSC-Vol.
69-2, pp. 1293–1298. New York: ASME, 2000.



�

�

�

�

�

�

�

�

Bibliography 569

[Hollerbach et al. 01] J. M. Hollerbach, R. Mills, D. Tristano, R. R. Christensen, W. B.
Thompson, and Y. Xu. “Torso Force Feedback Realistically Simulates Slope on
Treadmill-Style Locomotion Interfaces.” Intl. J. Robotics Research 12 (2001), 939–
952.

[Hollerbach et al. 03] J. M. Hollerbach, D. Checcacci, H. Noma, Y. Yanagida, and
N. Tetsutani. “Simulating Side Slopes on Locomotion Interfaces using Torso
Forces.” In Proc. 11th Symposium on Haptic Interfaces for Virtual Environments
and Teleoperation, pp. 91–98, 2003. Washington, D.C.: IEEE Computer Society,
2003.

[Hollerbach 02] J. M. Hollerbach. “Locomotion Interfaces.” In Handbook of Virtual En-
vironments: Design, Implementation, and Applications, edited by K.M. Stanney,
pp. 239–254. Philadelphia, PA: Lawrence Erlbaum Associates, Inc., 2002.

[Hollins and Risner 00] M. Hollins and S. R. Risner. “Evidence for the Duplex Theory
of Tactile Texture Perception.” Perception & Psychophysics 62 (2000), 695–716.

[Hollins et al. 98] M. Hollins, S. J. Bensmaia, and S. R. Risner. “The Duplex Theory
of Tactile Texture Perception.” In Proceedings of the Fourteenth Annual Meeting
of the International Society for Psychophysics, pp. 115–121, 1998.

[Hollins et al. 01] M. Hollins, S. J. Bensmaia, and S. Washburn. “Vibrotactile Adapta-
tion Impairs Discrimination of Fine, but Not Coarse, Textures.” Somatosensory &
Motor Research 18 (2001), 253–262.

[Hollins et al. 04] M. Hollins, A. Seeger, G. Pelli, and R. M. Taylor II. “Haptic Per-
ception of Virtual Surfaces: Scaling Subjective Qualities and Interstimulus Differ-
ences.” Perception 33 (2004), 1001–1019.

[Hollins et al. 05] M. Hollins, F. Lorenz, A. Seeger, and R. M. Taylor II. “Factors Con-
tributing to the Integration of Textural Qualities: Evidence from Virtual Surfaces.”
Somatosensory and Motor Research 22:193-206 (2005), 3.

[Holmes and Spence 04] N. Holmes and C. Spence. “The Body Schema and Multi-
sensory Representation(s) of Peripersonal Space.” Cognitive Processes 5 (2004),
94–105.

[Holmes and Spence 06] N. P. Holmes and C. Spence. “Beyond the Body Schema: Vi-
sual, Prosthetic, and Technological Contributions to Bodily Perception and Aware-
ness.” In Human Body Perception from the Inside Out, edited by G. Knoblich,
I. M. Thornton, M. Grosjean, and M. Shiffrar, pp. 15–64. Oxford, UK: Oxford
University Press, 2006.

[Holmes et al. 04a] N. P. Holmes, G. A. Calvert, and C. Spence. “Extending or Pro-
jecting Peripersonal Space with Tools? Multisensory Interactions Highlight Only
the Distal and Proximal Ends of Tools.” Neuroscience Letters 372 (2004), 62–67.

[Holmes et al. 04b] N. P. Holmes, G. Crozier, and C. Spence. “When Mirrors Lie: “Vi-
sual Capture” of Arm Position Impairs Reaching Performance.” Cognitive, Affec-
tive, & Behavioral Neuroscience 4 (2004), 193–200.

[Holmes et al. 06a] N. P. Holmes, D. Sanabria, G. A. Calvert, and C. Spence. “Cross-
ing the Hands Impairs Performance on a Nonspatial Multisensory Discrimination
Task.” Brain Research 1077 (2006), 108–115.

[Holmes et al. 06b] N. P. Holmes, D. Snijders, and C. Spence. “Reaching with Alien
Limbs: Visual Exposure to Prosthetic Hands Biases Proprioception without Ac-
companying Illusions of Ownership.” Perception & Psychophysics 68 (2006), 685–
701.

[Holmes et al. 07] N. P. Holmes, C. Spence, P. C. Hansen, C. E. Mackay, and G. A.
Calvert. “Tool Use: Directing an Attentional Spotlight on Human Visual Cortex.”
Submitted to Nature Neuroscience, 2007.



�

�

�

�

�

�

�

�

570 Bibliography

[Hopcroft et al. 83] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. “Efficient Detection
of Intersections among spheres.” The International Journal of Robotics Research
2:4 (1983), 77–80.

[Hoppe 96] Hugues Hoppe. “Progressive Meshes.” In Proceedings of SIGGRAPH 96,
Computer Graphics Proceedings, Annual Conference Series, edited by Holly Rush-
meier, pp. 99–108. Reading, MA: Addison Wesley, 1996.

[Hoppe 97] H. Hoppe. “View Dependent Refinement of Progressive Meshes.” In Pro-
ceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference
Series, edited by Turner Whitted, pp. 189–198. Reading, MA: Addison Wesley,
1997.

[Hoshino et al. 01] T. Hoshino, H. Ishigaki, Y. Konishi, K. Kondo, T. Suzuki, T. Saito,
N. Kakuta, A. Wagatsuma, and K. Mabuchi. “A Master-Slave Manipulation Sys-
tem with a Force-Feedback Function for Endoscopic Surgery.” In IEEE Conf.
Engineering in Medicine and Biology Society, pp. 3446–3449. Washington, D.C.:
IEEE Computer Society, 2001.

[Howe and Matsuoka 99] R. Howe and Y. Matsuoka. “Robotics for Surgery.” Annu.
Rev. Biomed. Eng. 1 (1999), 211–240.

[Howe et al. 95] R. Howe, W. Peine, D. Kontarinis, and J. Son. “Remote Palpation
Technology.” IEEE Engineering in Medicine and Biology 14:3 (1995), 318–323.

[Hsu et al. 98] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin. “On Finding
Narrow Passages with Probabilistic Roadmap Planners.” In Proc. of 3rd Workshop
on Algorithmic Foundations of Robotics, pp. 25–32. Natick, MA: A K Peters, 1998.

[Hubbard 93] P. M. Hubbard. “Interactive Collision Detection.” In Proceedings of IEEE
Symposium on Research Frontiers in Virtual Reality, pp. 24–32. Washington, D.C.:
IEEE Computer Society, 1993.

[Hubbard 94] P. Hubbard. “Collision Detection for Interactive Graphics Applications.”
Ph.D. thesis, Brown University, 1994.

[Hudson et al. 97] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. “V-
COLLIDE: Accelerated Collision Detection for VRML.” In Proc. of VRML Con-
ference, pp. 119–125. New York: ACM Press, 1997.

[Humphrey et al. 96] W. Humphrey, A. Dalke, and K. Schulten. “VMD: Visual Molec-
ular Dynamics.” Journal of Molecular Graphics 14 (1996), 33–38.

[Hunt and Crossley 75] K. H. Hunt and F. R. E. Crossley. “Coefficient of Restitution
Interpreted as Damping in Vibroimpact.” ASME Journal of Applied Mechanics
42:2 (1975), 440–445.

[Igarashi et al. 04] Y. Igarashi, N. Kitagawa, and S. Ichihara. “Vision of a Pictorial
Hand Modulates Visual-Tactile Interactions.” Cognitive, Affective, & Behavioral
Neuroscience 4 (2004), 182–192.

[Igarashi et al. 07] Y. Igarashi, N. Kitagawa, C. Spence, and S. Ichihara. “Assessing
the Influence of Schematic Drawings of Body Parts on Tactile Discrimination Per-
formance using the Crossmodal Congruency Task.” Acta Psychologica 124 (2007),
190–208.

[Ijsselsteijn et al. 05] W. A. Ijsselsteijn, Y. A. W. de Kort, and A. Haans. “Is This My
Hand I See Before Me? The Rubber Hand Illusion in Reality, Virtual Reality, and
Mixed Reality.” Presence 15 (2005), 455–464.

[Ikits et al. 03] M. Ikits, J. D. Brederson, C. D. Hansen, and C. R. Johnson. “A
Constraint-Based Technique for Haptic Volume Exploration.” In IEEE Visual-
ization, pp. 263–269. Washington, D.C.: IEEE Computer Society, 2003.



�

�

�

�

�

�

�

�

Bibliography 571

[Ikuta et al. 99] K. Ikuta, M. Takeichi, and T. Namiki. “Virtual Endoscope System with
Force Sensation.” In Intl Conference on Robotics and Automation, pp. 1715–1721.
Washington, D.C.: IEEE Computer Society, 1999.

[Ilic et al. 05] D. Ilic, T. Moix, B. Fracheboud, I. Vecerina, and H. Bleuler. “A Haptic
Interface for Interventional Radiology.” In ICRA, pp. 2944–2948. Washington, D.C.:
IEEE Computer Society, 2005.

[Iriki et al. 96] A. Iriki, M. Tanaka, and Y. Iwamura. “Coding of Modified Body Schema
during Tool Use by Macaque Postcentral Neurones.” NeuroReport 7 (1996), 2325–
2330.

[Irving et al. 04] G. Irving, J. Teran, and R. Fedkiw. “Invertible Finite Elements for
Robust Simulation of Large Deformation.” In Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, pp. 131–140. Aire-la-Ville, Switzerland: Eu-
rographics Association, 2004.

[Ishibashi et al. 04] H. Ishibashi, S. Obayashi, and A. Iriki. “Cortical Mechanisms of
Tool Use Subserved by Multisensory Integration.” In Handbook of Multisensory
Processes, edited by G. A. Calvert, C. Spence, and B. E. Stein, pp. 453–462. Cam-
bridge, MA: MIT Press, 2004.

[Ishii and Sato 94] M. Ishii and M. Sato. “A 3D Spatial Interface Device using Tensed
Strings.” Presence, 3:1 (1994), 81–86.

[Iwata and Fujii 96] H. Iwata and T. Fujii. “Virtual Perambulator: A Novel Interface
Device for Locomotion in Virtual Environment.” In Proc. of IEEE VRAIS, pp. 60–
65. Washington, D.C.: IEEE Computer Society, 1996.

[Iwata and Noma 93] H. Iwata and H. Noma. “Volume Haptization.” In Proc. of IEEE
Symp. on Research Frontiers in Virtual Reality, pp. 16–23. Washington, D.C.:
IEEE Computer Society, 1993.

[Iwata and Yoshida 99] H. Iwata and Y. Yoshida. “Path Reproduction Tests using a
Torus Treadmill.” Presence 8 (1999), 587–597.

[Iwata et al. 01a] H. Iwata, Y. Yano, and F. Nakaizumi. “GaitMater: A Versatile Lo-
comotion Interface for Uneven Virtual Terrain.” In Proc. of IEEE Virtual Reality,
pp. 131–137. Washington, D.C.: IEEE Computer Society, 2001.

[Iwata et al. 01b] H. Iwata, Y. Yano, F. Nakaizumi, and R. Kawamura. “Project
FEELEX: Adding Haptic Surface to Graphics.” In Proceedings of SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series, edited by E.
Fiume, pp. 469–475. Reading, MA: Addison-Wesley, 2001.

[Iwata et al. 04] H. Iwata, H. Yano, and H. Fukushima. “CirculaFloor.” IEEE Com-
puter Graphics and Aplications 25:1 (2004), 64–67.

[Iwata 90] H. Iwata. “Artificial Reality for Walking About Large Scale Virtual Space
(In Japanese).” Human Interface News and Report 5:1 (1990), 49–52.

[Iwata 93] H. Iwata. “Pen-based Haptic Virtual Environment.” In Proc. of IEEE
VRAIS, pp. 287–292. Washington, D.C.: IEEE Computer Society, 1993.

[Iwata 94] H. Iwata. “Desktop Force Display.” In SIGGRAPH ’94 Visual Proceedings,
p. 215. New York: ACM Press, 1994.

[Iwata 99] H. Iwata. “Walking About Virtual Space on an Infinite Floor.” In Proc. of
IEEE Virtual Reality, pp. 236–293. Washington, D.C.: IEEE Computer Society,
1999.

[Iwata 00] H. Iwata. “Locomotion Interface for Virtual Environments.” In Robotics
Research: the Ninth International Symposium, edited by J. Hollerbach and
D. Koditschek, pp. 275–282. New York: Springer-Verlag, 2000.



�

�

�

�

�

�

�

�

572 Bibliography

[Jacobsen et al. 91] S. Jacobsen, F. Smith, D. Backman, and E. Iversen. “High Per-
formance, High Dexterity, Force Reflective Teleoperator II.” In Proceedings, ANS
Topical Meeting on Robotics and Remote Systems, pp. 1–10. La Grange Park, IL:
ANS, 1991.

[James and Pai 99] Doug L. James and Dinesh K. Pai. “ArtDefo: Accurate Real Time
Deformable Objects.” In Proceedings of SIGGRAPH 99, Computer Graphics Pro-
ceedings, Annual Conference Series, edited by Alyn Rockwood, pp. 65–72. Reading,
MA: Addison Wesley Longman, 1999.

[James and Pai 01] Doug L. James and Dinesh K. Pai. “A Unified Treatment of Elas-
tostatic and Rigid Contact for Real-Time Haptics.” Haptics-e, The Electronic
Journal of Haptics Research (http://www.haptics-e.org) 2:1 (2001).

[James and Pai 02] Doug L. James and Dinesk K. Pai. “Real-Time Simulation of Mul-
tizone Elastokinematic Models.” In 2002 IEEE Intl. Conference on Robotics and
Automation, pp. 927–932. Washington, D.C.: IEEE Computer Society, 2002.

[James and Pai 03] Doug L. James and Dinesh K. Pai. “Multiresolution Green’s Func-
tion Methods for Interactive Simulation of Large-scale Elastostatic Objects.” ACM
Transactions on Graphics 22:1 (2003), 47–82.

[James and Pai 04] D. L. James and D. K. Pai. “BD-Tree: Output-Sensitive Collision
Detection for Reduced Deformable Models.” Proc. SIGGRAPH ’04, Transactions
on Graphics 23:3 (2004), 393–398.

[James 01] Doug L. James. “Multiresolution Green’s Function Methods for Interac-
tive Simulation of Large-scale Elastostatic Objects and Other Physical Systems in
Equilibrium.” Ph.D. thesis, University of British Columbia, Vancouver, British
Columbica, Canada, 2001.

[Janabi-Sharifi et al. 00] Farrokh Janabi-Sharifi, Vincent Hayward, and Chung-Shin J.
Chen. “Discrete-Time Adaptive Windowing for Velocity Estimation.” IEEE Trans-
actions on Control Systems Technology 8:6 (2000), 1003–1009.

[Jansson 98] G. Jansson. “Can a Haptic Force Feedback Display Provide Visually Im-
paired People with Useful Information about Texture, Roughness and 3-D Form of
Virtual Objects?” In 2nd European Conference on Disability, Virtual Reality, and
Associated Technologies, 1998.

[Jeannerod 03] M. Jeannerod. “The Mechanism of Self-Recognition in Humans.” Be-
havioural Brain Research 142 (2003), 1–15.

[Johansson and Westling 90] R. S. Johansson and G. Westling. “Tactile Afferent Signals
in Control of Precision Grip.” Attention and Performance XIII, pp. 677–713, 1990.

[Johnson and Cohen 01] D. E. Johnson and E. Cohen. “Spatialized Normal Cone Hier-
archies.” Proc. of ACM Symposium on Interactive 3D Graphics, pp. 129–134. New
York: ACM Press, 2001.

[Johnson and Cohen 05] David Johnson and Elaine Cohen. “Distance Extrema for
Spline Models Using Tangent Cones.” In Graphics Interface 2005, pp. 169–175.
Waterloo, Ontario, Canada: Canadian Human-Computer Communications Soci-
ety, 2005.

[Johnson and Hsiao 94] K. O. Johnson and S. S. Hsiao. “Evaluation of the Relative
Role of Slowly and Rapidly Adapting Afferent Fibres in Roughness Perception.”
Canadian Journal of Physiology & Pharmacology 72 (1994), 488–497.

[Johnson and Willemsen 03] D. E. Johnson and P. Willemsen. “Six Degree of Freedom
Haptic Rendering of Complex Polygonal Models.” In Proc. of Haptics Symposium,
pp. 229–235. Washington, D.C.: IEEE Computer Society, 2003.



�

�

�

�

�

�

�

�

Bibliography 573

[Johnson and Willemsen 04] D. E. Johnson and P. Willemsen. “Accelerated Haptic
Rendering of Polygonal Models through Local Descent.” In Proc. of Haptics Sym-
posium, pp. 18–23. Washington, D.C.: IEEE Computer Society, 2004.

[Johnson et al. 99] D. Johnson, T. V. Thompson II, M. Kaplan, D. Nelson, and E. Co-
hen. “Painting Textures with a Haptic Interface.” In Proceedings of IEEE Virtual
Reality Conference, p. 282. Washington, D.C.: IEEE Computer Society, 1999.

[Johnson et al. 03] D. E. Johnson, P. Willemsen, and Elaine Cohen. “Six Degree-of-
Freedom Haptic Rendering Using Spatialized Normal Cone Search.” IEEE Trans-
actions on Visualization and Computer Graphics 11:6 (2003), 661–670.

[Johnson et al. 05] D. E. Johnson, P. Willemsen, and E. Cohen. “6-DoF Haptic Render-
ing Using Spatialized Normal Cone Search.” IEEE Transactions on Visualization
and Computer Graphics 11:6 (2005), 661–670.

[Jones 98] L.A. Jones. “Perception and Control of Finger Forces.” Proceedings Haptics
Symposium, ASME Dynamic Systems and Control Division DSC-64 (1998), 133–
137.

[Jousmaki and Hari 98] V. Jousmaki and R. Hari. “Parchment-Skin Illusion: Sound-
Biased Touch.” Current Biology 8:6 (1998), 869–872.

[Kanayama and Ohira 07] N. Kanayama and H. Ohira. “The Effect of Rubber Hand
Illusion on Congruency Effect.” Poster presented at the 8th International Multi-
sensory Research Forum meeting, 2007.

[Kang and Cho 02] Y. Kang and H. Cho. “Bilayered Approximate Integration for Rapid
and Plausible Animation of Virtual Cloth with Realistic Wrinkles.” In Proc. Com-
puter Animation, pp. 203–211. Washington, D.C.: IEEE Computer Society, 2002.

[Karnopp et al. 00] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg.
System Dynamics: Modeling and Simulation of Mechatronic Systems, Third edi-
tion. New York: Wiley-Interscience, 2000.

[Karnopp 85] D. Karnopp. “Computer Simulation of Stick Slip Friction in Mechanical
Dynamic Systems.” Trans. ASME, Journal of Dynamic Systems, Measurement,
and Control 107 (1986,) 100–103.

[Kasik 07] D. Kasik. “State of the Art in Massive Model Visualization.” In SIGGRAPH
2007 Course Notes. New York: ACM Press, 2007.

[Kassim and Topping 87] A. M. Abu Kassim and B. H. V. Topping. “Static Reanalysis:
A Review.” Journal of Structural Engineering 113 (1987), 1029–1045.

[Katz 25] D. Katz. Der Aufbau der Tastwelt (The World of Touch). Hillsdale, NJ:
Erlbaum, 1925. Translated by L. Krueger (1989).

[Kaufman et al. 93] A. Kaufman, D. Cohen, and R. Yagle. “Volume Graphics.” IEEE
Computer 26:7 (1993), 51–64.

[Kaufman et al. 05] Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. “Fast
Frictional Dynamics for Rigid Bodies.” In Proc. SIGGRAPH ’05, Transactions on
Graphics 24:3 (2005), 946–956.

[Kawai and Yoshikawa 02] Masayuki Kawai and Tsuneo Yoshikawa. “Haptic Display
of Movable Virtual Object with Interface Device Capable of Continuous-Time
Impedance Display by Analog Circuit.” In IEEE International Conference on
Robotics and Automation, pp. 229–234. Washington, DC: IEEE Computer Society,
2002.

[Kawai and Yoshikawa 04] Masayuki Kawai and Tsuneo Yoshikawa. “Haptic Display
with an Interface Device Capable of Continuous-Time Impedance Display Within
a Sampling Period.” IEEE/ASME Transactions on Mechatronics 9:1 (2004), 58–
64.



�

�

�

�

�

�

�

�

574 Bibliography

[Kearfott 96] R. B. Kearfott. “Interval Computations: Introduction, Uses, and Re-
sources.” Euromath Bulletin 2:1 (1996), 95–112.

[Kennett et al. 02] S. Kennett, C. Spence, and J. Driver. “Visuo-Tactile Links in Covert
Exogenous Spatial Attention Remap Across Changes in Unseen Hand Posture.”
Perception & Psychophysics 64 (2002), 1083–1094.

[Keyser et al. 99] Joh”n Keyser, Tim Culver, Dinesh Manocha, and Shankar Kris hnan.
“MAPC: A Library for Efficient and Exact Manipulation of Algebraic Points and
Curves.” In Proc. 15th Annual ACM Symposium on Computational Geometry,
pp. 360–369. New York: ACM Press, 1999.

[Khaled et al. 03] W. Khaled, O. Bruhns, S. Reichling, H. Böse, M. Baumann, G. J.
Monkman, S. Egersdörfer, H. Freimuth, and H. Ermert. “A New Haptic Sensor
Actuator System for Virtual Reality Applications in Medicine.” In Medical Image
Computing and Computer Assisted Intervention, pp. 132–140. Berlin: Springer
Verlag, 2003.

[Kida et al. 07] T. Kida, K. Inui, T. Wasaka, K. Akatsuka, E. Tanaka, and R. Kakigi.
“Time-Varying Cortical Activations Related to Visual-Tactile Cross-Modal Links
in Spatial Selective Attention.” Journal of Neurophysiology 97 (2007), 3585–3596.

[Kim and Neumann 02] T.-Y. Kim and U. Neumann. “Interactive Multiresolution Hair
Modeling and Editing.” In Proc. SIGGRAPH ’02, Transactions on Graphics 21:3
(2002), 620–629.

[Kim and Rossignac 03] B. Kim and J. Rossignac. “Collision Prediction for Polyhedra
under Screw Motion.” Symposium on Solid Modeling and Applications, pp. 4–10.
New York: ACM Press, 2003.

[Kim et al. 02a] L. Kim, A. Kyrikou, G. S. Sukhatme, and M. Desbrun. “An Implicit-
Based Haptic Rendering Technique.” In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2943–2948. Washington, D.C.:
IEEE Computer Society, 2002.

[Kim et al. 02b] S. Kim, S. Hasegawa, Y. Koike, and M. Sato. “Tension Based 7-Dof
Force-Feedback Device: Spidar G.” In Proc. of IEEE Virtual Reality Conference,
pp. 283–284. Washington, D.C.: IEEE Computer Society, 2002.

[Kim et al. 02c] Y. J. Kim, M. C. Lin, and D. Manocha. “DEEP: An Incremental
Algorithm for Penetration Depth Computation between Convex Polytopes.” In
Proc. of IEEE Conference on Robotics and Automation, pp. 921–926. Washington,
D.C.: IEEE Computer Society, 2002.

[Kim et al. 02e] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. “Fast Pen-
etration Depth Computation for Physically-based Animation.” In Proc. of ACM
Symposium on Computer Animation, pp. 23–31. New York: ACM Press, 2002.

[Kim et al. 03] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. “Six-Degree-
of-Freedom Haptic Rendering Using Incremental and Localized Computations.”
Presence 12:3 (2003), 277–295.

[Kim et al. 05] Y. Kim, R. Britto, and T. Kesavadas. “Diagnostics of Arterial Pres-
sure Pulse using Haptic Kymograph: Remote Diagnosis of Vital Signs through a
Telehaptic Device.” In First Joint Eurohaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 539–540.
Washington, D.C.: IEEE Computer Society, 2005.

[Kim et al. 07] Y. J. Kim, S. Redon, M. C. Lin, D. Manocha, and J. Templeman. “Inter-
active Continuous Collision Detection using Swept Volume for Avatars.” Presence
16:2 (2007), 206–223.



�

�

�

�

�

�

�

�

Bibliography 575

[Kirkpatrick et al. 02] D. Kirkpatrick, J. Snoeyink, and B. Speckman. “Kinetic Collision
Detection for Simple Polygons.” International Journal of Computational Geometry
and Applications 12 (2002), 3–27.

[Kitagawa and Spence 05] N. Kitagawa and C. Spence. “Investigating the Effect of a
Transparent Barrier on the Crossmodal Congruency Effect.” Experimental Brain
Research 161 (2005), 62–71.

[Kitagawa and Spence 06] N. Kitagawa and C. Spence. “Audiotactile Multisensory In-
teractions in Information Processing.” Japanese Psychological Research 48 (2006),
158–173.

[Klatzky and Lederman 95] R. L. Klatzky and S. J. Lederman. “Identifying Objects
from a Haptic Glance.” Perception and Psychophysics 57 (1995), pp. 1111–1123.

[Klatzky and Lederman 99] R. L. Klatzky and S. J. Lederman. “Tactile Roughness
Perception with a Rigid Link Interposed between Skin and Surface.” Perception &
Psychophysics 61 (1999), 591–607.

[Klatzky and Lederman 02] R. L. Klatzky and S. J. Lederman. “Perceiving Texture
through a Probe.” In Touch in Virtual Environments, edited by M. L. McLaughlin,
J. P. Hespanha, and G. S. Sukhatme, Chapter 10, pp. 180–193. Upper Saddle River,
NJ: Prentice Hall PTR, 2002.

[Klatzky and Lederman 03] R. L. Klatzky and S. J. Lederman. “Touch.” In Handbook
of Psychology: Experimental Psychology, edited by I. B. Weiner, pp. 147–176. New
York: John Wiley & Sons, 2003.

[Klatzky and Lederman 06] R. L. Klatzky and S. J. Lederman. “The Perceived Rough-
ness of Resistive Virtual Textures: I. Rendering by a Force-Feedback Mouse.” ACM
Transactions on Applied Perception 3 (2006), 1–14.

[Klatzky et al. 85] R. Klatzky, S. Lederman, and V. Metzger. “Identifying Objects by
Touch, An ‘Expert System’.” Perception and Psychophysics 37:4 (1985), 299–302.

[Klatzky et al. 03] R. L. Klatzky, S. J. Lederman, C. Hamilton, M. Grindley, and R. H.
Swendson. “Feeling Textures through a Probe: Effects of Probe and Surface Geom-
etry and Exploratory Factors.” Perception & Psychophysics 65 (2003), 613–631.

[Klein 00] R. Klein. “Inhibition of Return.” Trends in Cognitive Sciences 4 (2000),
138–147.

[Klosowski et al. 96] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan.
“Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs.” In
SIGGRAPH ’96 Visual Proceedings, p. 151. New York: ACM Press, 1996.

[Klosowski et al. 98] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan.
“Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs.”
IEEE Trans. on Visualization and Computer Graphics 4:1 (1998), 21–37.

[Knott and Pai 03] D. Knott and D. Pai. “CInDeR: Collision and Interference Detection
in Real-time using Graphics Hardware.” In Proc. of Graphics Interface, pp. 73–80.
Waterloo, Ontario, Canada: Canadian Human-Computer Communications Society,
2003.

[Koerner and Maenner 03] O. Koerner and R. Maenner. “Implementation of a Hap-
tic Interface for a Virtual Reality Simulator for Flexible Endoscopy.” In Haptic
Symposium, pp. 278–284. Washington, D.C.: IEEE Computer Society, 2003.

[Kornbrot et al. 07] D. Kornbrot, P. Penn, H. Petrie, S. Furner, and A. Hardwick.
“Roughness Perception in Haptic Virtual Reality for Sighted and Blind People.”
Perception & Psychophysics 69 (2007), 502512.



�

�

�

�

�

�

�

�

576 Bibliography

[Körner et al. 99] O. Körner, M. Schill, C. Wagner, H. J. Bender, and R. Männer. “Hap-
tic Volume Rendering with an Intermediate Local Representation.” International
Workshop on Haptic Devices in Medical Applications, pp. 79–84, 1999.

[Kragic et al. 05] D. Kragic, P. Marayong, M. Li, A. Okamura, and G. Hager. “Hu-
man Machine Collaborative Systems for Microsurgical Applications.” International
Journal of Robotics Research 24:9 (2005), 731–742.

[Krebs et al. 04] H. Krebs, M. Ferraro, S. Buerger, M. Newbery, A. Makiyama, M. Sand-
mann, D. Lynch, B. Volpe, and N. Hogan. “Rehabilitation Robotics: Pilot Trial of
a Spatial Extension for MIT-Manus.” Journal of NeuroEngineering and Rehabili-
tation 1:5 (2004).

[Kriezis et al. 90a] G.A. Kriezis, N.M. Patrikalakis, and F.E. Wolter. “Topological and
Differential Equation Methods for Surface Intersections.” Computer-Aided Design
24:1 (1990), 41–55.

[Kriezis et al. 90b] G.A. Kriezis, P.V. Prakash, and N.M. Patrikalakis. “Method for
Intersecting Algebraic Surfaces with Rational Polynomial Patches.” Computer-
Aided Design 22:10 (1990), 645–654.

[Krishnan and Manocha 97] S. Krishnan and D. Manocha. “An Efficient Surface Inter-
section Algorithm based on the Lower Dimensional Formulation.” ACM Transac-
tions on Graphics 16:1 (1997), 74–106.

[Krishnan et al. 98a] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar.
“Rapid and Accurate Contact Determination between Spline Models using Shell-
Trees.” Computer Graphcis Forum, Proceedings of Eurographics 17:3 (1998), C315–
C326.

[Krishnan et al. 98b] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. “Spherical
Shell: A Higher Order Bounding Volume for Fast Proximity Queries.” In Proc. of
Third International Workshop on Algorithmic Foundations of Robotics, pp. 122–
136. Natick, MA: A K Peters, 1998.

[Kron and Schmidt 03] A. Kron and G. Schmidt. “Multi-Fingered Tactile Feedback
from Virtual and Remote Environments.” In Haptic Symposium, pp. 16–23. Wash-
ington, D.C.: IEEE Computer Society, 2003.

[Kuchenbecker et al. 06] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer. “Improving
Contact Realism through Event-Based Haptic Feedback.” IEEE Transactions on
Visualization and Computer Graphics 12:2 (2006), 219–230.

[Kuchenbecker 06] K. J. Kuchenbecker. “Characterizing and Controlling the High-
Frequecy Dynamics of Haptic Devices.” Ph.D. thesis, Stanford University, De-
partment of Mechanical Engineering, 2006.

[Kuehnapfel et al. 95] U. Kuehnapfel, H. Krumm, C. Kuhn, M. Huebner, and B. Nei-
sius. “Endosurgery Simulations with KISMET: A Flexible Tool for Surgical Instru-
ment Design, Operation Room Planning and VR Technology Based Abdominal
Surgery Training,.” In Proc. Virtual Reality World ’95, pp. 165–171, 1995.

[Kühnapfel et al. 99] U. Kühnapfel, H.K. Çakmak, and H. Maaß. “3D Modeling for
Endoscopic Surgery.” In Proceedings of IEEE Symposium on Simulation, pp. 22–
32. Washington, D.C.: IEEE Computer Society, 1999.

[Kusumoto et al. 06] N. Kusumoto, T. Sohmura, S. Yamada, K. Wakabayashi, T. Naka-
mura, and H. Yatani. “Applcation of Virtual Reality Force Feedback Haptic Device
for Oral Implant Surgery.” Clinical Oral Impl. Res. 17 (2006), 708–713.

[Kyung et al. 01] K. Kyung, D.Kwon, S.Kwon, H. Kang, and J. Ra. “Force Feedback
for a Spine Biopsy Simulator with Volume Graphic Model.” In IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, pp. 1732–1737. Washington, D.C.: IEEE
Computer Society, 2001.



�

�

�

�

�

�

�

�

Bibliography 577

[Lacroute and Levoy 94] P. Lacroute and M. Levoy. “Fast Volume Rendering Using a
Shear-Warp Factorization of the viewing transformation.” In Proceedings of SIG-
GRAPH 94, Computer Graphcs Proceedings, Annual Conference Series, edited by
Andrew Glassner, pp. 451–458. New York: ACM Press, 1994.

[Làdavas et al. 00] E. Làdavas, A. Farnè, G. Zeloni, and G. di Pellegrino. “Seeing or
Not Seeing Where Your Hands Are.” Experimental Brain Research 131 (2000),
458–467.

[LaMotte and Srinivasan 91] R. H. LaMotte and M. A. Srinivasan. “Surface Micro-
geometry: Tactile Perception and Neural Encoding.” In Information Processing
in the Somatosensory System, edited by O. Franzen and J. Westman, pp. 49–58.
London: Macmillan Press, 1991.

[LaMotte et al. 98] R. H. LaMotte, R. F. Friedman, C. Lu, P. S. Khalsa, and M. A.
Srinivasan. “Raised Object on a Planar Surface Stroked across the Fingerpad:
Responses of Cutaneous Mechanoreceptors to Shape and Orientation.” Journal of
Neurophysiology 80 (1998), 2446–2466.

[Lane and Riesenfeld 80] J. M. Lane and R. F. Riesenfeld. “A Theoretical Development
for the Computer Generation and Display of Piecewise Polynomial Surfaces.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 2:1 (1980), 150–159.

[Lang et al. 02] J. Lang, D. K. Pai, and R. Woodham. “Acquisition of Elastic Models
for Interactive Simulation.” The International Journal of Robotics Research 21:8
(2002), 713–734.

[Larsen et al. 99] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. “Fast Proximity
Queries with Swept Sphere Volumes.” Technical Report TR99-018, Department of
Computer Science, University of North Carolina, 1999.

[Larsen 01] E. Larsen. “A Robot Soccer Simulator: A Case Study for Rigid Body
Contact.” In Game Developers Conference, 2001.

[Larsson and Akenine-Möller 01] Thomas Larsson and Tomas Akenine-Möller. “Colli-
sion Detection for Continuously Deforming Bodies.” In Eurographics, pp. 325–333.
Aire-la-Ville, Switzerland: Eurographics Association, 2001.

[Lathan et al. 00] C. Lathan, K. Cleary, and L. Traynor. “Human-Centered Design of
a Spine Biopsy Simulator and the Effects of Visual and Force Feedback on Path-
Tracking Performance.” Presence 9:4 (2000), 337–349.

[Laur and Hanrahan 91] D. Laur and P. Hanrahan. “Hierarchical Splatting: A Pro-
gressive Refinement Algorithm for Volume Rendering.” Proc. SIGGRAPH ’91,
Computer Graphics 25:4 (1991), 285–288.

[Lawrence et al. 00a] D. A. Lawrence, C. D. Lee, L. Y. Pao, and R. Novoselov. “Shock
and Vortex Visualization Using a Combined Visual/Haptic Interface.” In Proc.
IEEE Visualization, pp. 131–137. Washington, D.C.: IEEE Computer Society,
2000.

[Lawrence et al. 00b] Dale A. Lawrence, Lucy Y. Pao, Anne M. Dougherty, Mark A. Sal-
ada, and Yiannis Pavlou. “Rate-Hardness: A New Performance Metric for Haptic
Interfaces.” IEEE Transactions on Robotics and Automation 16 (2000), 357–371.

[Lawrence et al. 07] M. A. Lawrence, R. Kitada, R. L. Klatzky, and S. J. Lederman.
“Haptic Roughness Perception of Linear Gratings via Bare Finger or Rigid Probe.”
Perception 36 (2007), 547–557.

[Laycock and Day 05] S. D. Laycock and A. M. Day. “Incorporating Haptic Feedback
for the Simulation of a Deformable Tool in a Rigid Scene.” Computers & Graphics
29:3 (2005), 341–351.



�

�

�

�

�

�

�

�

578 Bibliography

[Laycock and Day 07] S. D. Laycock and A. M. Day. “A Survey of Haptic Rendering
Techniques.” Computer Graphics Forum 26:1 (2007), 50–65.

[Lederman and Klatzky 87] S. Lederman and R. Klatzky. “Hand Movements: A Win-
dow into Haptic Object Recognition.” Cognitive Psychology 19:3 (1987), 342–368.

[Lederman and Klatzky 90] S. Lederman and R. Klatzky. “Haptic Classification of
Common Objects: Knowledge-Driven Exploration.” Cognitive Psychology 22
(1990), 421–459.

[Lederman and Klatzky 97] S. Lederman and R. Klatzky. “Designing Haptic Interfaces
for Teleoperational and Virtual Environments: Should Spatially Distributed Forces
be Displayed to the Fingertip?” In Proc. of the ASME Dynamic Systems and
Control Division. New York: ASME, 1997.

[Lederman and Klatzky 98] S. J. Lederman and R. L. Klatzky. “Feeling through a
Probe.” Proceedings, ASME Haptics Symposium; Dynamic Systems and Control
DSC-64 (1998), 127–131.

[Lederman and Klatzky 04] S. J. Lederman and R. L. Klatzky. “Haptic Identification
of Common Objects: Effects of Constraining the Manual Exploration Process.”
Perception & Psychophysics 66 (2004), 618–628.

[Lederman and Taylor 72] S. J. Lederman and M. M. Taylor. “Fingertip Force Sur-
face Geometry and the Perception of Roughness by Active Touch.” Perception &
Psychophysics 12 (1972), 401–408.

[Lederman et al., manuscript] S. J. Lederman, R. L. Klatzky, A. Martin, C. Tong, and
C. Hamilton. “Identifying Surface Textures by Touch, Audition, and Touch +
Audition using a Rigid Probe.” Manuscript.

[Lederman et al. 82] S. J. Lederman, J. M. Loomis, and D. Williams. “The Role of
Vibration in Tactual Perception of Roughness.” Perception & Psychophysics 32
(1982), 109–116.

[Lederman et al. 99] S. J. Lederman, R. L. Klatzky, C. Hamilton, and G. I. Ramsay.
“Perceiving Roughness via a Rigid Stylus: Psychophysical Effects of Exploration
Speed and Mode of Touch.” Haptics-e, 1999.

[Lederman et al. 00] S. J. Lederman, R. L. Klatzky, C. Hamilton, and M. Grindley.
“Perceiving Surface Roughness through a Probe: Effects of Applied Force and
Probe Diameter.” In Proceedings of the ASME DSCD-IMECE, pp. 1065–1071,
2000.

[Lederman et al. 02] S. J. Lederman, R. L. Klatzky, T. Morgan, and C. Hamilton. “In-
tegrating Multimodal Information about Surface Texture via a Probe: Relative
Contributions of Haptic and Touch-Produced Sound Sources.” 10th Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 97–104.
Washington, D.C.: IEEE Computer Society, 2002.

[Lederman et al. 03] S. J. Lederman, R. L. Klatzky, A. M. Martin, and C. Tong. “Rela-
tive Performance using Haptic and/or Touch-Produced Auditory Cues in a Remote
Absolute Texture Identification Task.” Proceedings of the 11th Symposium on
Haptic Interfaces for Teleoperator and Virtual Environment Systems, pp. 151–158.
Washington, D.C.: IEEE Computer Society, 2003.

[Lederman et al. 06] S. J. Lederman, R. L. Klatzky, C. Tong, and C. L. Hamilton. “The
Perceived Roughness of Resistive Virtual Textures: II. Effects of Varying Viscosity
with a Force-Feedback Device.” ACM Transactions on Applied Perception 3 (2006),
15–30.

[Lederman 74] S. J. Lederman. “Tactile Roughness of Grooved Surfaces: The Touching
Process and Effects of Macro and Microsurface Structure.” Perception & Psy-
chophysics 16 (1974), 385–395.



�

�

�

�

�

�

�

�

Bibliography 579

[Lederman 79] S. J. Lederman. “Auditory Texture Perception.” Perception 8 (1979),
93–103.

[Lederman 83] S. J. Lederman. “Tactual Roughness Perception: Spatial and Temporal
Determinants.” Canadian Journal of Psychology 37 (1983), 498–511.

[Leskovsky et al. 06] P. Leskovsky, M. Harders, and G. Szekely. “A Web-Based Repos-
itory of Surgical Simulator Projects.” In Proc. of Medicine Meets Virtual Reality,
pp. 311–315. Amsterdam: IOS Press, 2006.

[Leuschke et al. 05] R. Leuschke, E. K. T. Kurihara, J. Dosher, and B. Hannaford.
“High Fidelity Multi Finger Haptic Display.” In Proceedings World Haptics
Congress 2005, pp. 606–608. Washington, D.C.: IEEE Computer Society, 2005.

[Levesque and Hayward 03] V. Levesque and V. Hayward. “Experimental Evidence of
Lateral Skin Strain during Tactile Exploration.” In Proc.of Eurohaptics. Washing-
ton, D.C.: IEEE Computer Society, 2003.

[Levoy et al. 00] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. “The Dig-
ital Michelangelo Project: 3D Scanning of Large Statues.” In Proceedings of SIG-
GRAPH 2000, computer Graphics Proceedings, Annual Conference Series, edited
by Kurt Akeley, pp. 131–144. Reading, MA: Addison-Wesley, 2000.

[Lin and Canny 91] M.C. Lin and John F. Canny. “Efficient Algorithms for Incremen-
tal Distance Computation.” In IEEE Conference on Robotics and Automation,
pp. 1008–1014. Washington, D.C.: IEEE Computer Society, 1991.

[Lin and Manocha 97] M.C. Lin and Dinesh Manocha. “Efficient Contact Determina-
tion between Geometric Models.” International Journal of Computational Geom-
etry and Applications 7:1 (1997), 123–151.

[Lin and Manocha 03] M. Lin and D. Manocha. “Collision and Proximity Queries.” In
Handbook of Discrete and Computational Geometry, edited by Jacob E. Goodman
and Joseph O’Rourke, pp. 787–808. Boca Raton, FL: CRC Press, 2003.

[Lin and Otaduy 05] M. C. Lin and M. A. Otaduy. “Sensation-Preserving Haptic Ren-
dering.” IEEE Computer Graphics & Applications 25:4 (2005), 8–11.

[Lin 93] M. C. Lin. “Efficient Collision Detection for Animation and Robotics.” Ph.D.
thesis, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, 1993.

[Liu et al. 03] A. Liu et al. “A Survey of Surgical Simulation: Applications, Technology,
and Education.” Presence: Teleoperators & Virtual Environments 12:6 (2003),
599–614.

[Lloyd et al. 03] D. M. Lloyd, D. I. Shore, C. Spence, and G. A. Calvert. “Multisensory
Representation of Limb Position in Human Premotor Cortex.” Nature Neuroscience
6 (2003), 17–18.

[Lloyd et al. 06] D. Lloyd, I. Morrison, and N. Roberts. “Role for Human Posterior
Parietal Cortex in Visual Processing of Aversive Objects in Peripersonal Space.”
Journal of Neurophysiology 95 (2006), 205–214.

[Logan et al. 96] I. P. Logan, D. P. M. Wills, N. J. Avis N.J., A. M. M. A. Mohsen,
and K. P. Sherman. “Virtual Environment Knee Arthroscopy Training System.”
Society for Computer Simulation, Simulation Series 28:4 (1996), 17–22.

[Loop 87] Charles Loop. “Smooth Subdivision Surfaces Based on Triangles.” Master’s
thesis, University of Utah, Department of Mathematics, 1987.

[Lotan et al. 02] I. Lotan, F. Schwarzer, D. Halperin, and J. Latombe. “Efficient Main-
tenance and Self-Collision Testing for Kinematic Chains.” In Proc. of Symposium
on Computational Geometry, pp. 43–52. New York: ACM Press, 2002.



�

�

�

�

�

�

�

�

580 Bibliography

[Loureiro et al. 01] R. Loureiro, F. Amirabdollahian, S. Coote, E. Stokes, and W. Har-
win. “Using Haptics Technology to Deliver Motivational Therapies in Stroke Pa-
tients: concepts and initial pilot studies.” In Eurohaptics, pp. 1–6. Washington,
D.C.: IEEE Computer Society, 2001.

[Loureiro et al. 04] R. Loureiro, C. Collin, and W. Harwin. “Robot Aided Therapy:
Challenges Ahead for Upper Limb Stroke Rehabilitation.” Proceedings of the 5th

International Conference on Disability, Virtual Reality and Associated Technolo-
gies, pp. 33–39, 2004.

[Luebke and Erikson 97] D. Luebke and C. Erikson. “View-Dependent Simplification
of Arbitrary Polygon Environments.” In Proceedings of SIGGRAPH 97, Com-
puter Graphics Proceedings, Annual Conference Series, edited by Turner Whitted,
pp. 199–208. Reading, MA: Addison Wesley, 1997.

[Lum et al. 06] M. J. H. Lum, D. Trimble, J. Rosen, H. King, G. Sankarayanaranan,
J. Dosher, R. Leuschke, B. Martin-Anderson, M .N. Sinanan, and B. Hannaford.
“Multidisciplinary Approach for Developing a New Minimally Invasive Surgical
Robot System.” In Proceedings of the 2006 BioRob Conference, pp. 841–846. Wash-
ington, D.C.: IEEE Computer Society, 2006.

[Lundin and Sillen 05] K. Lundin and M. Sillen. “Haptic Visualization of Computa-
tional Fluid Dynamics Data using Reactive Forces.” In Proceedings SPIE Elec-
tronic Imaging (Visualization and Data Analysis), pp. 31–41. Bellingham, WA:
SPIE, 2005.

[Lundin et al. 02] K. Lundin, A. Ynnerman, and B. Gudmundsson. “Proxy-based Hap-
tic Feedback from Volumetric Density Data.” In EuroHaptics, pp. 104–109. Wash-
ington, D.C.: IEEE Computer Society, 2002.

[Macaluso et al. 00] E. Macaluso, C. D. Frith, and J. Driver. “Modulation of Human
Visual Cortex by Crossmodal Spatial Attention.” Science 289 (2000), 1206–1208.

[Macaluso et al. 04] E. Macaluso, N. George, R. Dolan, C. Spence, and J. Driver. “Spa-
tial and Temporal Factors during Processing of Audiovisual Speech Perception: A
PET Study.” Neuroimage 21 (2004), 725–732.

[MacLean 96] K. MacLean. “The Haptic Camera: A Technique for Characterizing and
Playing Back Haptic Properties of Real Environments.” In Proceedings of the
5th Ann. Symp. on Haptic Interfaces for Virtual Environments and Teleoperator
Systems, ASME/IMECE. Washington, D.C.: IEEE Computer Society, 1996.

[Madhani et al. 98] A. Madhani, G. Niemeyer, and J. Salisbury. “The Black Falcon: A
Teleoperated Surgical Instrument for Minimally Invasive Surgery.” In Intl. Con-
ference on Intelligent Robots and Systems, pp. 936–944. Washington, D.C.: IEEE
Computer Society, 1998.

[Mahvash and Hayward 01] M. Mahvash and V. Hayward. “Haptic Rendering of Cut-
ting: A Fracture Mechanics Approach.” Haptics-e 2:3 (2001).

[Mahvash and Hayward 02] M. Mahvash and V. Hayward. “Haptic Rendering of Tool
Contact.” In Proceedings of Eurohaptics, pp. 110–115. Washington, D.C.: IEEE
Computer Society, 2002.

[Mahvash and Hayward 04] M. Mahvash and V. Hayward. “High Fidelity Haptic Syn-
thesis of Contact with Deformable Bodies.” IEEE Computer Graphics and Appli-
cations 24:2 (2004), 48–55.

[Mahvash and Hayward 05] M. Mahvash and V. Hayward. “High Fidelity Passive Force
Reflecting Virtual Environments.” IEEE Transactions on Robotics 21:1 (2005), 38–
46.



�

�

�

�

�

�

�

�

Bibliography 581

[Mahvash and Okamura 05] M. Mahvash and A. Okamura. “A Fracture Mechanics Ap-
proach to Haptic Synthesis of Tissue Cutting with Scissors.” In First Joint Euro-
haptics Conference and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, pp. 356–362. Washington, D.C.: IEEE Computer Soci-
ety, 2005.

[Mahvash et al. 07] M. Mahvash, L. Voo, D. Kim, K. Jeung, and A. M. Okamura. “Mod-
eling the Forces of Cutting with Scissors.” IEEE Transactions on Biomedical En-
gineering 55:3 (2008), 848–856.

[Mahvash 06b] M. Mahvash. “Novel Approach for Modeling Separation Forces Be-
tween Deformable Bodies.” IEEE Transactions on Information Technology in
Biomedicine 10:3 (2006), 618–926.

[Makin et al. 07] T. R. Makin, N. P. Holmes, and E. Zohary. “Is That My Hand?
Multisensory Representation of Peripersonal Space in Human Intraparietal Sulcus.”
Journal of Neuroscience 24 (2007), 731–740.

[Mamassian 04] P. Mamassian. “Impossible Shadows and the Shadow Correspondence
Problem.” Perception 33 (2004), 1279–1290.

[Man et al. 93] K. W. Man, M. H. Aliabadi, and D. P. Rooke. “Analysis of Contact Fric-
tion using the Boundary Element Method.” In Computational Methods in Contact
Mechanics, edited by M. H. Aliabadi and C. A. Brebbia, Chapter 1, pp. 1–60.
Boston, MA: Computational Mechanics Publications and Elsevier Applied Science,
1993.

[Maneewarn et al. 99] T. Maneewarn, D. W. Storti, B. Hannaford, and M. A. Ganter.
“Haptic Rendering for Internal Content of an Implicit Object.” In Proc. ASME
Winter Annual Meeting Haptic Symposium. New York: ASME, 1999.

[Manocha and Canny 91] D. Manocha and J. F. Canny. “A New Approach for Surface
Intersection.” International Journal of Computational Geometry and Applications
1:4 (1991), 491–516.

[Manocha and Canny 92] D. Manocha and J.F. Canny. “Algorithms for Implicitizing
Rational Parametric Surfaces.” Computer Aided Geometric Design 9 (1992), 25–50.

[Manocha 92] D. Manocha. “Algebraic and Numeric Techniques for Modeling and
Robotics.” Ph.D. thesis, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, 1992.

[Maravita and Iriki 04] A. Maravita and A. Iriki. “Tools for the Body (Schema).”
Trends in Cognitive Sciences 8 (2004), 79–86.

[Maravita et al. 08] A. Maravita, F. Pavani, and C. Spence. “Egocentric versus Body-
Centred Contributions in the Representation of Visuo-Tactile Space: Clues from
Neglect Patients.” Manuscript, 2008.

[Maravita et al. 00] A. Maravita, C. Spence, K. Clarke, M. Husain, and J. Driver. “Vi-
sion and Touch Through the Looking Glass in a Case of Crossmodal Extinction.”
NeuroReport 11 (2000), 3521–3526.

[Maravita et al. 01] A. Maravita, M. Husain, K. Clarke, and J. Driver. “Reaching with
a Tool Extends Visual-Tactile Interactions into Far Space: Evidence from Cross-
Modal Extinction.” Neuropsychologia 39 (2001), 580–585.

[Maravita et al. 02a] A. Maravita, K. Clarke, M. Husain, and J. Driver. “Active Tool-
Use with Contralesional Hand Can Reduce Crossmodal Extinction of Touch on
That Hand.” Neurocase 8 (2002), 411–416.

[Maravita et al. 02b] A. Maravita, C. Spence, S. Kennett, and J. Driver. “Tool-Use
Changes Multimodal Spatial Interactions Between Vision and Touch in Normal
Humans.” Cognition 83 (2002), B25–B34.



�

�

�

�

�

�

�

�

582 Bibliography

[Maravita et al. 02c] A. Maravita, C. Spence, C. Sergent, and J. Driver. “Seeing Your
Own Touched Hands in a Mirror Modulates Cross-Modal Interactions.” Psycho-
logical Science 13 (2002), 350–356.

[Maravita et al. 05] A. Maravita, S. Longhi, C. Spence, and F. Pavani. “Postural Mod-
ulation of Visual-Tactile Information in the Neglected Space.” Poster presented at
The 6th International Multisensory Research Forum Meeting, 2005.

[Maravita et al. 06] A. Maravita, F. Pavani, and C. Spence. “Visual and Somatosensory
Contributions to Body Representation.” In 2nd Meeting of the European Societies
of Neuropsychology, 2006.

[Marescaux et al. 01] J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix,
S. E. Butner, and M. K. Smith. “Transatlantic Robot-Assisted Telesurgery.” Nature
413 (2001), 379–380.

[Mark et al. 96] W. R. Mark, S. C. Randolph, M. Finch, J. M. V. Verth, and R. M.
Taylor II. “Adding Force Feedback to Graphics Systems: Issues and Solutions.” In
Proceedings of SIGGRAPH, Computer Graphics Proceedings, Annual Conference
Series, edited by Holly Rushmeier, pp. 447–452. Reading, MA: Addison Wesley,
1996.

[Marks 04] L. E. Marks. “Cross-Modal Interactions in Speeded Classification.” In Hand-
book of Multisensory Processes, edited by G. A. Calvert, C. Spence, and B. E. Stein,
pp. 85–105. Cambridge, MA: MIT Press, 2004.

[Martino and Marks 00] G. Martino and L. E. Marks. “Cross-Modal Interaction be-
tween Vision and Touch: The Role of Synesthetic Correspondence.” Perception 29
(2000), 745–754.

[Massie and Salisbury 94] T. H. Massie and J. K. Salisbury. “The Phantom Haptic
Interface: A Device for Probing Virtual Objects.” In Proc. of the ASME Interna-
tional Mechanical Engineering Congress and Exhibition, pp. 295–302. New York:
ASME, 1994.

[Massie 96] T. H. Massie. “Initial Haptic Explorations with the PHANTOM: Virtual
Touch through Point Interaction.” M.S. thesis, Massachusetts Institute of Technol-
ogy, 1996.

[Matsuoka et al. 04] Y. Matsuoka, B. Brewer, and R. Klatzky. “Shaping Synergistic
pinching Patterns with Feedback Distortion in a Virtual Rehabilitation Environ-
ment.” In Proc. of the 26th Int. Conference of the IEEE EMBS, pp. 4866–4869.
Washington, D.C.: IEEE Computer Society, 2004.

[Mauch 03] Sean Mauch. “Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations.” Ph.D. thesis, Californa Institute of Technology, 2003.

[McDonnell et al. 01] K. McDonnell, H. Qin, and R. Wlodarczyk. “Virtual Clay: A
Real-Time Sculpting System with Haptic Interface.” In Proc. of ACM Symposium
on Interactive 3D Graphics, pp. 179–190. New York: ACM Press, 2001.

[McKenna and Zeltzer 90] Michael McKenna and David Zeltzer. “Dynamic Simulation
of Autonomous Legged Locomotion.” In Proc. SIGGRAPH ’90, Computer Graph-
ics 24:4 (1990), 29–38.

[McLaughlin et al. 05] M. L. McLaughlin, A. A. Rizzo, Y. Jung, W. Peng, S. Yeh, and
W. Zhu. “Haptics-Enhanced Virtual Environments for Stroke Rehabilitation.” In
Proceedings IPSI, 2005.

[McNeely et al. 99] W. McNeely, K. Puterbaugh, and J. Troy. “Six Degree-of-Freedom
Haptic Rendering using Voxel Sampling.” In Proceedings of SIGGRAPH ’99, Com-
puter Graphics Proceedings, Annual Conference Series, edited by Alyn Rockwood,
pp. 401–408. Reading, MA: Addison Wesley Longman, 1999.



�

�

�

�

�

�

�

�

Bibliography 583

[McNeely et al. 06] W. McNeely, K. Puterbaugh, and J. Troy. “Voxel-Based 6-DOF
Haptic Rendering Improvements.” Haptics-e 3:7 (2006).

[Meftah et al. 00] E.-M. Meftah, L. Belingard, and C. E. Chapman. “Relative Effects
of the Spatial and Temporal Characteristics of Scanned Surfaces on Huuman Per-
ception of Tactile Roughness using Passive Touch.” Experimental Brain Research
132 (2000), 351–361.

[Mehling et al. 05] Joshua S. Mehling, J. Edward Colgate, and Michael A. Peshkin. “In-
creasing the Impedance Range of a Haptic Display by Adding Electrical Damping.”
In IEEE First World Haptics Conference and Symposium, pp. 257–262. Washing-
ton, D.C.: IEEE Computer Society, 2005.

[Merat et al. 99] N. Merat, C. Spence, D. M. Lloyd, D. J. Withington, and F. Mc-
Glone. “Audiotactile Links in Focused and Divided Spatial Attention.” Society for
Neuroscience Abstracts 25 (1999), 1417.

[Methil-Sudhakaran et al. 05] N. Methil-Sudhakaran, S. Yantao, R. Mukherjee, and
X. Ning. “Development of a Medical Telediagnostic System with Tactile Hap-
tic Interfaces.” In IEEE/ASME International Conference Advanced Intelligent
Mechatronics, pp. 158–163. Washington, D.C.: IEEE Computer Society, 2005.

[Meyer et al. 00] M. Meyer, G. Debunne, M. Desbrun, and A. Barr. “Interactive An-
imation of Cloth Like Objects in Virtual Reality.” Journal of Visualization and
Computer Animation 12:1 (2000), 1–12.

[Meyer-Spradow 05] J. Meyer-Spradow. “Ein mathematisches Echtzeit-Modell taktiler
Merkmale von Oberflaechen.” Unpublished Diplomarbeit thesis, 2005.

[Mezger et al. 03] J. Mezger, S. Kimmerle, and O. Etzmuβ. “Hierarchical Techniques
in Cloth Detection for Cloth Animation.” Journal of WSCG 11:1 (2003), 322–329.

[Milenkovic and Schmidl 01] Victor J. Milenkovic and Harald Schmidl. “Optimization-
Based Animation.” In Proceedings of SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, edited by E. Fiume, pp. 37–46. Reading, MA:
Addison-Wesley, 2001.

[Miller et al. 00] Brian E. Miller, J. Edward Colgate, and Randy A. Freeman. “Guar-
anteed Stability of Haptic Systems with Nonlinear Virtual Environments.” IEEE
Transactions on Robotics and Automation 16:6 (2000), 712–719.

[Miller et al. 04] Brian E. Miller, J. Edward Colgate, and Randy A. Freeman. “On the
Role of Dissipation in Haptic Systems.” IEEE Transactions on Robotics 20 (2004),
768–771.

[Minikes and Bucher 03] A. Minikes and I. Bucher. “Coupled Dynamics of a Squeeze
Film Levitated Mass and a Vibrating Piezoelectric Disc: Numerical Analysis and
Experimental Study.” Journal of Sound and Vibration 263 (2003), 241–268.

[Minsky and Lederman 96] M. D. R. Minsky and S. J. Lederman. “Simulated Haptic
Textures: Roughness.” Proceedings of the ASME Dynamic Systems and Control
Division 58 (1996), 421–426.

[Minsky et al. 90] M. Minsky, M. Ouh-Young, O. Steele, F. P. Brooks, and M. Behensky.
“Feeling and Seeing in Force Display.” Proc. SIGGRAPH ’90, Computer Graphics
24:2 (1990), 235–243.

[Minsky 95] M. Minsky. “Computational Haptics: The Sandpaper System for Synthe-
sizing Texture for a Force-Feedback Display.” Ph.D. thesis, Program in Media Arts
and Sciences, MIT, 1995. Thesis work done at UNC-CH Computer Science.

[Mirelman et al. 06] A. Mirelman, J. Deutsch, and P. Bonato. “Greater Transfer to
Walking of Lower Extremity Training with Robotics and Virtual Reality than



�

�

�

�

�

�

�

�

584 Bibliography

Robotics Training Alone: Preliminary Findings.” In Proc. 5th Int. Workshop on
Virtual Rehabilitation, pp. 155–159. Washington, D.C.: IEEE Computer Society,
2006.

[Mirtich and Canny 95] Brian Mirtich and John Canny. “Impulse-based Simulation of
Rigid Bodies.” In 1995 Symposium on Interactive 3D Graphics, edited by Pat
Hanrahan and Jim Winget, pp. 181–188. New York: ACM Press, 1995.

[Mirtich 98] Brian Mirtich. “V-Clip: Fast and Robust Polyhedral Collision Detection.”
ACM Transactions on Graphics 17:3 (1998), 177–208.

[Mirtich 00] Brian Mirtich. “Timewarp Rigid Body Simulation.” In Proceedings of
SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
edited by Kurt Akeley, pp. 193–200. Reading, MA: Addison-Wesley, 2000.

[Mitsuishi et al. 93] M. Mitsuishi, Y. Hatamura, T. Sato, T. Magao, and B. Kramer.
“Auditory and Force Display of Key Physical Information in Machining/Handling
for Macro/Micro Teleoperation.” Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 137–169. Washington, D.C.: IEEE Computer
Society, 1993.

[Mohler et al. 07] B. J. Mohler, W. B. Thompson, S. H. Creem-Regehr, P. Willemsen,
H. L. Pick Jr., and J. J. Rieser. “Calibration of Locomotion Due to Visual Mo-
tion in a Treadmill-based Virtual Environment.” ACM Transactions on Applied
Perception 1 (2007), 4.

[Mohr et al. 01] F. Mohr, V. Falk, A. Diegeler, Th. Walther, J. Gummert, J. Bucerius,
S. Jacobs, and R. Autschbach. “Computer-Enhanced ’Robotic’ Cardiac Surgery:
Experience in 148 Patients.” J Thorac Cardiovasc Surg 121 (2001), 842–853.

[Montgomery et al. 01] K. Montgomery, L.-R. Heinrichs, C. Bruyns, S. Wildermuth,
C. Hasser, S. Ozenne, and D. Bailey. “Surgical Simulator for Hysteroscopy: A Case
Study of Visualization in Surgical Training.” In IEEE Visualization, pp. 449–452.
Washington, D.C.: IEEE Computer Society, 2001.

[Moore 62] R. E. Moore. “Interval Analysis and Automatic Error Analysis in Digital
Computation.” Ph.D. thesis, Stanford University, 1962.

[Moore 79] R. E. Moore. Methods and Applications of Interval Analysis. Philadelphia,
PA: SIAM, 1979.

[Moreau and Jean 96] J-J. Moreau and M. Jean. “Numerical Treatment of Contact
and Friction: The Contact Dynamics Method.” Engineering Systems Design and
Analysis 4 (1996), 201–208.

[Moreau 66] J.J. Moreau. “Quadratic Programming in Mechanics : Dynamics of One-
Sided Constraints.” SIAM J. Control 4:1 (1966), 153–158.

[Morgenbesser and Srinivasan 96] H. B. Morgenbesser and M. A. Srinivasan. “Force
Shading for Haptic Shape Perception.” Proceedings of the ASME Dynamic Systems
and Control Division 58 (1996), 407–412.

[Mountcastle et al. 75] V. B. Mountcastle, J. C. Lynch, P. A. Georgopoulos, H. Sakata,
and C. Acuna. “Posterior Parietal Association Cortex of the Monkey: Command
Functions for Operations within Extrapersonal Space.” Journal of Neurophysiology
38 (1975), 871–908.

[Moy et al. 00] G. Moy, U. Singh, E. Tan, and R.S. Fearing. “Human Psychophysics for
Teletaction System Design.” Haptics-e, the Electronic Journal of Haptics Research
1:3, 2000.

[Müller and Gross 04] Matthias Müller and M. Gross. “Interactive Virtual Materials.”
In Proc. of Graphics Interface, pp. 239–246. Waterloo, Ontario, Canada: Canadian
Human-Computer Communications Society, 2004.



�

�

�

�

�

�

�

�

Bibliography 585

[Müller et al. 02] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. “Stable
Real-Time Deformations.” In Proc. of ACM SIGGRAPH Symposium on Computer
Animation, pp. 49–54. Nwe York: ACM Press, 2002.

[Mullikin 92] James C. Mullikin. “The Vector Distance Transform in Two and Three
Dimensions.” CVGIP: Graphical Models and Image Processing 54:6 (1992), 526–
535.

[Murty 97] K. G. Murty. Linear Complementarity, Linear and Nonlinear Program-
ming. Internet edition, available online (http://ioe.engin.umich.edu/people/fac/
books/murty/linear complementarity webbook/), 1997.

[Museth et al. 05] K. Museth, D. Breen, R. Whitaker, S. Mauch, and D. Johnson. “Al-
gorithms for Interactive Editing of Level Set Models.” Computer Graphics Forum
24:4 (2005), 1–22.

[N. Kikuchi 88] J. T. Oden N. Kikuchi. Contact Problems in Elasticity: A Study of
Variational Inequalities and Finite Element Methods. Philadelphia, PA: SIAM,
1988.

[Nachev 06] P. Nachev. “Cognition and Medial Frontal Cortex in Health and Disease.”
Current Opinion in Neurobiology 19 (2006), 586–592.

[Nahvi et al. 98] A. Nahvi, D. Nelson, J. Hollerbach, and D. Johnson. “Haptic Manip-
ulation of Virtual Mechanisms from Mechanical CAD Designs.” In Proc. of IEEE
Conference on Robotics and Automation, pp. 375–380. Washington, D.C.: IEEE
Computer Society, 1998.

[Nara et al. 98] T. Nara et al. “Tactile Display Using Elastic Waves.” In IEEE VRAIS,
pp. 43–50. Washington, D.C.: IEEE Computer Society, 1998.

[Nara et al. 00] T. Nara et al. “An Application of SAW to a Tactile Display in Virtual
Rality.” In Proc. IEEE Ultrasonics Symposium, pp. 1–4. Washington, D.C.: IEEE
Computer Society, 2000.

[Naylor et al. 90] B. Naylor, J. Amanatides, and W. Thibault. “Merging BSP Trees
Yield Polyhedral Modeling Results.” In Proc. SIGGRAPH ’90, Computer Graphics
24:4 (1990), 115–124.

[Nelson et al. 99] Donald D. Nelson, David Johnson, and Elaine Cohen. “Haptic Ren-
dering of Surface-to-Surface Sculpted Model Interaction.” In Proc. 8th Annual
Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pp. 101–108. New York: ASME, 1999.

[Nielsen 63] T. I. Nielsen. “Volition: A New Experimental Approach.” Scandinavian
Journal of Psychology 4 (1963), 225–230.

[Niemeyer and Mitra 04] G. Niemeyer and P. Mitra. “Dynamic Proxies and Haptic
Constraints.” In Workshop on Multi-point Interaction in Robotics and Virtual
Reality, pp. 41–53. Berlin/Heidelberg: Springer Verlag, 2004.

[Nojima et al. 02] T. Nojima, D. Sekiguchi, M. Inami, and S. Tachi. “The SmartTool:
A System for Augmented Reality of Haptics.” In IEEE Virtual Reality, pp. 67–72.
Washington, D.C.: IEEE Computer Society, 2002.

[Noma and Miyasato 98] H. Noma and T. Miyasato. “Design for Locomotion Interface
in a Large Scale Virtual Environment. ATLAS: ATR Locomotion INterface for
Active Self Motion.” In Proc. ASME Dynamic Systems and Control Division,
DSC-Vol. 64, pp. 111–118. New York: ASME, 1998.

[Okamura and Cutkosky 99] A. Okamura and M. Cutkosky. “Haptic Exploration of
Fine Surface Features.” InProc. of IEEE Int. Conf. on Robotics and Automation,
pp. 2930–2936. Washington, D.C.: IEEE Computer Society, 1999.



�

�

�

�

�

�

�

�

586 Bibliography

[Okamura et al. 98] A. M. Okamura, J. T. Dennerlein, and R. D. Howe. “Vibration
Feedback Models for Virtual Environments.” In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 674–679. Washington, D.C.:
IEEE Computer Society, 1998.

[Okamura et al. 01] A. M. Okamura, J. T. Dennerlein, and M. R. Cutkosky. “Reality-
Based Models for Vibration Feedback in Virtual Environments.” ASME/IEEE
Transactions on Mechatronics 6:3 (2001), 245–252.

[Okamura et al. 03] A. M. Okamura, R. J. Webster, J. T. Nolin, K. W. Johnson, and
H. Jafry. “The Haptic Scissors: Cutting in Virtual Environments.” In Proceedings
of the IEEE International Conference on Robotics and Automation, pp. 828–833.
Washington, D.C: IEEE Computer Society, 2003.

[Okamura 98] A. M. Okamura. “Literature Survey of Haptic Rendering, Collision De-
tection, and Object Modeling.” Manuscript, available online (http://pegasus.me.
jhu.edu/∼allisono/publications/old/hapticlit.html), 1998.

[Okamura 04] A. Okamura. “Methods for Haptic Feedback in Teleoperated Robot-
Assisted Surgery.” Industrial Robot: An International Journal 31:6 (2004), 499–
508.

[Olofsson et al. 04] I. Olofsson, K. Lundin, M. Cooper, P. Kjall, and A. Ynnerman. “A
Haptic Interface for Dose Planning in Stereo-Tactic Radiosurgery.” In Proceed-
ings. Eighth International Conference on Information Visualisation, pp. 200–205.
Washington, D.C.: IEEE Computer Society, 2004.

[Ortega and Coquillart 05] M. Ortega and S. Coquillart. “Prop-Based Haptic Interac-
tion with Co-location and Immersion: An Automotive Application.” In Proceed-
ings of IEEE Haptic and Audio for Virtual Environments, p. 6. Washington, D.C.:
IEEE Computer Society, 2005.

[Ortega et al. 06] M. Ortega, S. Redon, and S. Coquillart. “A Six Degree-of-Freedom
God-Object Method for Haptic Display of Rigid Bodies.” In Proc. of IEEE Virtual
Reality Conference, pp. 458–469. Washington, D.C.: IEEE Computer Society, 2006.

[O’Sullivan and Dingliana 01] C. O’Sullivan and J. Dingliana. “Collisions and Percep-
tion.” ACM Trans. on Graphics 20:3 (2001), pp. 151–168.

[Otaduy and Gross 07] M. A. Otaduy and M. Gross. “Transparent Rendering of Tool
Contact with Compliant Environments.” In Proc. of World Haptics Conference,
pp. 225–230. Washington, D.C.: IEEE Computer Society, 2007.

[Otaduy and Lin 01] M. A. Otaduy and M. C. Lin. “User-Centric Viewpoint Compu-
tation for Haptic Exploration and Manipulation.” In Proc. of IEEE Visualization,
pp. 311–318. Washington, D.C.: IEEE Computer Society, 2001.

[Otaduy and Lin 03a] M. A. Otaduy and M. C. Lin. “CLODs: Dual Hierarchies for
Multiresolution Collision Detection.” In Eurographics Symposium on Geometry
Processing, pp. 94–101. Aire-la-Ville, Switzerland: Eurographics Association, 2003.

[Otaduy and Lin 03b] M. A. Otaduy and M. C. Lin. “Sensation Preserving Simplifica-
tion for Haptic Rendering.” Proc. SIGGRAPH ’03, Transactions on Graphics 22:3
(2003),543–553.

[Otaduy and Lin 04] M. A. Otaduy and M. C. Lin. “A Perceptually-Inspired Force
Model for Haptic Texture Rendering.” In Proc. of Symposium APGV, pp. 123–
126. New York: ACM Press, 2004.

[Otaduy and Lin 05] M. A. Otaduy and M. C. Lin. “Stable and Responsive Six-Degree-
of-Freedom Haptic Manipulation Using Implicit Integration.” In Proc. of World
Haptics Conference, pp. 247–256. Washington, D.C.: IEEE Computer Society,
2005.



�

�

�

�

�

�

�

�

Bibliography 587

[Otaduy and Lin 06] M. A. Otaduy and M. C. Lin. “A Modular Haptic Rendering
Algorithm for Stable and Transparent 6-DOF Manipulation.” IEEE Transactions
on Robotics 22:4 (2006), 751–762.

[Otaduy et al. 04] M. A. Otaduy, N. Jain, A. Sud, and M. C. Lin. “Haptic Display of
Interaction between Textured Models.” In Proc. of IEEE Visualization, pp. 297–
304. Washington, D.C.: IEEE Computer Society, 2004.

[Otaduy et al. 07] Miguel A. Otaduy, Daniel Germann, Stephane Redon, and Markus
Gross. “Adaptive Deformations with Fast Tight Bounds.” In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 181–190. Aire-
la-Ville, Switzerland: Eurographics Association, 2007.

[Otaduy 04] M. A. Otaduy. “6-DoF Haptic Rendering Using Contact Levels of Detail
and Haptic Textures.” Ph.D. thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, 2004.

[O’Toole et al. 99] R. O’Toole, R. Polayter, T. Krummel, W. Blank, N. Cornelius,
W. Roberts, W. Bell, and M. Raibert. “Measuring and Developing Suturing Tech-
nique with a Virtual Reality Surgical Simulator.” J Am Coll Surg 189:1 (1999),
114–127.

[Ouh-Young 90] M. Ouh-Young. “Force Display In Molecular Docking.” Technical
Report TR 90-004, Computer Science, University of North Carolina at Chapel Hill,
1990.

[Overmars 92] M. H. Overmars. “Point Location in Fat subdivisions.” Inform. Proc.
Lett. 44 (1992), 261–265.

[Pai and Reissel 97] D. K. Pai and L. M. Reissel. “Haptic Interaction with Multireso-
lution Image Curves.” Computer and Graphics 21 (1997), 405–411.

[Pai et al. 01] Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E.
Lloyd, Joshua L. Richmond, and Som H. Yau. “Scanning Physical Interaction
Behavior of 3D Objects.” In Proceedings of SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, edited by E. Fiume, pp. 87–96. New York:
ACM Press, 2001.

[Paljic et al. 02] A. Paljic, J.-M. Burkhardt, and S. Coquillart. “A Study of Distance of
Manipulation on the Responsive Workbench.” In Immersive Projection Technology
Workshop, 2002.

[Palmerius 07] K. L. Palmerius. “Fast and High Precision Volume Haptics.” In Proc.
World Haptics Conference, pp. 501–506. Washington, D.C.: IEEE Computer Soci-
ety, 2007.

[Park et al. 01] S. Park, R. Howe, and D. Torchiana. “Virtual Fixtures for Robotic
Cardiac Surgery.” In MICCAI, pp. 1419–1420. Berlin: Springer Verlag, 2001.

[Parker et al. 05] C. Parker, D. Carrier, and J. M. Hollerbach. “Validation of Torso
Force Feeback Slope Simulation through an Energy Cost Comparison.” In World
Haptics Conference, pp. 446–451. Washington, D.C.: IEEE Computer Society,
2005.

[Pasquero and Hayward 03] J. Pasquero and V. Hayward. “STReSS: A Practical Tactile
Display with One Millimeter Spatial Resolution and 700 Hz Refresh Rate.” In Proc.
of Eurohaptics, pp. 94–110. Washington, D.C.: IEEE Computer Society, 2003.

[Pasquero et al. 06] J. Pasquero et al. “Perceptual Analysis of Haptic Icons: an In-
vestigation into the Validity of Cluster Sorted MDS.” In Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator systems, p. 67. Washington,
D.C.: IEEE Computer Society, 2006.



�

�

�

�

�

�

�

�

588 Bibliography

[Patoglu and Gillespie 04] V. Patoglu and R. B. Gillespie. “Haptic Rendering of Para-
metric Surfaces Using a Feedback Stabilized Extremal Distance Tracking Algo-
rithm.” In Proceedings of IEEE Symposium on Haptic Interfaces for Virtual En-
vironment and Teleoperator Systems, pp. 391–399. Washington, D.C.: IEEE Com-
puter Society, 2004.

[Patoglu and Gillespie 05] V. Patoglu and R. B. Gillespie. “A Closest Point Algorithm
for Parametric Surfaces with Global Uniform Asymptotic Stability.” In Proceedings
of IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoper-
ator Systems, pp. 348–355. Washington, D.C.: IEEE Computer Society, 2005.

[Patoglu 05] R.B. Patoglu, V.and Gillespie. “Feedback-Stabilized Minimum Distance
Maintenance for Convex Parametric Surfaces.” IEEE Transactions on Robotics 21
(2005), 1009– 1016.

[Patton et al. 04] J. Patton, G. Dawe, C. Scharver, F. Mussa-Ivaldi, and R. Kenyon.
“Robotics and Virtual Reality: The Development of a Life-Dized 3-D System for
the Rehabilitation of Motor Function.” In Proc. IEEE Engineering in Medicine
and Biology Society, pp. 4840–4843. Washington, D.C.: IEEE Computer Society,
2004.

[Patton et al. 06] J. Patton, G. Dawe, C. Scharver, F. Mussa-Ivaldi, and R. Kenyon.
“Robotics and Virtual Reality: A Perfect Marriage for Motor Control Research
and Rehabilitation.” Assistive Technologies 18 (2006), 181–195.

[Pauly et al. 04] M. Pauly, D.K. Pai, and G. Leonidas. “Quasi-Rigid Objects in Con-
tact.” In Proceedings of ACM SIGGRAPH Symposium on Computer Animation,
pp. 109–119. New York: ACM Press, 2004.

[Pavani and Castiello 04] F. Pavani and U. Castiello. “Binding Personal and Extraper-
sonal Space through Body Shadows.” Nature Neuroscience 7 (2004), 13–14.

[Pavani and Galfano 07] F. Pavani and G. Galfano. “Self-Attributed Body-Shadows
Modulate Tactile Attention.” Cognition 104 (2007), 73–88.

[Pavani and Zampini 07] F. Pavani and M. Zampini. “On the Role of Hand-Size in the
Fake-Hand Illusion Paradigm.” Perception 36 (2007), 1547–1554.

[Pavani et al. 08] F. Pavani, P. Rigo, and G. Galfano. “Time-Course of the Attentional
Cueing Effect of Body Shadows.” Manuscript, 2008.

[Pavani et al. 00] F. Pavani, C. Spence, and J. Driver. “Visual Capture of Touch: Out-
of-the-Body Experiences with Rubber Gloves.” Psychological Science 11 (2000),
353–359.

[Payandeh and Li 03] S. Payandeh and T. Li. “Toward New Designs of Haptic Devices
for Minimally Invasive Surgery.” In Computer Assisted Radiology and Surgery,
pp. 775–781. Amsterdam: Elsevier, 2003.

[Peifer et al. 96] J. Peifer, W. Curtis, and M. Sinclair. “Applied Virtual Reality for
Simulation of Endoscopic Retrograde Cholangio-Pancreatography (ERCP).” In
Proc. MMVR, pp. 36–42. Amsterdam: IOS Press, 1996.

[Penn et al. 03a] P. Penn, D. Kornbrot, S. Furner, A. Hardwick, C. Colwell, and
H. Petrie. “The Effect of Contact Force on Roughness Perception in Haptic Virtual
Reality.” Manuscript, 2003.

[Penn et al. 03b] P. Penn, D. Kornbrot, S. Furner, A. Hardwick, C. Colwell, and
H. Petrie. “Roughness Perception in Haptic Virtual Reality: The Impact of the
Haptic Device, Endpoint and Visual Status.” Manuscript, 2003.

[Perry and Frisken 01] R. Perry and S. Frisken. “Kizamu: A System for Sculpting Dig-
ital Characters.” In Proceedings of SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, edited by E. Fiume, pp. 47–56. Washington,
D.C.: IEEE Computer Society, 2001.



�

�

�

�

�

�

�

�

Bibliography 589

[Peshkin and Colgate 99] M. Peshkin and J. E. Colgate. “Cobots.” Industrial Robot
26:5 (1999), 335–341.

[Petersik et al. 02] A. Petersik, B. Pflesser, U. Tiede, K. H. Höhne, and R. Leuwer.
“Realistic Haptic Volume Interaction for Petrous Bone Surgery Simulation.” In
Proc. of CARS Conf, pp. 252–257. Berlin: Springer, 2002.

[Phong 75] B. T. Phong. “Illumination for Computer Generated Pictures.” In Commu-
nications of the ACM 18:6 (1975), 311–317.

[Picinbono et al. 00] G. Picinbono, J. C. Lombardo, H. Delingette, and N. Ayache.
“Anisotropic Elasticity and Force Extrapolation to Improve Realism of Surgery
Simulation.” In Proceedings of IEEE International Conference on Robotics and
Automation. Washington, D.C.: IEEE Computer Society, 2000.

[Ponamgi et al. 97] M. Ponamgi, D. Manocha, and M. Lin. “Incremental algorithms
for collision detection between solid models.” IEEE Transactions on Visualization
and Computer Graphics 3:1 (1997), 51–67.

[Posner and Snyder 75] M. I. Posner and C. Snyder. “Facilitation and Inhibition in
the Processing of Signals.” In Attention and Performance V, edited by P. M. A.
Rabbitt and S. Dornic, pp. 669–682. New York: Academic Press, 1975.

[Posner et al. 76] M. I. Posner, M. J. Nissen, and R. M. Klein. “Visual Dominance:
An Information-Processing Account of its Origins and Significance.” Psychological
Review 83 (1976), 157–171.

[Pott et al. 05] P. Pott, H.-P. Scharf, and M. Schwarz. “Today’s State of the Art of
surgical Robotics.” Journal of Computer Aided Surgery 10:2 (2005), 101–132.

[Powers 07] M. J. Powers. “Surgical Scissors Extension Adds the 7th Axis of Force
Feedback to the Freedom 6S.” In Proceedings of Medicine Meets Virtual Reality
15, Studies in Health Technology and Informatics 125, pp. 361–366. Amsterdam:
IOS Press, 2007.

[Pratt 86] M.J. Pratt. “Surface/Surface Intersection Problems.” In The Mathematics
of Surfaces II, edited by J.A. Gregory, pp. 117–142. Oxford, UK: Oxford University
Press, 1986.

[Press et al. 87] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes: The Art of Scientific Computing, Chapter Sherman-
Morrison and Woodbury, pp. 66–70. Cambridge, UK: Cambridge University Press,
1987.

[Provot 97] X. Provot. “Collision and Self-Collision Handling in Cloth Model Dedi-
cated to Design Garment.” In Graphics Interface, pp. 177–189. Waterloo, Ontario,
Canada: Canadian Human-Computer Communications Society, 1997.

[Quinlan 94] S. Quinlan. “Efficient Distance Computation between non-convex objects.”
In Proceedings of International Conference on Robotics and Automation, pp. 3324–
3329. Washington, D.C.: IEEE Computer Society, 1994.

[Ra et al. 02] J. Ra, S. Kwon, J. Kim, J. Yi, K. Kim, H. Park, K.-U. Kyung, D.-S.
Kwon, H. Kang, S. Kwon, L. Jiang, J. Zeng, K. Cleary, and S. Mun. “Spine Needle
Biopsy Simulator Using Visual and Force Feedback.” Computer Aided Surgery 7
(2002), 353–363.

[Raviv and Elber 99] A. Raviv and G. Elber. “Three Dimensional Freeform Sculpt-
ing Via Zero Sets of Scalar Trivariate Functions.” In ACM Symposium on Solid
Modeling and Applications, pp. 246–257. New York: ACM Press, 1999.

[ReachIn 07] Reachin. Available online (http://www.reachin.se/), 2007.



�

�

�

�

�

�

�

�

590 Bibliography

[Redon and Lin 05] S. Redon and M. C. Lin. “Practical Local Planning in the Con-
tact Space.” In Proceedings of IEEE International Conference on Robotics and
Automation, pp. 4200–4205. Washington, D.C.: IEEE Computer Society, 2005.

[Redon and Lin 06] S. Redon and M. Lin. “A Fast Method for Local Penetration Depth
Computation.” Journal of Graphics Tools 11:2 (2006), 37–50.

[Redon et al. 00] S. Redon, A. Kheddar, and S. Coquillart. “An Algebraic Solution to
the Problem of collision Detection for Rigid Polyhedral Objects.” In Proceedings
of IEEE International Conference on Robotics and Automation, pp. 3733–3738.
Washington, D.C.: IEEE Computer Society, 2000.

[Redon et al. 02a] S. Redon, A. Kheddar, and S. Coquillart. “Gauss’ Least Constraints
Principle and Rigid Body Simulations.” In Proceedings of IEEE International
Conference on Robotics and Automation, pp. 517–522. Washington, D.C.: IEEE
Computer Society, 2002.

[Redon et al. 02b] S. Redon, A. Kheddar, and S. Coquillart. “Fast Continuous Collision
Detection between Rigid Bodies.” Computer Graphics Forum 21:3 (2002), 279–288.

[Redon et al. 04a] S. Redon, Y. J. Kim, M. C. Lin, D. Manocha, and J. Templeman.
“Interactive and Continuous Collision Detection for Avatars in Virtual Environ-
ments.” In Proceedings of IEEE VR Conference, pp. 117–283. Washington, D.C.:
IEEE Computer Society, 2004.

[Redon et al. 04b] S. Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha. “Fast
Continuous Collision Detection for Articulated Models.” In Proceedings of ACM
Symposium on Solid Modeling and Applications, pp. 145–156. New York: ACM
Press, 2004.

[Reed and Allen 99] M. Reed and P. Allen. “3-D Modeling from Range Imagery: An
Incremental Method with a Planning Component.” Image and Vision Computing
17 (1999), 99–111.

[Refshauge et al. 03] K. M. Refshauge, D. F. Collins, and S. C. Gandevia. “The De-
tection of Human Finger Movement is not Facilitated by Input from Receptors in
Adjacent Digits.” Journal of Physiology 551 (2003), 371–377.

[Renz et al. 01] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and G. Hirzinger.
“Stable Haptic Interaction with Virtual Environments Using an Adapted Voxmap-
PointShell Algorithm.” In Eurohaptics Conference, pp. 149–154. Washington, D.C.:
IEEE Computer Society, 2001.

[Richmond and Pai 00] L. Richmond and D. K. Pai. “Active Measurement and Mod-
eling of Contact Sounds.” In Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 2146–2152. Washington, D.C.: IEEE Computer
Society, 2000.

[Riedel et al. 00] O. H. Riedel, D. Rantzau, and R. Briening. “Engineering Applica-
tions.” In Handbook of Virtual Environments Technology (HCVET), edited by
K. Stanney, Chapter 62. Mahwah, NJ: Lawrence Erlbaum Associates, 2000.

[Riener et al. 04] R. Riener, M. Frey, T. Proell, F. Regenfelder, and R. Burgkart.
“Phantom-Based Multimodal Interactions for Medical Education and Training:
The Munich Knee Joint Simulator.” IEEE Transactions on Information Tech-
nology in Biomedicine 8:2 (2004), 208–216.

[Riener et al. 06] R. Riener, M. Wellner, T. Nef, J. von Zitzewitz, A. Duschau-Wicke,
G. Colombo, and L. Lünenburger. “A View on VR-Enhanced Rehabilitation
Robotics.” In Proc. 5th Int. Workshop on Virtual Rehabilitation, pp. 149–154.
Washington, D.C.: IEEE Computer Society, 2006.



�

�

�

�

�

�

�

�

Bibliography 591

[Rieser et al. 95] J. J. Rieser, H. L. Pick Jr., D. H. Ashmead, and A. E. Garing. “The
Calibration of Human Locomotion and Models of Perceptual-Motor Organization.”
J. Experimental Psychology: Human Perception and Performance 21 (1995), 480–
497.

[Rizzolatti et al. 81] G. C. Rizzolatti, M. Scandolara, M. Matelli, and M. Gentilucci.
“Afferent Properties of Periarcuate Neurons in Macaque Monkeys: II. Visual Re-
sponses.” Behavioural Brain Research 2 (1981), 147–163.

[Rizzolatti et al. 02] G. Rizzolatti, L. Fogassi, and V. Gallese. “Motor and Cognitive
Functions of the Ventral Premotor Cortex.” Current Opinion in Neurobiology 12
(2002), 149–154.

[Robles-De-La-Torre 02] G. Robles-De-La-Torre. “Comparing the Role of Lateral Force
During Active and Passive Touch: Lateral Force and its Correlates are Inherently
Ambiguous Cues for Shape Perception under Passive Touch Conditions.” In Proc.
of Eurohaptics, pp. 159–164. Aire-la-Ville, Switzerland: Eurographics Association,
2002.

[Robles-De-La-Torres and Hayward 00] G. Robles-De-La-Torres and V. Hayward. “Vir-
tual Surfaces and Haptic Shape Perception.” In ASME Dynamic Systems and
Control Division Vol. 2, pp. 1081–1085. New York: ASME, 2000.

[Robles-De-La-Torres and Hayward 01] G. Robles-De-La-Torres and V. Hayward.
“Force Can Overcome Object Geometry in the Perception of Shape through Active
Touch.” Nature 412 (2001), 445–448.

[Roderick and Carignan 05] S. Roderick and C. Carignan. “An Approach to Designing
Software Safety Systems for Rehabilitation Robots.” In Proceedings of the 9th IEEE
International Conference on Rehabilitation Robotics, pp. 252–257. Washington,
D.C.: IEEE Computer Society, 2005.

[Rosch 78] E. Rosch. “Principles of Categorization.” In Cognition and Categorization,
pp. 27–48. Hillsdale, NJ: Erlbaum, 1978.

[Rosen et al. 01] J. Rosen, B. Hannaford, C. Richards, and M. Sinanan. “Markov
Modeling of Minimally Invasive Surgery Based on Tool/Tissue Interaction and
Force/Torque Signatures for Evaluating Surgical Skills.” IEEE Transactions on
Biomedical Engineering 48 (2001), 579–591.

[Rosen et al. 03] J. Rosen, B. Hannaford, M. MacFarlane, and M. Sinanan. “Force
Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery-
Experimental Performance Evaluation.” IEEE Transactions on Biomedical Engi-
neering 46:10 (2003), 1212–1221.

[Rosenberg 93] L. Rosenberg. “Virtual Fixtures: Perceptual Tools for Telerobotic Ma-
nipulation.” In IEEE Annual Int. Symposium on Virtual Reality, pp. 76–82. Wash-
ington, D.C.: IEEE Computer Society, 1993.

[Ruspini and Khatib 01] D. Ruspini and O. Khatib. “Haptic Display for Human Inter-
action with Virtual Dynamic Environments.” Journal of Robotics Systems 18:12
(2001), 769–783.

[Ruspini et al. 97] D. C. Ruspini, K. Kolarov, and O. Khatib. “The Haptic Display
of Complex Graphical Environments.” In Proceedings of SIGGRAPH 97, Com-
puter Graphics Proceedings, Annual Conference Series, edited by Turner Whitted,
pp. 345–352. Reading, MA: Addison Wesley, 1997.

[Ryu et al. 04] Jee-Hwan Ryu, Yoon S. Kim, and Blake Hannaford. “Sampled- and
Continuous-Time Passivity and Stability of Virtual Environments.” IEEE Trans-
actions on Robotics 20:4 (2004), 772–776.



�

�

�

�

�

�

�

�

592 Bibliography

[Ryu et al. 05] Jee-Hwan Ryu, Carsten Preusche, Blake Hannaford, and Gerd Hirzinger.
“Time-domain Passivity Control with Reference Energy Following.” IEEE Trans-
actions on Control Systems Technology 13:5 (2005), 737–742.

[Sachtler et al. 00] W. L. Sachtler, M. R. Pendexter, J. Biggs, and M. A. Srinivasan.
“Haptically Perceived Orientation of a Planar Surface is Altered by Tangential
Forces.” In Proc. of Fifth Phantom User’s Group Workshop, 2000.

[Salada et al. 05] M. Salada et al. “An Experiment on Tracking Surface Features with
the Sensation of Slip.” In Haptic Interfaces for Virtual Environment and Teleop-
erator Systems, pp. 132–137. Washington, D.C.: IEEE Computer Society, 2005.

[Salamin et al. 06] P. Salamin, D. Thalmann, and F. Vexo. “Comfortable Manipula-
tion of a Virtual Gearshift Prototype with Haptic Feedback.” In Proceedings of
Eurohaptics, pp. 125–130. Washington, D.C.: IEEE Computer Society, 2006.

[Salbu 64] E. O. J. Salbu. “Compressible Squeeze Films and Squeeze Bearings.” Journal
of Basic Engineering 86 (1964), 355–364.

[Salcudean and Vlaar 94] S. E. Salcudean and T. D. Vlaar. “On the Emulation of Stiff
Walls and Static Friction with a Magnetically Levitated Input/Output Device.”
Proceedings of ASME 55:1 (1994), 303–309.

[Salcudean and Vlaar 97] S. E. Salcudean and T. D. Vlaar. “On the Emulation of Stiff
Walls and Static Friction with a Magnetically Levitated Input-Output Device.”
Transactions of the ASME: Journal of Dynamics, Measurement and Control 119:1
(1997), 127–132.

[Salisbury and Srinivasan 97] J. K. Salisbury and M. A. Srinivasan. “Phantom-Based
Haptic Interaction with Virtual Objects.” IEEE Computer Graphics and Applica-
tions 17:5 (1997), 6–10.

[Salisbury and Tarr 97] J. K. Salisbury and C. Tarr. “Haptic Rendering of Surfaces
Defined by Implicit Functions.” Proceedings of the ASME 61 (1997), 61–67.

[Salisbury et al. 95] K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles. “Hap-
tic Rendering: Programming Touch Interaction with Virtual Objects.” In Proc. of
the Symp. on Interactive 3D Graphics, pp. 123–130. New York: ACM Press, 1995.

[Salisbury et al. 04] K. Salisbury, F. Barbagli, and F. Conti. “Haptic Rendering: In-
troductory Concepts.” IEEE Computer Graphics and Applications Magazine 24:2
(2004) 24–32.

[Salisbury 99] J. K. Salisbury. “Making Graphics Physically Tangible.” Communica-
tions of the ACM 42:8 (1999), 74–81.

[Samet 89] H. Samet. Spatial Data Structures: Quadtree, Octrees and Other Hierar-
chical Methods. Reading, MA: Addison Wesley, 1989.

[Sanchez-Vives and Slater 05] M. V. Sanchez-Vives and M. Slater. “From Presence to
Consciousness through Virtual Reality.” Nature Reviews Neuroscience 6 (2005),
332–338.

[Sarraga 83] R. F. Sarraga. “Algebraic Methods for Intersection.” Computer Vision,
Graphics and Image Processing 22 (1983), 222–238.

[Satava 93] R. M. Satava. “Virtual Reality Surgical Simulator: The First Steps.” Surg
Endosc 7 (1993), 203–205.

[Satava 01] R. M. Satava. “Accomplishments and Challenges of Surgical Simulation.”
Journal of Surgical Endoscopy 15:3 (2001), 232–341.

[Savall et al. 02] J. Savall, D. Borro, J. J. Gil, and L. Matey. “Description of a Haptic
System for Virtual Maintainability in Aeronautics.” In Proceedings of IEEE/RSJ
Conference on Robots and Systems EPFL, pp. 2887–2892. Washington, D.C.: IEEE
Computer Society, 2002.



�

�

�

�

�

�

�

�

Bibliography 593

[Sayers and Paul 94] C. P. Sayers and R. P. Paul. “An Operator Interface for Telepro-
gramming Employing Synthetic Fixtures.” Presence 3 (1994), 309–320.

[Schaefer et al. 06] M. Schaefer, H. Flor, H.-J. Heinze, and M. Rotte. “Dynamic Mod-
ulation of the Primary Somatosensory Cortex during seeing and feeling a touched
hand.” Neuroimage 29 (2006), 587–592.

[Schmidt et al. 04] H. Schmidt, S. Hesse, and R. Bernhardt. “Safety Concept for
Robotic Gait Trainers.” In Proceedings of the 26th Annual International Con-
ference of the IEEE EMBS, pp. 2703–2706. Washington, D.C.: IEEE Computer
Society, 2004.

[Schmidt et al. 05] H. Schmidt, S. Hesse, R. Bernhardt, and J. Krüger. “HapticWalker:
A Novel Haptic Foot Device.” ACM Transactions on Applied Perception 2:2 (2005),
166–180.

[Schröder et al. 99] P. Schröder, D. Zorin, T. DeRose, D. R. Forsey, L. Kobbelt,
M. Lounsbery, and J. Peters. “Subdivision for Modeling and Animation.” In
SIGGRAPH ’99 Course Notes. New York: ACM Press, 1999.

[Scilingo et al. 97] E. Scilingo, D. DeRossi, A. Bicchi, and P. Iacconi. “Sensor and
Devices to Enhance the Performance of a Minimally Invasive Surgery Tool for
Replicating Surgeon’s Haptic Perception of the Manipulated Tissues.” In IEEE Intl.
Conference on Engineering in Medicine and Biology, pp. 961–964. Washington,
D.C.: IEEE Computer Society, 1997.

[Sclaroff and Pentland 91] S. Sclaroff and A. Pentland. “Generalized Implicit Functions
for Computer Graphics.” Proc. SIGGRAPH ’91, Computer Graphics 25:4 (1991)
247–250.

[Sederberg et al. 84] T. W. Sederberg, D. C. Anderson, and R. N. Goldman. “Implicit
Representation of Parametric Curves and Surfaces.” Computer Vision, Graphics
and Image Processing 28 (1984), 72–84.

[Seeger et al. 00] A. Seeger, A. Henderson, G. L. Pelli, M. Hollins, and R. M. Taylor
II. “Haptic Display of Multiple Scalar Fields on a Surface.” In Workshop on New
Paradigms in Information Visualization and Manipulation. New York: ACM Press,
2000.

[Seidel 90] R. Seidel. “Linear Programming and Convex Hulls Made Easy.” In Proc.
6th Ann. ACM Conf. on Computational Geometry, pp. 211–215. New York: ACM
Press, 1990.

[Senger 05] Steven Senger. “Integrating Haptics into an Immersive Environment for the
Segmentation and Visualization of Volumetric Data.” In Joint Eurohaptics Confer-
ence and Symposium on Haptic Interfaces for Virtual Environments, pp. 487–490.
Washington, D.C.: IEEE Computer Society, 2005.

[Sensable Technologies, Inc. 08] Sensable Technologies, Inc. “GHOST SDK.” Available
online (http://www.sensable.com), 2008.

[Seong et al. 06] Joon-Kyung Seong, David E. Johnson, and Elaine Cohen. “A Higher
Dimensional Formulation for Robust and Interactive Distance Queries.” In ACM
Solid and Physical Modeling 2006, pp. 197–205. New York: ACM Press, 2006.

[Sethian 99] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge,
UK: Cambridge University Press, 1999.

[Shabana 89] Ahmed A. Shabana. Dynamics of Multibody Systems. New York: John
Wiley & Sons, 1989.

[Shabana 94] A. A. Shabana. Computational Dynamics. New York: John Wiley &
Sons, 1994.



�

�

�

�

�

�

�

�

594 Bibliography

[Shamos and Hoey 76] M. Shamos and D. Hoey. “Geometric Intersection Problems.” In
Proc. 17th An. IEEE Symp. Found. on Comput. Science, pp. 208–215. Washington,
D.C.: IEEE Computer Society, 1976.

[Sharpe 88] J. Sharpe. “Technical and Human Operational Requirements for Skill
Transfer in Teleoperations.” In Proceedings International Symposium on Tele-
operation and Control, pp. 175–187. Washington, D.C.: IEEE Computer Society,
1988.

[Shaw and Liang 92] C. Shaw and J. Liang. “The Decoupled Simulation Model for VR
Systems.” In Proceedings of CHI, pp. 321–328. New York: ACM Press, 1992.

[Shekhar et al. 96] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill. “Octree-Based
Decimation of Marching Cubes Surfaces.” In Proc. of IEEE Visualization, pp. 335–
342. Washington, D.C.: IEEE Computer Society, 1996.

[Shennib et al. 98] H. Shennib, A. Bastawisy, M. Mack, and F. Moll. “Computer As-
sisted Telemanipulation: an Enabling Technology for Endoscopic Coronary Artery
Bypass.” Annals of Thoracic Surgery 66:3 (1998), 1060–1063.

[Sherrick 60] C. E. Sherrick. “Observations Relating to Some Common Psychophysical
Functions as Applied to the Skin.” Symposium on Cutaneous Sensitivity, pp. 147–
158, Army Medical Research Laboratory Report No. 424, 1960.

[Shore and Simic 05] D. Shore and N. Simic. “Integration of Visual and Tactile Stimuli:
Top-Down Influences Require Time.” Experimental Brain Research 166 (2005),
509–517.

[Shore et al. 06] D. I. Shore, M. E. Barnes, and C. Spence. “The Temporal Evolution
of the Crossmodal Congruency Effect.” Neuroscience Letters 392 (2006), 96–100.

[Sigg et al. 03] C. Sigg, R. Peikert, and M. Gross. “Signed Distance Transform Using
Graphics Hardware.” In Proceedings of IEEE Visualization, p. 12. Washington,
D.C.: IEEE Computer Society, 2003.

[Siira and Pai 96] J. Siira and D. K. Pai. “Haptic Textures: A Stochastic Approach.” In
Proc. of IEEE International Conference on Robotics and Automation, pp. 557–562.
Washington, D.C.: IEEE Computer Society, 1996.

[Singh et al. 94] S. Singh, M. Bostrom, D. Popa, and C. Wiley. “Design of an Inter-
active Lumbar Puncture Simulator with Tactile Feedback.” In Intl. Conference
on Robotics and Automation, pp. 1734–1752. Washington, D.C.: IEEE Computer
Society, 1994.

[Sirouspour et al. 00] M. R. Sirouspour, S. P. DiMaio, S. E. Salcudean, P. Abolmaesumi,
and C. Jones. “Haptic Interface Control: Design Issues and Experiments with
a Planar Device.” In Proc. of IEEE International Conference on Robotics and
Automation, pp. 789–794. Washington, D.C.: IEEE Computer Society, 2000.

[Six and Wood 82] H. Six and D. Wood. “Counting and Reporting Intersections of
D-Ranges.” IEEE Transactions on Computers 31:3 (1982) 46–55.

[Slater et al. 07] M. Slater, D. Perez-Marcos, H. H. Ehrsson, and M. V. Sanchez-Vives.
“The Illusion of Body Ownership of a Virtual Arm.” Manuscript, 2007.

[Snyder et al. 93] J. Snyder and et. al. “Interval Methods for Multi-Point Collisions
between Time Dependent Curved Surfaces.” In Proceedings of SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference Series, edited by James T.
Kajiya, pp. 321–334. New York: ACM Press, 1993.

[Snyder 92] J. Snyder. “Interval Analysis for Computer Graphics.” Computer Graphics
26:2 (1992), 121–130.



�

�

�

�

�

�

�

�

Bibliography 595

[Snyder 95] J. Snyder. “An Interactive Tool for Placing Curved Surfaces Without Inter-
penetration.” In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings,
Annual Conference Series, edited by Robert Cook, pp. 209–218. Reading, MA:
Addison Wesley, 1995.

[Song et al. 04] P. Song, J. S. Pang, and V. Kumar. “A Semi-Implicit Time-Stepping
Model for Frictional Compliant Contact Problems.” International Journal of
Robotics Research 60 (2004), 2231–2261.

[Spaelter et al. 06] U. Spaelter, E. Samur, H. Bleuler. “A 2-DOF Friction Drive for
Haptic Surgery Simulation of Hysteroscopy.” In 8th Intl. IFAC Symposium on
Robot Control. Amsterdam: Elsevier Science, 2006.

[Spaelter et al. 04] U. Spaelter, Th. Moix, D. Ilic, M. Bajka, and H. Bleuler. “A 4-DOF
Haptic Device for Hysteroscopy.” In Proc. of IEEE IROS, pp. 644–667. Washington,
D.C.: IEEE Computer Society, 2004.

[Spence and Driver 04] C. Spence and J. Driver. Crossmodal Space and Crossmodal
Attention. Oxford, UK: Oxford University Press, 2004.

[Spence and Walton 05] C. Spence and M. Walton. “On the Inability to Ignore Touch
when Responding to Vision in the Crossmodal Congruency Task.” Acta Psycho-
logica 118 (2005), 47–70.

[Spence et al. 98] C. Spence, F. Pavani, and J. Driver. “What Crossing the Hands Can
Reveal about Crossmodal Links in Spatial Attention.” Abstracts of the Psycho-
nomic Society 3 (1998), 13.

[Spence et al. 00] C. Spence, F. Pavani, and J. Driver. “Crossmodal Links between Vi-
sion and Touch in Covert Endogenous Spatial Attention.” Journal of Experimental
Psychology: Human Perception & Performance 26 (2000), 1298–1319.

[Spence et al. 01a] C. Spence, A. Kingstone, D. I. Shore, and M. S. Gazzaniga. “Repre-
sentation of Visuotactile Space in the Split Brain.” Psychological Science 12 (2001),
90–93.

[Spence et al. 01b] C. Spence, D. I. Shore, M. S. Gazzaniga, S. Soto-Faraco, and
A. Kingstone. “Failure to Remap Visuotactile Space across the Midline in the
Split-Brain.” Canadian Journal of Experimental Psychology 55 (2001), 135–142.

[Spence et al. 01c] C. Spence, D. I. Shore, and R. M. Klein. “Multisensory Prior Entry.”
Journal of Experimental Psychology: General 130 (2001), 799–832.

[Spence et al. 04a] C. Spence, J. McDonald, and J. Driver. “Exogenous Spatial Cu-
ing Studies of Human Crossmodal Attention and Multisensory Integration.” In
Crossmodal Space and Crossmodal Attention, edited by C. Spence and J. Driver,
pp. 277–320. Oxford, UK: Oxford University Press, 2004.

[Spence et al. 04b] C. Spence, F. Pavani, and J. Driver. “Spatial Constraints on Visual-
Tactile Crossmodal Distractor Congruency Effects.” Cognitive, Affective, & Be-
havioral Neuroscience 4 (2004), 148–169.

[Spence 02] C. Spence. “Multimodal Attention and Tactile Information-Processing.”
Behavioural Brain Research 135 (2002), 57–64.

[Srinivasan and Basdogan 97] M. A. Srinivasan and C. Basdogan. “Haptics in Vir-
tual Environments: Taxonomy, Research Status, and Challenges.” Computers and
Graphics 21:4 (1997), 393–404.

[Srinivasan and LaMotte 87] M. A. Srinivasan and R. H. LaMotte “Tactile Discrim-
ination of Shape: Responses of Slowly and Rapidly Adapting Mechanoreceptive
Afferents to a Step Indented into the Monkey Fingerpad.” Journal of Neuroscience
7:6 (1987), 1682–97.



�

�

�

�

�

�

�

�

596 Bibliography

[Srinivasan et al. 96] M. A. Srinivasan, G. L. Beauregard, and D. L. Brock. “The Im-
pact of Visual Information on the Haptic Perception of Stiffness in Virtual Envi-
ronments.” In Proc. of ASME Winter Annual Meeting, pp. 555–559. New York:
ASME, 1996.

[Stein et al. 75] B. E. Stein, B. Magalhães-Castro, and L. Kruger. “Superior Colliculus:
Visuotopic-Somatotopic Overlap.” Science 189 (1975), 224–226.

[Stevens et al. 96] J. C. Stevens, E. Foulke, and M. Q. Patterson. “Tactile Acuity,
Aging, and Braille Readings in Long-Term Blindness.” Journal of Experimental
Psychology: Applied 2:2 (1996), 91–106.

[Stevens 57] S. S. Stevens. “On the Psychophysical Law.” Psychological Review 64
(1957), 153–181.

[Stewart and Trinkle 96] D. E. Stewart and J. C. Trinkle. “An Implicit Time-Stepping
Scheme for Rigid Body Dynamics with Inelastic Collisions and Coulomb Friction.”
International Journal of Numerical Methods in Engineering 39:14 (1996), 2673–
2691.

[Stewart and Trinkle 00] D. E. Stewart and J. C. Trinkle. “An Implicit Time-Stepping
Scheme for Rigid Body Dynamics with Coulomb Friction.” In IEEE International
Conference on Robotics and Automation, pp. 162–169. Washington, D.C.: IEEE
Computer Society, 2000.

[Stewart et al. 97] P. Stewart, P. Buttolo, and Y. Chen. “CAD Data Representations for
Haptic Virtual Prototyping.” In ASME Design Engineering Technical Conferences,
pp. 1–9. New York: ASME, 1997.

[Stone et al. 01] J. H. Stone, H. Gullingsrud, and K. Schulten. “A System for Interac-
tive Molecular Dynamics Simulation.” In Symposium on Interactive 3D Graphics,
pp. 191–194. New York: ACM Press, 2001.

[Stramigioli et al. 02] Stefano Stramigioli, Cristian Secchi, Arjan J. van der Schaft, and
Cesare Fantuzzi. “A novel theory for sample data systems passivity.” In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1936–1941. Wash-
ington, D.C.: IEEE Computer Society, 2002.

[Sud et al. 04] A. Sud, M. A. Otaduy, and D. Manocha. “DiFi: Fast 3D Distance
Field Computation Using Graphics Hardware.” Computer Graphics Forum (Proc.
Eurographics) 23:3 (2004), 557–566.

[Sud et al. 05] Avneesh Sud, Naga Govindaraju, and Dinesh Manocha. “Interactive
Computation of Discrete Generalized Voronoi Diagrams using Range Culling.” In
Proc. International Symposium on Voronoi Diagrams in Science and Engineering,
2005.

[Sud et al. 06] A. Sud, N. K. Govindaraju, R. Gayle, I. Kabul, and D. Manocha. “Fast
Proximity Computation among Deformable Models Using Discrete Voronoi Dia-
grams.” Proc. SIGGRAPH ’06, Transactions on Graphics 25:3 (2006), 1144–1153.

[Sullivan 69] R. Sullivan. “Experimentally Induced Somatagnosia.” Archives of General
Psychiatry 20 (1969), 71–77.

[Szekely et al. 00] G. Szekely, C. Brechbuhler, J. Dual, R. Enzler, J. Hug, R. Hut-
ter, N. Ironmonger, M. Kauer, V. Meier, P. Niederer, A. Rhomberg, P. Schmid,
G. Schweitzer, M. Thaler, V. Vuskovic, G. Troster, U. Haller, and M. Bajka. “Vir-
tual Reality-Based Simulation of Endoscopic Surgery.” Presence 9:3 (2000), 310–
333.

[Takasaki et al. 01] M. Takasaki et al. “A Surface Acoustic Wave Tactile Display with
Friction control.” In Proc. IEEE International Conference on Micro Electro Me-
chanical Systems, pp. 240–243. Washington, D.C.: IEEE Computer Society, 2001.



�

�

�

�

�

�

�

�

Bibliography 597

[Tan and Rabinowitz 96] H. Z. Tan and W. M. Rabinowitz. “A New Multi-Finger Tac-
tual Display.” Proceedings Haptics Symposium, ASME Dynamic Systems and Con-
trol Division DSC-58 (1996), 515–522.

[Tarrin et al. 03a] N. Tarrin, S. Coquillart, S. Hasegawa, L. Bouguila, and M. Sato.
“The Stringed Haptic Workbench: A New Haptic Workbench Solution.” Computer
Graphics Forum 22:3 (2203), 583–589.

[Tastevin 37] J. Tastevin. “En partant de l’expérience d’Aristote: Les déplacements
artificiels des parties du corps ne sont pas suivis par le sentiment de ces parties
ni pas les sensations qu’on peut y produire (Starting from Aristotle’s experiment:
The artificial displacements of parts of the body are not followed by feeling in these
parts or by the sensations which can be produced there).” L’Encephale 1 (1937),
57–84, 140–158.

[Taubin 95] Gabriel Taubin. “A Signal Processing Approach to Fair Surface Design.” In
Proceedings of SIGGRAPH 95, Computer Graphics Proceedings, Annual Confer-
ence Series, edited by Robert Cook, pp. 351–358. Reading, MA: Addison Wesley,
1995.

[Taylor and Lederman 75] M. M. Taylor and S. J. Lederman. “Tactile Roughness of
Grooved Surfaces: A Model and the Effect of Friction.” Perception and Psy-
chophysics 17 (1975), 23–36.

[Taylor and Stoianovici 03] Russell Taylor and Dan Stoianovici. “Medical Robotics in
Computer-Integrated Surgery.” IEEE Transactions on Robotics and Automation
19:5 (2003), 765–781.

[Taylor et al. 93] R. M. Taylor, W. Robinett, V. L. Chi, F. P. Brooks, Jr., W. V. Wright,
R. S. Williams, and E. J. Snyder. “The Nanomanipulator: A Virtual-Reality In-
terface for a Scanning Tunneling Microscope.” In Proceedings of SIGGRAPH 93,
Computer Graphics Proceedings, Annual Conference Series, edited by James T.
Kajiya, pp. 127–134. New York: ACM Press, 1993.

[Taylor et al. 99] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar,
D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi. “A Steady-
Hand Robotic System for Microsurgical Augmentation.” International Journal
of Robotics Research 18:12 (1999), 1201–1210.

[Taylor et al. 97] R. M. Taylor II, J. Chen, S. Okimoto, N. Llopis-Artime, V. L. Chi,
F. P. Brook, Jr., M. Falvo, S. Paulson, P. Thiansathaporn, D. Glick, S. Washburn,
and R. Superfine. “Pearls Found on the Way to the Ideal Interface for Scanned-
probe Microscopes.” In Proc. IEEE Visualization, pp. 467–470. Washington, D.C.:
IEEE Computer Society, 1997.

[Terzopoulos and Witkin 88] D. Terzopoulos and A. Witkin. “Physically Based Models
with Rigid and Deformable Components.” IEEE Computer Graphics and Applica-
tions. 8:6 (1988), 41–51.

[Teschner et al. 03] M. Teschner, B. Heidelberger, M. Muller, D. Pomeranets, and
M. Gross. “Optimized Spatial Hashing for Collision Detection of Deformable
Objects.” In Proc. of Vision, Modeling and Visualization, pp. 47–54. Berlin:
Akademische Verlagsgesellschaft, 2003.

[Tholey and Desai 06] G. Tholey and J. Desai. “Design and Development of a General
Purpose 7 DOF Haptic Device.” In Haptic Symposium, pp. 16–23. Washington,
D.C.: IEEE Computer Society, 2006.

[Thompson et al. 97] T. V. Thompson, D. E. Johnson, and E. Cohen. “Direct Haptic
Rendering Of Sculptured Models.” In Proc. of Symp. on Interactive 3D Graphics,
pp. 167–176. New York: ACM Press, 1997.



�

�

�

�

�

�

�

�

598 Bibliography

[Thompson II and Cohen 99] Thomas V. Thompson II and Elaine Cohen. “Direct Hap-
tic Rendering of Complex Trimmed NURBS Models.” In Proc. 8th Annual Symp.
on Haptic Interfaces for Virtual Environment and Teleoperator Systems. New York:
ASME, 1999.

[Tideman et al. 04] M. Tideman, M.C. Van Der Voort, and F.J.A.M. Van Houten. “De-
sign and Evaluation of a Virtual Gearshift Application.” Proceedings of IEEE
Intelligent Vehicles Symposium, 2004.

[Townsend and Ashby 83] J. T. Townsend and F. G. Ashby. Stochastic Modelling of
Elementary Psychological Processes. Cambridge, UK: Cambridge University Press,
1983.

[Trantakis et al. 04] C. Trantakis, J. Meixensberger, G. Strauss, E. Nowatius, D. Lind-
ner, H. Cakmak, H. Maass, C. Nagel, and U. Kuehnapfel. “IOMaster 7D: A New
Device for Virtual Neuroendoscopy.” In Computer Assisted Radiology and Surgery,
pp. 707–712, 2004.

[Troy 00] J. J. Troy. “Haptic Control of a Simplified Human Model with Multibody
Dynamics.” In Proc. of Fifth Phantom User’s Group Workshop, 2000.

[Tsagarakis et al. 06] N. Tsagarakis, J. Gray, D. Caldwell, C. Zannoni, M. Petrone,
D. Testi, and M. Viceconti. “A Haptic-Enabled Multimodal Interface for the Plan-
ning of Hip Arthroplasty.” IEEE Multimedia 13:3 (2006), 40–48.

[Tsakiris and Haggard 05] M. Tsakiris and P. Haggard. “The Rubber Hand Illusion
Revisited: Visuotactile Integration and Self-Attribution.” Journal of Experimental
Psychology: Human Perception & Performance 31 (2005), 80–91.

[Tsakiris et al. 06] M. Tsakiris, G. Prabhu, and P. Haggard. “Having a Body versus
Moving Your Body: How Agency Structures Body-Ownership.” Consciousness
and Cognition 15 (2006), 423–432.

[Tuchschmid et al. 06] S. Tuchschmid, M. Grassi, D. Bachofen, P. Frueh, M. Thaler,
G. Szekely, and M. Harders. “A Flexible Framework for Highly-Modular
Surgical Simulation Systems.” In Proc. of ISBMS, LNCS 4072, pp. 84–92.
Berlin/Heidelberg: Springer, 2006.

[Turner et al. 98] M. L. Turner, D. H. Gomez, M. R. Tremblay, and M. R. Cutkosky.
“Preliminary Tests of an Arm-Grounded Haptic Feedback Device in Telemanipu-
lation.” Proceedings Haptics Symposium, ASME Dynamic Systems and Control
Division DSC-64 (1998), 145–149.

[Unger et al. 07] B. Unger, R. Hollis, and R. L. Klatzky. “JND Analysis of Texture
Roughness Perception using a Magnetic Levitation Haptic Device.” In Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 9–14.
Washington, D.C.: IEEE Computer Society, 2007.

[van den Bergen 97] G. van den Bergen. “Efficient Collision Detection of Complex De-
formable Models using AABB Trees.” journal of graphics tools 2:4 (1997), 1–14.

[van den Bergen 01] G. van den Bergen. “Proximity Queries and Penetration Depth
Computation on 3D Game Objects.” In Game Developers Conference, 2001.

[Venema and Hannaford 00] S. C. Venema and B. Hannaford. “Experiments in Finger-
tip Perception of Surface Discontinuities.” Intl. Journal of Robotics Research 19:7
(2000), 684–696.

[Venema et al. 02] S. C. Venema, E. Matthes, and B. Hannaford. “Flat Coil Actuator
having Coil Embedded in Linkage.” Patent no. 6437770, 2002.

[Verillo et al. 69] R. T. Verillo, A. J. Fraiolo, and R. L. Smith. “Sensory Magnitude of
Vibrotactile Stimuli.” Perception & Psychophysics 6 (1969), 366–372.



�

�

�

�

�

�

�

�

Bibliography 599

[Vibell et al. 07] J. Vibell, C. Klinge, M. Zampini, C. Spence, and K. Nobre. “ERP
Study of the Spatial Prior-Entry Effect.” Manuscript, 2007.

[Vidholm and Nyström 05] E. Vidholm and I. Nyström. “A Haptic Interaction Tech-
nique for Volume Images Based on Gradient Diffusion.” In WorldHaptics, pp. 336–
341. Washington, D.C.: IEEE Computer Society, 2005.

[Vidholm et al. 06] Erik Vidholm, Sven Nilsson, and Ingela Nyström. “Fast and Robust
Semi-automatic Liver Segmentation with Haptic Interaction.” In MICCAI, pp. 774–
781. Berlin: Springer, 2006.

[Vijayakar and Hollerbach 02] A. Vijayakar and J. M. Hollerbach. “Effect of Turning
Strategy on Maneuvering Ability using the Treadport Locomotion I nterface.” Pres-
ence 11 (2002), 247–258.

[Vlachos et al. 03] K. Vlachos, E. Papadopoulos, and D. Mitropoulos. “Design and
Implementation of a Haptic Device for Training in Urological Operations.” IEEE
Transactions on Robotics and Automation 19:5 (2003), 801–809.

[Vleugels and Overmars 97] J. Vleugels and M. Overmars. “Approximating Voronoi
Diagrams of Convex Sites in Any Dimension.” International Journal of Computa-
tional Geometry and Applications 8 (1997), 201–222.

[Volino and Thalmann 94] P. Volino and N. Magnetat Thalmann. “Efficient Self-
Collision Detection on Smoothly Discretized Surface Animations using Geometrical
Shape Regularity.” Computer Graphics Forum (EuroGraphics Proc.) 13:3 (1994),
155–166.

[Volino and Thalmann 00] P. Volino and N. Magnenat Thalmann. “Accurate Collision
Response on Polygon Meshes.” In Proc. of Computer Animation, p. 154. Washing-
ton, D.C.: IEEE Computer Society, 2000.

[Wagner et al. 02] C. R. Wagner, N. Stylopoulos, and R. D. Howe. “The Role of Force
Feedback In Surgery: Analysis of Blunt Dissection.” In Proceedings of the 10th
IEEE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator
Systems, pp. 68–78. Washington, D.C.: IEEE Computer Society, 2002.

[Wall and Harwin 99] S. A. Wall and W. S. Harwin. “Modeling of Surface Identifying
Characteristics using Fourier Series.” Proceedings of the ASME Dynamic Systems
and Control Division 67 (1999), 65–71.

[Walton and Spence 04] M. Walton and C. Spence. “Cross-Modal Congruency and Vi-
sual Capture in a Visual Elevation Discrimination Task.” Experimental Brain Re-
search 154 (2004), 113–120.

[Wan and McNeely 03] M. Wan and W. A. McNeely. “Quasi-Static Approximation for
6 Degrees-of-Freedom Haptic Rendering.” In Proc. of IEEE Visualization, pp. 257–
262. Washington, D.C.: IEEE Computer Society, 2003.

[Ward 77] L. Ward. “Multidimensional Scaling of the Molar Physical Environment.”
Multivariate Behavioral Research 12 (1977), 23–42.

[Watanabe and Fukui 95] T. Watanabe and S. Fukui. “A Method for Controlling Tac-
tile Sensation of Surface Roughness using Ultrasonic Vibration.” In Proc. IEEE
International Conference on Robotics and Automation, pp. 1134–1139. Washing-
ton, D.C.: IEEE Computer Society, 1995.

[Webster et al. 01] R. Webster, D. Zimmerman, B. Mohler, M. Melkonian, and
R. Haluck. “A Prototype Haptic Suturing Simulator.” In Medicine Meets Vir-
tual Reality, pp. 567–569. Amsterdam: IOS Press, 2001.

[Weir et al. 04] D. W. Weir, M. Peshkin, and J. E. Colgate. “The Haptic Profile: Cap-
turing the Feel of Switches.” In Proceedings of the 12th IEEE Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 186–193.
Washington, D.C.: IEEE Computer Society, 2004.



�

�

�

�

�

�

�

�

600 Bibliography

[Weisenberger et al. 00] J. M. Weisenberger, M. J. Krier, and M. A. Rinker. “Judging
the Orientation of Sinusoidal and Square-Wave Virtual Gratings Presented via 2-
DOF and 3-DOF Haptic Interfaces.” Haptics-e, the electronic journal of haptics
research 1:4 (2000).

[Weisendanger 01] M. Weisendanger. “Squeeze Film Air Bearings Using Piezoelectric
Bending Elements.” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lau-
sanne, Switzerland, 2001.

[Welch 72] R. B. Welch. “The Effect of Experienced Limb Identity upon Adaptation
to Simulated Displacement of the Visual Field.” Perception & Psychophysics 12
(1972), 453–456.

[Wellman and Howe 95] P. Wellman and R. D. Howe. “Towards Realistic Vibrotactile
Display in Virtual Environments.” In Proceedings of the 4th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, ASME International
Mechanical Engineering Congress and Exposition, pp. 713–718. New York: ASME,
1995.

[West and Cutkosky 97] A. M. West and M. R. Cutkosky. “Detection of Real and Vir-
tual Fine Surface Features with a Haptic Interface and Stylus.” Proceedings, ASME
Haptics Symposium, Dynamic Systems and Control Division DSC-61 (1997), 159–
165.

[Whiteley et al. 04] L. Whiteley, S. Kennett, M. Taylor-Clarke, and P. Haggard. “Fa-
cilitated Processing of Visual Stimuli Associated with the Body.” Perception 33
(2004), 307–314.

[Wilhelmsen 76] D. R. Wilhelmsen. “A Nearest Point Algorithm for Convex Polyhe-
dral Cones and Applications to Positive Linear Approximations.” Mathematics of
Computation 30 (1976), 48–57.

[Williams II et al. 99] R. L. Williams II, J. M. Henry, M. A. Murphy, and D. W. Rep-
perger. “Free and Constrained Motion Teleoperation via Naturally-Transitioning
Rate-to-Force Control.” In Proc. IEEE Int’l. Conf. on Robotics and Automation,
pp. 225–230. Wahsington, D.C.: IEEE Computer Society, 1999.

[Wilson et al. 99] A. Wilson, E. Larsen, D. Manocha, and M. C. Lin. “Partitioning and
Handling Massive Models for Interactive Collision Detection.” Computer Graphics
Forum (Proc. of Eurographics) 18:3 (1999), 319–329.

[Winfield et al. 07] Laura Winfield, Michael Peshkin, and J. Edward Colgate. “TPaD:
Tactile Pattern Display through Variable Friction Reduction.” In Second Joint
Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems. Tskuba,Japan, 2007.

[Wolpert et al. 98] D. M. Wolpert, S. J. Goodbody, and M. Husain. “Maintaining In-
ternal Representations: The Role of the Human Superior Parietal Lobe.” Nature
Neuroscience 1 (1998), 529–533.

[Wu 00] D. Wu. “Penalty Methods for Contact Resolution.” In Game Developers Con-
ference, 2000.

[Yamamoto and Kitazawa 01] S. Yamamoto and S. Kitazawa. “Sensation at the Tips
of Invisible Tools.” Nature Neuroscience 4 (2001), 979–980.

[Yamamoto et al. 03] A. Yamamoto, T. Ishii, and T. Higuchi. “Electrostatic Tactile
Display for Presenting Surface Roughness Sensation.” In IEEE International Con-
ference on Industrial Technology, pp. 680–684. Washington, D.C.: IEEE Computer
Society, 2003.

[Yano et al. 03] H. Yano, K. Kasai, H. Saitoh, and H. Iwata. “Development of a Gait
Rehabilitation System Using a Locomotion Interface.” Journal of Visualization
and Computer Animation 12:5 (2003), 243–252.



�

�

�

�

�

�

�

�

Bibliography 601

[Yao et al. 05] H. Yao, V. Hayward, and R. Ellis. “A Tactile Enhancement Instrument
for Minimally Invasive Surgery.” Comput Aided Surgery 10:4 (2005), 233–239.

[Yi and Hayward 02] D. Yi and V. Hayward. “Augmenting Computer Graphics with
Haptics for the Visualization of Vessel Networks.” In Pacific Conference on Com-
puter Graphics and Applications, pp. 375–385. Washington, D.C.: IEEE Computer
Society, 2002.

[Yi et al. 06] S. Yi, H. Woo, W. Ahn, J. Kwon, and D. Lee. “New Colonoscopy Simulator
with Improved Haptic Fidelity.” Advanced Robotics 20:3 (2006), 349–365.

[Yoon et al. 04] S. Yoon, B. Salomon, M. C. Lin, and D. Manocha. “Fast Collision
Detection between Massive Models using Dynamic Simplification.” In Eurographics
Symposium on Geometry Processing, pp. 136–146. New York: ACM Press, 2004.

[Yoshida 68] M. Yoshida. “Dimensions of Tactual Impressions.” Japanese Psychological
Research 10 (1968), 157–173.

[Yoshioka et al. 01] T. Yoshioka, B. Gibb, A. K. Dorsch, S. S. Hsiao, and K. O. Johnson.
“Neural Coding Mechanisms Underlying Perceived Roughness of Finely Textured
Surfaces.” Journal of Neuroscience 21 (2001), 6905–6916.

[Young 85] F. W. Young. “Multidimensional Scaling.” In Encyclopedia of Statistical
Sciences, Vol. 5. New York: John Wiley & Sons, 1985.

[Yuan et al. 05] H. F. Yuan, C. M. Reed, and N. I. Durlach. “Temporal Onset-Order
Discrimination through Tactual Sense.” Journal of the Acoustic Society of America
117:5 (2005), 3139–3148.

[Zhang et al. 07a] L. Zhang, Y. Kim, and D. Manocha. “A Fast and Practical Algorithm
for Generalized Penetration Depth Computation.” In Proceedings of Robotics: Sci-
ence and Systems. Bellingham, WA: SPIE, 2007.

[Zhang et al. 07b] L. Zhang, Y.J. Kim, G. Varadhan, and D.Manocha. “Generalized
penetration depth computation.” Computer-Aided Design 39:8 (2007), 625–638.

[Zhang et al. 07c] Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim.
“Continuous Collision Detection for Articulated Models using Taylor Models and
Temporal Culling.” Proc. SIGGRAPH ’07, Transactions on Graphics 26:3 (2007).

[Zhuang and Canny. 99] Y. Zhuang and J. Canny. “Real-Time Simulation of Physically
Realistic Global Deformation.” In IEEE Visualization Conference, p. 95. Wash-
ington, D.C.: IEEE Computer Society, 1999.

[Zienkiewicz and Taylor 89] O. C. Zienkiewicz and R. L. Taylor. The Finite Element
Method, Fourth edition. New York: McGraw-Hill, 1989.

[Zienkiewicz 77] O. C. Zienkiewicz. The Finite Element Method. Maidenhead, UK:
McGraw-Hill Book Company (UK) Limited, 1977.

[Zilles and Salisbury 94] C. B. Zilles and J. K. Salisbury. “A Constraint-Based God-
Object Method for Haptic Display.” In ASME Haptic Interfaces for Virtual Envi-
ronment and Teleoperator Systems, pp. 149–150. New York: ASME, 1994.

[Zilles and Salisbury 95] C. B. Zilles and J. K. Salisbury. “A Constraint-Based God-
Object Method For Haptic Display.” In Proc. of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Washington, D.C.: IEEE Computer
Society, 1995.

[Zorcolo et al. 00] A. Zorcolo, E. Gobbetti, G. Zanetti, and M. Tuveri. “Catheter In-
sertion Simulation with Co-Registered Direct Volume Rendering and Haptic Feed-
back.” In Medicine Meets Virtual Reality, pp. 96–98. Amsterdam: IOS Press, 2000.

[Zorin et al. 97] D. Zorin, P. Schröder, and W. Sweldens. “Interactive Multiresolution
Mesh Editing.” In Proceedings of SIGGRAPH, Computer Graphics Proceedings,
Annual Conference Series, edited by Turned Whitted, pp. 259–268. Reading, MA:
Addison Wesley, 1997.



�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

Index

2D painting, 533
3-DOF (texture) rendering, 373
3D object, 318
3D virtual brushes, 535
6-DOF, 493
6-DOF (texture) rendering, 375
6-DOF god-object method, 334
6-DOF haptic rendering, 219–251

Voxmap PointShellTM (VPS), 219

a point, 318
AABB-trees, 187
accelerometer, 450
activities of daily living, 517
adaptive, 135
adaptive impedance controller, 524
adaptive thresholding, 68
adaptively sampled distance fields, 534
ADL, 517, 519
admittance, 124
admittance controller, 519
admittance display, 313
admittance rendering, 162
after effects, 524
agency, 44
algorithms, 17
alien limb, 35
analog, 150
analog circuitry, 153
analog-to-digital converter, 130
apparent inertia, 152
applications, 4
arbitrary in-between motions, 255
ArtNova, 541
assistive haptics, 522

attention, 46
cue, 46
endogenous, 33
exogenous, 29, 46
spatial, 29

auditory, 15, 19
automatic repositioning, 542
automotive industry, 471
axis-aligned bounding boxes, 269

back EMF, 153
back-drivable impedance control, 519
Backward Euler integration, 170, 172
benchmark, 128
bending element construction, 110
bi-directional transfer, 536
bi-manual task, 71
bidirectional paint, 534
bilateral process, 311
bimodal, 15
blade, 457
body representation, 23–52
body schema, 40
body shadows, 44–45
body weight supports, 521
Boeing, 219
boundary element models, 401
boundary value problem, 400
bounding volume hierarchies, 189, 277,

280, 386
bounding volume test tree, 285
Boyle’s Law, 99
brain areas, 22

angular gyrus, 50
intraparietal sulcus, 50
parietal area 7b, 47

603



�

�

�

�

�

�

�

�

604 Index

parietal areas, 22
premotor cortex, 22, 47
putamen, 22, 47
superior colliculus, 22
ventral intraparietal area, 47
ventral intraparietal sulcus, 22
VIP-F4, 22

brain damage, 51
brain plasticity, 517
brain-damaged patients, 44
broad phase, 199
BSP, 186
BVH, 277, 387
BVP, 400
BVTT, 285

carbon nanotubes, 495
cat, 22
causality, 124
cerebral palsy, 517
CFD, 492
characteristic impedance, 100
CirculaFloor, 58–60
CLOD, 277
cluster-sorting method, 118
co-location, 475
co-rotational, 435
coefficient of friction, 93
collaborative multi-user virtual

environment, 245
collision, 181, 421
collision detection, 75, 78, 164, 182,

277, 315, 448, 528
multiresolution, 280

collision offsetting, 225
collision response, 165, 315
Comet Temple-1, 79
commercial software products, 332
computational fluid dynamics, 492
computational haptics, 4
congruent, 24
conservative, 305
constraint-based method, 333
constraints, 164, 172, 179
CONTACT, 482
contact area, 279
contact force, 78

contact levels of detail, 198, 277
contact manifold, 182
contact mechanics, 304
continuous collision detection, 183, 337
continuous overlap tests, 268
continuous-time, 125
convex hull, 283, 387
convex hull-trees, 187
Coulomb, 421
Coulomb friction, 131
coupling

deformable object, 434
rigid object, 433

crack, 460
creative process, 531
cross-cortical connections, 50
crossed posture, 24
crossed-hands posture, 50
crossmodal congruency effects, 21–52
crossmodal congruency task, 21–52
crossmodal selective attention, 25
cuing, 29
cutaneous, 2, 13
cutaneous perception, 372
cutting, 445, 457–465
Cyberglove, 68
CyberGrasp, 519

dAb, 534
Dahl’s 1976 model, 299
damper, 149
damping, 146
database, 443–467
DEEP, 203
DeepImpact, 79
defensive reflexes, 526
deformable, 421
deformable object

dynamics, 171
textures, 393

delay, 133, 134, 139, 146
desktop force display, 60–61
devices

multi-finger, 67
digital art, 533
direct rendering, 164, 165, 289
direct-drive configuration, 520



�

�

�

�

�

�

�

�

Index 605

disability, 517
discrete-time controller, 125
discrete-time passivity, 137
dissimilarity matrix, 119
dissipation, 127
distance

external, 367
miniumum, 358
parametric form, 356
stability of numerical methods,

365
distance field, 193
distractor, 23
Dobkin-Kirkpatrick hierarchy, 183
drive

friction, 68
hydraulic, 67
pneumatic, 67
tendon, 68

duplex model, 9
dynamic friction, 330
dynamic queries, see continuous

collision detection
dynamic query, 182
dynamic range, 124
dynamics

rigid body, 169

edge collapse, 284
elasticity, 171
electrical damping, 152, 153
electro-rheologic coupling, 528
elementary continuous collision

detection, 264
elevation discrimination, 23
encoder resolution, 131
encoders, 130
end effector, 519
energy leaks, 127, 131
error, 24
European Union, 517
event-based haptics, 448
exact shape, 70
exoskeleton, 53, 60, 519
exploration, 8, 13, 14
exploratory procedures, 70
extrapersonal space, 45, 46

fake limb, 35
fast marching method, 193
FEELEX, 64–65
filter

Butterworth, 134
low-pass, 134

filtering, 146
finger position sensing, 111
finite element method, 172, 459
first-person, 471

point of view, 471
flat-coil actuator, 72
flexion, 520
flexion-extension plane, 72, 75
flow visualization, 492
fMRI, 28, 31, 32, 44
force-displacement response, 458
force feedback, 519
force-feedback devices, 9, 19
force-feedback space, 473
force-feedback systems, 472
force fields, 486
force model

tangent-plane, 221
force sensor, 447
force shading, 329
Fourier series, 331
fractals, 331
fracture, 460–465
fracture mechanics, 302
fracture toughness, 462
FreeForm, 533
frequency-dependent physical

damping, 146
friction, 93, 327, 329
friction reduction, 93
frictional contact, 421
frictional forces, 539

gait training, 520
GaitMaster, 57–58
Gauss-Seidel, 432
generalized coordinates, 169
generalized penetration depth, 192
geometrical awareness, 228
GHOST, 213
GHOST SDK, 332



�

�

�

�

�

�

�

�

606 Index

GJK algorithm, 184, 201
global shape, 70
god-object, 138, 164, 318
Gouraud shading, 328
GPU-based computations, 196
graphics hardware, 381
graphics rewards, 518
grasping, 7, 407
gratings, 10, 11
gravity compensation, 74
gravity-induced forces, 519
Green’s functions, 402
growth distance, 192
guiding forces, 491, 493, 497, 498
gyrators, 150

H-COLLIDE, 206, 541
hand-eye coordination, 518
hand-held stylus, 69
haptic applications, 518
Haptic Controller, 241
haptic device, 69
haptic display, 333

3-DOF, 205
haptic disturbance, 524
haptic effects, 518
haptic feedback, 471, 522–525
haptic glance, 278
haptic glove, 519
haptic interaction point, 77
haptic interface point, 311
haptic interfaces, 517
haptic manipulanda, 94
Haptic Master, 62–63, 519
haptic rendering, 2, 7, 159, 297, 314,

336
3-DOF, 163
6-DOF, 163, 277
algorithm, 163
multiresolution, 277

haptic rendering pipeline, 506
haptic surface properties, 341
haptic synthesis, 297
haptic synthesis of. . .

crack, 302
cutting, 297, 302
cutting force, 303

damage, 302
deformation, 297
friction, 297, 299
initial point of contact, 305
local deformation, 308
plasticity, 300
presliding distance, 301
shock, 297, 308
sliding contacts, 306
structural response, 309
tangential deflection, 300
texture, 307

haptic technology configuration, 3
haptics, 518

in education, 486
in rehabilitation, 518

HapticWalker, 521
haptography, 444
hardness, 70
hashing, 212
Hausdorff distance, 282
height field, 379
high-quality haptic, 334
HIP, 311
Howe, Robert D., 445
human model, 248
human-machine coupling, 311
Hunt-Crossley collision model, 308
hybrid hierarchical representation, 207

I-COLLIDE, 201
ideal haptic interface point, 318
IHIP, 318
immersive visualization, 471
immersive visuo-haptic systems, 475
impedance, 123, 124, 168
impedance control, 524
impedance controllers, 150
impedance display, 314
impedance range, 124
impedance rendering, 161
impedance-based rendering, 236
impedance-type haptic device, 446
implicit integration, 169, 179
implicit surfaces, 319, 324
incongruent, 24
instability, 123, 155



�

�

�

�

�

�

�

�

Index 607

interaction
abstract data, 501
augmented, 501
hand-based, 501
real entities, 501
tool-based, 501
virtual, 501

interferometric optical encoder, 72
intermediate haptic interaction point,

77
intermediate representation, 176, 487,

497–498
interpolation, 305
intersensory, 14
interval arithmetic, 198, 262
interval recursive root-finding, 265
inTouch, 541, 545
inverse efficiency, 24

JND, 68
joystick-based, 486
just noticeable difference, 68

k-D trees, 186
k-DOP-trees, 187
k-DOPs, 188
KDS, 186
kinesthesis, 12
kinesthetic, 2
kinesthetic perception, 372
kinesthetic sensors, 71, 444
kinetic data structures, 186
Kuchenbecker, Katherine J., 443–467

Lagrange multipliers, 175
Langevin-type piezoelectric actuator,

107
lateral force, 486
lateral force fields, 94
LCP, 430
learning, 15
limb movements, 517
Lin-Canny algorithm, see Voronoi

marching
line segment, 318
linear complementarity problem, 175,

179, 430

linear programming, 183
load cells, 111
local buffer models, 408
local minima, 359
locomotion interface, 54–60

locomotion rendering, 90
centering, 88
collision forces, 88
inertial forces, 89
locomotion rendering, 87
slope display, 89
speed control, 87
vertical support, 89

Lokomat, 520
lower extremity, 518
lower limb, 518

MacLean, Karon, 445
magnitude, 8, 11
magnitude estimation, 9, 10, 12, 18
Mahvash, Mohsen, 443–467
material properties, 19
maximum-likelihood, 15
measurement-based haptic, 155
measurement-based modeling, 443–467

input-output models, 443–467
physics-based models, 443–467

mechanical amplifier effect, 520
mechanoreceptors, 8, 12, 54, 160, 450

medical applications
rehabilitation, 505
augmented reality

open surgery simulation, 512
education, 505
hysteroscopic surgical simulation,

509
intra-operative support, 504
radiological data segmentation,

507
surgery and treatment planning,

503
telediagnosis, 503

medical visualization, 490
mesh decimation, 283
MFHD, 77
minimum-jerk trajectory, 524



�

�

�

�

�

�

�

�

608 Index

Minkowski sum, 184, 375, see also
penetration depth

Minsky, M. D. R., 94
mirror, 38
MIT MANUS, 518
mixed props, 476, 478
mobility simulator, 522
modeling deformation of linear

elastostatic objects, 395
molecular, 488–490
monkey, 22, 27
monoscopic display, 519
motor, 150, 153
motor preparation, 44
motor winding, 152
MRI scan, 79
multi-level Voronoi marching, see

Voronoi marching
multi-space partitions, 186
multidimensional scaling, 117, 118
multiple data sets, 487, 490, 499
multiple moving objects, 239
multirate rendering, 176
multisensory, 21–52
multisensory representation, 51
musculo-skeletal deficits, 517

N-body culling, 197
nanoManipulator, 494
narrow phase, 199
NASA, 79
neural paths, 517
Newton-Euler equations, 169
non-deformable surface, 75
non-passive, 129
non-penetrating simulation, 333
nonlinear, 141
nonlinearities, 135

OBB-trees, 187
OBBTree, 209
object identification, 13
octrees, 186, 227
offset surface, 375
Okamura, Allison M., 443–467
OPCODE, 203
OpenHaptics, 332

oriented bounding boxes, 270
oscillations, 124, 128
out-of-core algorithms, 201
output forces, 519
overlap graphs, 200
ownership, 44

Pacinian corpuscles, 9, 12, 450
pantograph, 112
parametric surfaces, 319, 322
parietal cortex, 27
part motion, 70
passive, 143
passive synthesis, 299
passivity, 123, 124, 130, 155, 298

limit cycle, 298
sampling and reconstruction, 298
virtual coupling, 298

passivity condition, 127
passivity controllers, 140, 142, 156
passivity criterion, 125, 146
passivity observers, 140, 142
patient

chronic, 517
peg-in-a-hole, 254
pen-based force display, 53, 61–62
penalty method, 164, 173, 177, 289
penalty-based methods, 190

textures, 376
penetration depth, 173, 182, 190, 289,

376
directional, 376
textures, 377

perception
cutaneous, 160
kinesthetic, 160

periodic, 329
periodic contact, 100, 108
peripersonal space, 22–52
personal space, 46
PHANTOM, 240, 446
phantom limb, 40
Phantom Omni, 82
Phong shading, 328
physical damping, 127
physical dissipation, 136
physical rehabilitation, 517–529



�

�

�

�

�

�

�

�

Index 609

physically based, 334
physiological response, 68
piezoelectric bending elements, 108
pink noise, 331
PIVOT, 203
planar motion, 72
point-based haptic interactions, 311
point-like contact, 410
Poiseuille channel flow, 98
polygonal surfaces, 319
position matrix, 257
post-stroke, 517
posture, 27, 47
potentiometers, 130
PQP, 202
precomputation, 402
programmable foot platforms, 86

GaitMaster, 87
Sarcos Biport, 86

projection-based virtual environments,
478

proprioception, 21–52
props, 478
proximity, 181
proxy point, 318
psychophysical, 154
psychophysics of touch, 2

quantization, 130
quasi-rigid, 436
quasi-statics, 338
QuickCD, 202

R-trees, 186
RAPID, 201
rate-hardness, 154
Reachin, 492
Reachin API, 332
reaction time, 24
receptive fields, 22, 27
reconstruction filter, 308
redundancy principle, 526
rehabilitation

finger, 520
lower extremity, 518, 520
shoulder, 519
upper extremity, 518

rehabilitation science, 517
remap, 49
remote touch, 528
rendered, 17
rendering, 18, 136, 154

6-DOF, 333
multifinger, 75

repetitive transcranial magnetic
stimulation, 50

resolution, 130
response, 30, 32
RF, 37
rigid bodies, 334
rigid environments, 333
robot, 517
robotic systems, 517–522
robotics, 518
roughness, 8–12, 14, 15, 17, 19
roughness magnitude, 15
RTAI, 74
rubber hand, 45
“rubber hand” illusion, 51
rupture, 460
Rutgers Master, 67
Rutgers Master II, 520
Rutgers Mega Ankle Stewart

Platform, 522

safety, 526–528
issues, 518
measures, 526

sampled-data, 125, 137
sampling, 125, 128, 130, 131, 138
sampling rate, 127
sandpaper, 331
Sandpaper system, 373, 486
Sarcos Dexterous Arm, 67
scanning-probe microscope, 494
SCARA, 519
scientific visualization, 485
scissors, 457
screw motion, 259–261
self-collision detection, 197
self-recognition, 45
SensAble Technologies, Inc., 446
sensation, 108



�

�

�

�

�

�

�

�

610 Index

sensation-preserving simplification,
283

Sensing Glove II, 67
sensor resolution, 127
sensory modalities, 51
separating axis, 188
separating axis theorem, 188, 206, 209,

270
separating vector, 184
separation distance, 182
shape design, 66
shape-from-shading, 79
shear force patterns, 116
Signorini, 421
single-cell neurophysiology, 22
single-point contact, 75, 311
sinusoidal gratings, 69
skin, 8, 14
smooth surfaces, 342
smoothing, 327, 328
societal impact, 517
SOLID, 202
sound, 14, 15, 19
spatial acuity, 68
spatial partitioning, 206
spatial position, 51
spatial scale, 500
spatial summation, 69
sphere-trees, 187
spheres, 269
spherical shell, 189
spherical shell-trees, 187
spinal cord injuries, 517
splines

3-DOF haptic rendering, 359
6-DOF haptic rendering, 367
direct parametric tracing, 359
NURBS, 355, 356
representation, 355–356
transitioning over patch

boundaries, 362
trimmed models, 363

split-brain, 47
patient (J.W.), 48

spring, 131
spring-like force, 523
squeeze film, 96

squeeze force, 100
squeeze number, 97
SSV-trees, 187
stability, 3, 136
stability boundaries, 134
stability plane, 133
staircase effect, 317
static friction, 330
static query, 182
stick-slip friction, 330
stimuli, 68
stochastic-based haptic textures, 331
STReSS tactile display, 95
stringed force feedback interface, 477
stringed haptic interface, 477
Stringed Haptic Workbench, 471
surface acoustic waves, 107
surface contact point, 75, 318
surface details, 327
surface models, 319
surface roughness, 330
sweep and prune, see N-body culling
swept sphere volumes, 188
SWIFT, 202
SWIFT++, 202

T-PaD, 108
tactile displays, 93
tactile sensors, 444
tapping, 445, 449–457
teleoperation, 160, 487, 494
telerehabilitation, 528
telerobotics, 518
temperature, 70
temporal, 8, 28
temporal coherence, 231–236
tensor visualization, 493
texture perception, 94, 330, 372, 383
textures, 7–9, 14, 17–19, 70, 327, 330,

344, 371, 486, 490, 493
therapeutic games, 518
therapy, 517
thermal

model, 72
resistance, 72

tonic stimulation, 69
tool, 39



�

�

�

�

�

�

�

�

Index 611

torque factor, 72
Torus Treadmill, 56–57
touch, 21–52
tracking closest features, 184
translational C-space obstacle, see

Minkowski sum, penetration
depth

transparency, 160, 170, 176
traumatic brain injury, 517
Traveling Wave Ultrasonic Motor, 106
treadmill, 83, 521

ATR ATLAS, 84, 85
Omni-Directional Treadmill, 85
Sarcos Treadport, 85
Torus Treadmill, 85

triangle mesh, 281

ultrasonic vibration, 96, 104
uncertainty, 143
uncrossed posture, 24
upper extremity, 518
upper limb, 518
user-centric viewing, 545

V-COLLIDE, 201
variable friction reduction, 93
vector field visualization, 490–493
vector interval, 262
velocity, 146
velocity estimation, 134
ventriloquism, 31
vertex pressure masks, 411
vibration, 8–10, 12, 19, 444–457
vibrotactile, 68
vibrotactile stimuli, 69
vibrotactile target, 23, 26, 28, 51
vibrotactile threshold, 68
virtual bumps, 95
virtual clay, 65

manipulation, 65
virtual coupler, 312
virtual coupling, 136, 156, 167,

236–239, see also stability
6-DOF, 170
multi-user, 247
passivity, 237

virtual damper, 136
virtual damping, 127, 146
virtual environment, 94, 123, 136, 137,

140, 155, 160
Virtual Perambulator, 55–56
virtual prototyping, 471
virtual proxy, 358
virtual reality, 518

simulations, 517
virtual slot, 524
virtual spring, 77, 136
virtual stiffness, 127, 131
virtual texture, 114
virtual tool, 160

model, 163
virtual wall, 125, 128, 317
virus, 495
viscous damping, 127, 131
vision, 21–52
visual capture, 35
visually impaired, 490
visuotactile space, 47
Volflex, 65–66
volume, 70
volume visualization, 490, 493
volumetric models, 319, 325
Voronoi marching, 185, 198
vortices, 492
voxel-based proximity

applications, 249
voxel-based distance field, 223

voxel-based rendering
pointshell, 222
voxmap, 222

VRPN, 207

wash out, 525
Weber fraction, 68
weight, 70
winding inductance, 153
winding resistance, 153
wood, 450–452, 455–457
work envelope, 519

Z-width, 124, 129
zero-order hold, 139


