Haptic Rendering

Haptic Rendering
Foundations, Algorithms, and

Applications

edited by
Ming C. Lin

Miguel A. Otaduy

A K Peters, Ltd.
Wellesley, Massachusetts

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright (©) 2008 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Haptic rendering : foundations, algorithms, and applications / edited by Ming
Lin, Miguel Otaduy
p. cm.

Includes bibliographical references and index.

ISBN 13: 978-1-56881-332-5 (alk. paper) 1. Human-computer interaction. 2.
Touch. 3. Computer algorithms. I. Lin, Ming C. II. Otaduy, Miguel A.

QAT76.9.H85H378 2008

004.01’9-dc22

2008013104

Printed in the United States of America
12 11 10 09 08 10987654321

[DEDICATION].

Contents

Preface xiii
Introduction 1
| Fundamentals and Devices 5
1 Perceiving Object Properties through a Rigid Link 7
1.1 Surface Roughness: Direct vs. Indirect Exploration 8
1.2 Effects of a Rigid Link on Other Object Properties 12
1.3 Object Identification: Direct vs. Indirect Exploration . . . 13
1.4 Intersensory Influences via Indirect Touch 14
1.5 Rendered Textures 17
1.6 Implications for Virtual Objects. 18
2 Multi-Sensory Interactions 21
2.1 Introduction to Crossmodal Congruency 21
2.2 The Crossmodal Congruency Task 22
2.3 Using the Crossmodal Congruency Task 35
2.4 Using the Crossmodal Congruency Task 47
2.5 Conclusion 50
3 Design Issues in Haptic Devices 53
3.1 Towards Full-Body Virtual Touch 53
3.2 Sensory Modes and Interface Devices 54
3.3 Locomotion Interfaces, 55
3.4 Desktop Displays oo 60
3.5 Flexible Surface Displays 63
3.6 Summary e 66

vii

viii Contents

4 Rendering for Multifinger Haptic Devices 67
4.1 Literature Review 67
4.2 Multifinger Haptic Perception 68
4.3 Design of a Multifinger Haptic Device 71
4.4 Multifinger Rendering Method 75
4.5 Future Work 81

5 Locomotion Interfaces and Rendering 83
5.1 Locomotion Interface Designs 83
5.2 Locomotion Rendering 87
5.3 Discussion 91

6 Variable Friction Haptic Displays 93
6.1 Human Perception of Friction 93
6.2 Friction Reduction Theory 96
6.3 Variable Friction Devices 104
6.4 Friction Reduction Measurements 111
6.5 Friction Patterns to Mimic Textures 115
6.6 Multidimensional Scaling 117
6.7 Summary 121

7 Stability of Haptic Displays 123
7.1 Definitions oo 123
7.2 Designing for Passivity o000 124
7.3 Passive Rendering of a Virtual Wall 125
7.4 Extensions to the Passivity Framework 130
7.5 Control Methods 136
7.6 Extending Z-Width 0oL 143
7.7 Summary ... 155

[l Rendering Techniques 157

8 Introduction to Haptic Rendering Algorithms 159
8.1 Definition of the Rendering Problem 159
8.2 Components of a Rendering Algorithm 163
8.3 Direct Rendering vs. Virtual Coupling 165
8.4 Modeling the Tool and the Environment 168

8.5 Multirate Algorithm 176

Contents

9

10

11

12

13

Overview on Collision and Proximity Queries

9.1 Problem Definitions
9.2 Convex Polytopes.
9.3 General Polygonal Models
9.4 Penetration Depth Computation
9.5 Volumetric Representations
9.6 Spline and Algebraic Objects
9.7 Deformable Models
9.8 Dynamic Queries
9.9 Multiresolution Techniques
9.10 Large Environments
9.11 Proximity Query Packages

Collision Detection for Three-DOF Rendering
10.1 Related Work

10.2 A Fast Proximity Query Algorithm for 3-DOF Haptic In-

teractiono oo
10.3 Implementation Issues
10.4 System Performance
10.5 Conclusion L.
10.6 Acknowledgments

Voxel-Based Collision Detection for Six-DOF Rendering
11.1 Algorithm Overview
11.2 Voxel Data Structures
11.3 Geometrical Awareness
11.4 Temporal Coherence
11.5 Rendering with Virtual Coupling
11.6 Applications and Experiments
11.7 Discussion

Continuous Collision Detection

12.1 Why Continuous Collision Detection?
12.2 Arbitrary In-Between Motions
12.3 Interval Arithmetic
12.4 Elementary Continuous Collision Detection . . .
12.5 Continuous Overlap Tests for Bounding Volumes
12.6 Conclusion

Contact Levels of Detail

13.1 Psychophysical Foundations
13.2 Approaches to Multiresolution Collision Detection
13.3 Data Structure of CLODs

181
182
183
186
190
193
194
196
197
198
199
201

205
205

206
212
213
216
217

219
219
222
228
231
236
239
249

253
253
255
262
264
268
273

277
278
280
281

14

13.4 Sensation-Preserving Simplification
13.5 Multiresolution Contact Queries
13.6 Experiments. oL
13.7 Discussion Lo

Physically Based Haptic Synthesis

14.1 Haptic Synthesis as a Means for Passivity
14.2 Friction
14.3 Damage
14.4 Elastic Deformation
14.5 Texture
14.6 Shocks
14.7 Conclusion

15 Three-Degree-of-Freedom Rendering

16

17

18

15.1 Human-Machine Coupling
15.2 Single-Point Rendering of 3D Rigid Objects

15.3 Surface Details: Smoothing, Friction, and Texture

Six-Degree-of-Freedom Rendering of Rigid Environments

16.1 Overview
16.2 Six-Degree-of-Freedom God-Object Simulation . . .
16.3 Constraint-Based Force Computation
16.4 Haptic Surface Properties
16.5 Results and Discussion
16.6 Summary

Rendering of Spline Models

17.1 The Spline Representation
17.2 Distance and Orthogonal Projection
17.3 Local Minima in Distance versus the Virtual Proxy
17.4 3-DOF Haptic Rendering of Spline Models
17.5 Direct Parametric Tracing
17.6 Stability of Numerical Closest Point Methods
17.7 6-DOF Haptic Rendering of Spline Models
17.8 Conclusiono

Rendering of Textured Objects

18.1 Perceptual Motivations
18.2 Three-DOF Haptic Texture Rendering
18.3 Texture Force Model
18.4 Penetration Depth between Textured Models

Contents

311

... 31
... 315

327

15.4 Summary and Future 331

333

... 335
... 336
... 338
2|
... 346
... 352

355

... 355
... 356

358

... 359
... 399
... 365
... 367
... 369

Contents

18.5 Experiments Lo
18.6 Discussion

19 Modeling Deformation of Linear Elastostatic Objects
19.1 Motivations for Linear Elastostatic Models.
19.2 Linear Elastostatic Boundary Model Preliminaries

19.3 Fast Global Deformation Using Capacitance Matrix Algo-

rithms (CMAs)
19.4 Capacitance Matrices as Local Buffer Models
19.5 Surface Stiffness Models for Point-Like Contact
19.6 Results. o
19.7 Summary

20 Rendering of Frictional Contact with Deformable Environments
20.1 Contact and Friction Models
20.2 Non-Smooth Dynamics for Deformable Objects
20.3 Integration Schemes
20.4 Building Contact Space
20.5 Solving Strategy L.
20.6 Haptic Rendering
20.7 Examples oL
20.8 Conclusion oo

21 Measurement-Based Modeling for Haptic Rendering
21.1 Literature Review
21.2 Developing and Rendering a Measurement-Based Model .
21.3 Example Application: Tapping on Rigid Surfaces
21.4 Example Application: Cutting Deformable Surfaces
21.5 Summary . . o.o.o. . a e

[l Applications

22 Virtual Prototyping

22.1 Brief State of the Art L.
22.2 OVerview e
22.3 The Stringed Haptic Workbench
22.4 The Mixed-Prop
22.5 Putty Application—An Automotive Virtual Prototyping

Applicationo
22.6 Conclusion

Xi

Contents

Xii
23 Haptics for Scientific Visualization
23.1 Lessons from Haptic-Enabled Visualization Applications .
23.2 Useful Techniques for Haptic Display in Scientific Visual-
izationo L
23.3 Summary e
24 Haptics in Medical Applications
24.1 Overviewo
24.2 Visuo-Haptic Segmentation of Radiological Data
24.3 Immersive Virtual-Reality-Based Hysteroscopy Training .
24.4 Multimodal Augmented Reality for Open Surgery Training
25 The Role of Haptics in Physical Rehabilitation
25.1 Robotic Systems for Physical Rehabilitation
25.2 Specifics of Haptic Feedback for the Disabled
25.3 Safety Issues in Haptics for Rehabilitation
25.4 Looking at the Future
26 Modeling and Creative Processes
26.1 Case Studies of Existing Systems
26.2 Haptic-Enhanced Painting with 3D Deformable Brushes .
26.3 Haptic Modeling and 3D Painting.
26.4 Discussiono s
26.5 Future Work Lo oo
Bibliography

Index

485
485

497
500

501

501
507
509
512

517
518
5922
526
528

531

533
534
541
547
548

549

631

Preface

To date, most human-computer interactive systems have focused primarily
on the graphical rendering of visual information and, to a lesser extent,
on the presentation of auditory information. Among all senses, the human
haptic system provides an unique and bidirectional communication chan-
nel between humans and their physical environment. Extending the fron-
tier of visual computing, haptic interfaces that exploit our sense of touch
have the potential to increase the quality of human-computer interaction
through tactile and force feedback. They provide attractive augmentation
to visual and auditory display and enhance the level of understanding of
complex data sets. They have been effectively used for a number of applica-
tions including molecular docking, manipulation of nano-materials, surgical
training, virtual prototyping, digital sculpting, and many other interactive
applications.

Compared with graphics and audio, haptic rendering has extremely de-
manding computational requirements. In order to maintain a stable system
while displaying smooth and realistic forces and torques, haptic update
rates of 1 KHz or more are typically used. Haptics presents many new
challenges to researchers and developers in computer graphics, robotics,
psychophysics, and engineering. Some of the critical issues include the
development of novel data structures to encode shape and material prop-
erties, as well as new techniques for data processing, information analysis,
physical modeling, and haptic visualization.

This book provides an introduction to various disciplines within hap-
tics, surveys some of the latest developments on haptic rendering, and
examines several promising applications, while looking forward to excit-
ing future research in this area. The topics covered include novel haptic
rendering algorithms and innovative applications that take advantage of
haptic interaction and multiple sensory modalities. Specifically, this book
describes different rendering techniques for various geometric representa-
tions (e.g., point-based, volumetric, polygonal, multiresolution, NURBS,
distance fields, etc.) and physical properties (rigid bodies, deformable mod-
els, fluid medium, etc), as well as textured surfaces and multi-body inter-
action. Some chapters also show how psychophysics of touch can provide

xiii

Xiv Preface

the foundational design guidelines for developing perceptually driven force
models and discuss issues to consider in validating new rendering techniques
and evaluating haptic interfaces. In addition, this book also discusses dif-
ferent approaches for designing touch-enabled interfaces for various appli-
cations, ranging from medical training, model design and maintainability
analysis for virtual prototyping, scientific visualization, 3D painting and
mesh editing, data acquisition for multi-modal display, to physical therapy.

The book is composed of contributed chapters from several leading au-
thorities in various sub-areas of haptic rendering, including psychophysics,
devices and mechanics, control and stability analysis, rendering algorithms,
modeling and simulation, and application development. We would like to
thank all the invited chapter authors who contributed to this book. We
are grateful to Alice Peters who worked with us in getting this book in
printed form, Whitney Vaughan and the staff at A K Peters who assisted
us painstakingly in copy editing various versions of this book. Finally our
sincere gratitude goes to Arantza Otaduy, who spent numerous hours de-
signing the attractive and imaginative cover art for this book.

Finally, we are especially thankful to Dinesh Manocha, Markus Gross,
and the University of North Carolina at Chapel Hill GAMMA Research
Group for their support and insightful discussion over the years. The ini-
tial scientific investigations and findings that led to the publication of this
edited book were supported in part by the National Science Foundation,
the U.S. Army Research Office, RDECOM, Defense Advanced Research
Project Agencies, Naval Research Office, and Intel Corporation.

The recent advances presented in this book indicate promising poten-
tials that haptic interfaces, together with interactive 3D graphics, can offer
a more powerful and more natural way of interacting with virtual environ-
ments and complex datasets in diverse domains.

Ming C. Lin and Miguel A. Otaduy

Introduction

The sense organs (eyes, ears, skin, nose, and tongue) take in information,
which is then sent to the brain for processing. They are the physical means
by which all living beings communicate with the world around them. The
ability to touch enables manipulation and active exploration that the other
senses cannot. In a similar manner to how humans interact with the real
world, visual, auditory, haptic, olfactory, and gustatory display can provide
the natural and intuitive means of interaction between humans and the
virtual environment created by a computer system.

However, most of existing human-computer interactive systems have
focused primarily on the graphical rendering of visual information, and,
to a lesser extent, on the display of auditory information. Extending the
frontier of visual computing and auditory display as the two dominant forms
of man-system interfaces, haptic rendering has the potential to further
increase the quality of human-computer interaction by exploiting the sense
of touch and enabling active exploration of the virtual world.

Haptic display has already provided an attractive augmentation to vi-
sual display, enhancing the level of understanding of complex data sets.
Haptics has also been effectively used for a number of applications, in-
cluding molecular docking, manipulation of nano-materials, surgical train-
ing, virtual prototyping, and digital sculpting. The field has experienced
a significant expansion during the last decade. Since the publication of
earlier review papers [Salisbury and Srinivasan 97, Srinivasan and Bas-
dogan 97], new rendering techniques and several new applications have
emerged (see the more recent reviews in [Basdogan and Srinivasan 02, Sal-
isbury et al. 04, Laycock and Day 07]).

This book provides an introductory view of recent work in the field,
with the focus on algorithmic perspectives that are important to researchers
and developers of haptic rendering algorithms and software systems, par-
ticularly those in computer graphics, virtual environments, robotics, and
CAD/CAM. It will first present some of the fundamental concepts in the
psychophysics of touch and discuss issues in device and interface design. It
will then describe a collection of state-of-the-art rendering algorithms and
finally survey some novel applications of haptic technology.

2 Introduction

Terminology and Definitions

The word haptic, possibly derived from the Greek word, “haptesthai,”
means “related to the sense of touch.” The sense of touch can be divided
into cutaneous, kinesthetic, and haptic systems, based on the underlying
neural inputs [Klatzky and Lederman 03]. The cutaneous system employs
receptors embedded in the skin, while the kinesthetic system employs re-
ceptors located in muscles, tendons, and joints. The haptic sensory system
employs both cutaneous and kinesthetic receptors, but it differs in that it
is associated with an active procedure controlled by body motion.

Among all senses, the human haptic system is the only key sensory
channel that provides the unique, bidirectional communication between
humans and their physical surroundings. As graphical rendering is the
process of generating an image in computer graphics, haptic rendering refers
to the process of computing and displaying contact forces, vibration, or
other tactile representations of virtual objects in a computer-simulated
environment.

Some of the earlier haptic rendering algorithms mainly consider the
approach of touching virtual objects with a single contact point. Such
rendering algorithms are typically referred to as three-degree-of-freedom (3-
DOF) haptic rendering algorithms, since a point in 3D has only three DoFs.
More recent haptic rendering algorithms start to address the challenging
problem of rendering the forces and torques arising from the interaction of
two 3D objects, often encountered in our daily routines. This problem is
typically called 6-DOF haptic rendering, as the haptic feedback comprises
3D force and torque and is displayed through to the haptic device that also
has six DOF's (position and orientation in 3D).

Design Principles and System Components

As compared with visual and auditory display, haptic rendering has ex-
tremely demanding computational requirements. In order to create and
maintain a stable haptic rendering system that displays realistic force and
torque feedback to the users, haptic update rates of hundreds or thou-
sands of hertz (Hz) are often required. Real-time haptic rendering presents
many new challenges to researchers and developers in computer graph-
ics and interactive techniques, robotics, virtual environments, CAD/CAM,
and experimental psychology.

The quality of haptic experience depends heavily on the interplay be-
tween the human perception system and the intrinsic quality of the haptic
interfaces (e.g., force resolution, dynamic range, etc.). Fundamental under-
standing derived from the psychophysics of touch can provide illuminating

Introduction 3

design guidelines, as well as improved force feedback hardware and soft-
ware systems. Insights in how a brain processes sensory information and
integrates various sensory cues is critical in designing truly multi-modal
interfaces.

Design of haptic devices presents some of the most challenging research
issues for the development of haptic technology. Various configurations
have been proposed, including programmable keyboard, augmented mice,
trackball, joysticks, horizontal 2D planar workspace, desktop scale, point
and probe-based interaction, exoskeletons, arrays of vibro-tactors, gloves,
magnetic levitation, passive devices, hybrid kinematics, isometric device,
etc. [Burdea 96].

In haptic rendering, the human user is part of the dynamic system, along
with the haptic device and the computer simulated virtual environment.
The complete human-in-the-loop system can be regarded as a sampled-
data system [Colgate and Schenkel 97] with a continuous component (the
user and the device) and a discrete one (the implementation of the virtual
environment and the device controller). Stability becomes a crucial issue,
because instabilities in the system can produce either oscillations that dis-
tort the perception of the virtual environment or uncontrolled motion of
the device that can even injure the user.

In the software system development, some of the critical computational
issues may include the design of novel data structures to encode shape
and material properties, new proximity query techniques for fast geometric
query and contact determination, physically-based modeling and dynamic
simulation for computing contact forces, novel methods for information
analysis and presentation, and haptic visualization.

In addition, new insights are needed to design touch-enabled inter-
faces for various applications ranging from medical training, rehabilitation,
model design and maintainability analysis, teleoperation, education and
entertainment, scientific discovery, engineering design, manufacturing, art
and creative processes, and data/information visualization.

Chapter Outlines

This book is divided into three main parts: fundamentals and device design,
rendering algorithms, and applications. The chapters are contributed by a
team of top researchers and developers from around the globe in academia,
research labs, and industry to cover topics on the fundamentals, algorithms,
and novel applications of haptic rendering.

In Part I, the book starts by presenting key results observed from ex-
perimental studies in perception of the object properties through a rigid
link, as the probe-based handles are among the most commonly used phys-

4 Introduction

ical interfaces to existing commercial haptic devices. The next chapter
reviews key findings on multi-sensory integration using crossmodal con-
gruency tasks over the last decade. This understanding of how the brain
derives common representations of external space across different sensory
modalities can enable researchers to design better human-computer inter-
faces. The following chapters then present an authoritative overview of
device designs and rendering using various forms of realization, including
multifinger, locomotion interfaces, variable friction devices, and stability
and performance analysis of haptic display.

Part II begins with an introduction to various algorithmic components
of haptic rendering, including collision detecton and contact force compu-
tations. The next few chapters present a series of surveys on proximity
queries and advanced methods (including voxel-based sampling, continu-
ous collision detection, sensation-preserving simplification, and queries on
spline models) for fast collision detection to achieve haptic update rates. It
then describes various rendering methods for three-degree-of-freedom (3-
DOF) and six-degree-of-freedom (6-DOF') display; modeling of deformable
objects; and rendering of textures, friction and other physical effects; as
well as measurement-based rendering techniques.

Finally, Part III discusses interface design issues and novel applications
of haptics. The case studies include rapid prototyping of complex mechani-
cal structures, scientific visualization of various forms of data, and physical
rehabilitation and other medical applications, as well as digital tools for
artistic expression (such as painting and modeling).

Computational haptics, although still in its early stages, already offers
much promise of significantly improving and enriching human-computer
interaction by engaging one of our most basic sensory channels—the sense
of touch.

Part |

Fundamentals and Devices

1

Perceiving Object Properties
through a Rigid Link

R. Klatzky and S. Lederman

When people interact with objects in the world using their sense of touch,
contact is often made with a tool. We use a key to open a door, a pencil to
write on paper, or a spoon to stir a pot. As David Katz [Katz 25] observed,
under these circumstances our phenomenology—our immediate experience
of the world—concerns the touched surface, not the tool, which in some
sense is transparent to the act of touching. The issues addressed in this
chapter begin with this observation:

e How well are the object properties sensed through a rigid linkage
between the skin and the surface?

e Can the outcomes and the perceptual mechanisms that mediate them
be altered by such indirect or remote exploration?

This chapter focuses primarily on surface texture, one of the principal
properties of an object that is perceived through touch. As a salient cue
to object identity [Lederman and Klatzky 90], the texture of an object is
valuable for haptic perception; however, it is also important for manipu-
lation, through its influence on how people plan and control grasping [Jo-
hansson and Westling 90]. Surface texture, specifically the dimension of
roughness, is well preserved through exploration with a tool. The chap-
ter further considers the accessibility of other object attributes explored
without direct skin-to-object contact. It evaluates people’s capabilities for
recognizing objects through touch under these circumstances and discusses
the role of auditory cues from contact. Finally, the implications of the
reviewed research for haptic rendering of objects and their properties are
discussed.

8 1. Perceiving Object Properties through a Rigid Link

1.1 Surface Roughness: Direct vs. Indirect
Exploration

Over decades of research, behavioral science and neuroscience have refined
our understanding of how roughness is perceived through the bare skin.
Seminal empirical work was performed by Lederman and Taylor [Taylor
and Lederman 75] and by Johnson and colleagues [Johnson and Hsiao 94].
Among the important behavioral findings is that surface roughness is pri-
marily determined by the inner spacing between the elements that con-
stitute the texture. Perceived roughness magnitude increases monotoni-
cally with increasing spacing until it reaches approximately 3.5 mm, al-
though increasing trends beyond that range have also been reported [Mef-
tah et al. 00]. The width of the ridges that constitute the surface has a
smaller perceptual effect. The magnitude of roughness is also affected by
the force of exploration, although it changes remarkably little with speed
and is essentially independent of whether exploration is under active control
or is induced passively. On the basis of these findings, Lederman and Tay-
lor [Lederman and Taylor 72, Taylor and Lederman 75, Lederman 74, Leder-
man 83| developed a mechanical model of roughness perception, which re-
lated perceived roughness to the total area of skin that was instantaneously
indented from a resting position while in contact with a surface. Changes
in perceived roughness resulting from manipulations of surface-texture and
exploratory variables were shown to be mediated by their impact on skin
deformation.

Two important issues were raised by this early empirical and theo-
retical work. The first concerns were whether there are temporal contri-
butions to roughness perception. Closely related to the first topic, the
second issue has to do with the underlying neurophysiological transduc-
tion. With regard to the role of temporal cues, early empirical work with
textures spaced at ~> 1 mm found little evidence for vibratory coding.
As was mentioned above, speed of exploration, which would affect the vi-
bratory input to the skin, was shown to have little effect on perceived
roughness relative to the effects of interelement spacing [Lederman 74, Le-
derman 83, Meftah et al. 00]. When the vibration-sensitive mechanore-
ceptors in the finger were adapted by pre-exposure to a pulse train, once
again there was little effect on the roughness-magnitude judgments [Led-
erman et al. 82]. While the underlying spatial coding of textures scaled
at > 1 mm interelement spacing is largely uncontested (but see [Cascio
and Sathian 01, Gamzu and Ahissar 01] for some evidence of a temporal
contribution), there has been greater controversy concerning the role of
vibratory coding of very fine textures with the bare skin. Recent work by
Bensmaia, Hollins and colleagues [Bensmaia and Hollins 03, Bensmala and

1.1. Surface Roughness: Direct vs. Indirect Exploration 9

Hollins 05, Bensmaia et al. 05, Hollins et al. 98] supports a duplex model
of roughness perception, in which there is a transition from spatial coding
to vibratory coding once surfaces transition from relatively coarse to the
level of “micro-textures” (i.e., with spatial periods <~ 200 u). Evidence
for this channel is provided by the finding that preventing the transmission
of vibration impairs perception of fine texture [Hollins and Risner 00], as
does vibrotactile adaptation [Hollins et al. 01, Bensmaila and Hollins 03].

Corresponding to this distinction between spatial and vibratory bases
for texture perception is a distinction between the operative mechanore-
ceptor populations. Johnson and associates have modeled the roughness
percept as being based on instantaneous spatial variation in a pressure map
on the skin, transduced by slowly adapting mechanoreceptors or SAI units
(for a review, see e.g., [Johnson and Hsiao 94]) and transmitted to higher
cortical sites for integration. The claim is made that this model can ac-
count even for fine textures with groove widths as small as 100 x4 [Yoshioka
et al. 01]. However, another type of mechanoreceptor, the Pacinian cor-
puscle, has been very strongly implicated in mediating roughness
at a fine scale. Bensmala and Hollins [Bensmaia and Hollins 05] found
that texture discrimination performance and roughness magnitude
ratings were well accounted for by a model based on the intensity
of the vibrations produced in the skin during scanning. Furthermore,
the data suggest that the peripheral neural code for perceived rough-
ness is the total activity evoked in FA II mechanoreceptors, or Pacinian
corpuscles.

Let us now consider what happens when surfaces are felt indirectly
through a rigid link between the surface and the skin. A series of studies
on this topic has been performed by Klatzky, Lederman, and their col-
laborators. A principal motivation for this work was the development of
force-feedback devices that attempt to mimic contact with surfaces, but
that deliver resultant forces to a handle, thimble, or stylus, rather than
a distributed array of forces to the skin. This type of interaction can be
modeled by having a person explore a surface while either holding a rigid
probe or when the exploring finger is covered by a rigid sheath. Because
the explorer’s skin is deformed by the rigid interface—the probe or sheath,
not the surface under exploration—the immediate pressure array on the
skin is uninformative as to the distal object. However, vibratory cues re-
main available and have been shown to mediate a sense of distal surface
roughness.

In psychophysical studies of roughness perception through such link-
ages, Klatzky, Lederman, and colleagues [Klatzky and Lederman 99,Klatzky
et al. 03,Lederman et al. 00] asked subjects to assign numerical magnitude
estimates to the perceived roughness of raised-dot textures. As observed
when people explore with the bare finger, perceived roughness via a probe

10 1. Perceiving Object Properties through a Rigid Link

varied systematically with the spacing between the raised elements. How-
ever, the functions resulting from exploration with a probe were substan-
tially different from those obtained with the bare or sheath-covered fin-
ger. Whereas exploration with the latter rigid links produced a monotonic
relation between roughness magnitude and interelement spacing over the
range of surfaces tested (interelement spacing up to 3.5 mm), exploration
with a probe produced a function with a clear quadratic trend. Moreover,
the location of the peak of that function increased with the size of the
probe tip.

Based on these data, Klatzky et al. [Klatzky et al. 03] developed a
model based on the static geometry of the probe in relation to the sur-
face. A critical construct of the model was a parameter called the drop
point—the minimal interelement spacing that was large enough to accom-
modate the probe tip. The authors proposed that at spacing values smaller
than the drop point, the probe tip rode along the surface, being buf-
feted by the raised elements (more so, as the spacing increased), which
resulted in a percept of greater roughness. This accounted for the ris-
ing portion of the quadratic function. In contrast, further increases in
spacing beyond the drop point would allow the probe to ride more and
more reliably along the underlying substrate, producing decreases in per-
ceived roughness. This accounted for the falling portion of the quadratic
function.

The model also offered an account of an additional finding from the
probe studies that pertains to the speed of exploration, as controlled by
an experimental apparatus [Lederman et al. 99, Klatzky et al. 03]. Specif-
ically, the peak of the magnitude-estimation function tended to occur at
a higher level of interelement spacing as speed increased. To explain this
trend, Klatzky et al. [Klatzky et al. 03] assumed that when a surface is
explored with a probe, its perceived roughness is directly correlated with
perceived vibratory magnitude. Perceived vibration, in turn, depends on
the objective amplitude and frequency of vibration on the skin, which are
affected by speed. The model could accommodate the observed patterns
with which speed affected the peak value of perceived roughness, by con-
sidering the patterns of these speed/vibration dependencies. Specifically,
for some levels of displacement, perceived vibration shows an inverted-
U-shaped relation to objective frequency [Verillo et al. 69], as well as a
monotonic increase in magnitude with increases in the objective vibratory
amplitude [Franzén 66, Lederman et al. 82, Stevens 57, Sherrick 60, Verillo
et al. 69].

[Lawrence et al. 07] have continued in recent work to study tactile tex-
ture perception via a rigid interface, this time using unidimensional rectan-
gular gratings, rather than two-dimensional raised-dot surfaces. Rectangu-
lar gratings were used in early work by Lederman and Taylor, as described

1.1. Surface Roughness: Direct vs. Indirect Exploration 11

above. However, the work by Lawrence et al. encompassed a wider range
of interelement spacings than used previously; moreover, it further com-
pared roughness perceived indirectly through a probe to that perceived
directly through the bare skin. At the outset, it is clear that interactions
between a stylus-shaped probe will differ between the rectangular grat-
ings used by Lawrence et al. and the raised-dot surfaces used by Klatzky,
Lederman, et al., in experiments discussed above. Raised dots allow the
probe to drop between the elements that form the texture, once interele-
ment spacing becomes sufficiently wide. The unidimensional grating, in
contrast, makes it inevitable that whatever the spacing value (or “groove
width,” as it is called), when a probe is stroked orthogonal to the grating,
it must strike raised elements. Moreover, given a roughly constant speed
of exploration, the strike point of the probe on a raised grating element
will occur at approximately regular intervals, producing a fundamental fre-
quency. While the frequency will change with interelement spacing, with
the gratings there is no counterpart to the drop point that can be geo-
metrically determined with raised-dot elements, that is, the point permit-
ting the probe to ride along the substrate with fewer and more irregular
perturbations.

Not surprisingly, therefore, Lawrence et al. did not find a quadratic
trend in the function relating judged roughness magnitude to groove width.
Instead, when the surfaces were explored with a probe having a spherical
tip with a diameter of 3.0 mm, the psychophysical roughness function rose
essentially linearly as groove width increased up to approximately 3.3 mm,
after which point it flattened. The function obtained for subjects exploring
with the bare finger was similar, although it leveled off at about 5.3 mm.
[Meftah et al. 00] similarly found that when subjects explored gratings with
the bare finger, perceived roughness magnitude tended to increase, then
flatten somewhat over the larger groove widths; however, their function
linearly increased over a wider range, possibly because the grooves were
deep (i.e., the finger could not bottom out) and because the surfaces were
somewhat compliant.

The difference between the point at which perceived roughness peaks
when using a probe versus the bare finger is consistent with the idea that
the interelement spacing where perceived roughness reaches a maximum is
related to the width of the exploring end-effector. The finger, being wider
than 3 mm (estimated at 9 mm contact by [Klatzky and Lederman 99],
produces roughness functions (i.e., roughness magnitude relative to in-
terelement spacing) that peak later than functions obtained with probes.
Lawrence et al., suggested that beyond the spacing where the function
flattens with grating stimuli, people simply do not discriminate among the
different impact frequencies caused by different groove widths; rather, they
are all perceived equivalently as low-frequency.

12 1. Perceiving Object Properties through a Rigid Link

1.2 Effects of a Rigid Link on Other Object
Properties

Surface roughness is only one of a number of object properties. Let us now
examine how indirect touch affects the perception of objects and a per-
son’s ability to identify them. A starting point for this work is a general
psychophysical investigation by [Lederman et al. 99], which asked how per-
ceptual discrimination of a wide set of object properties was altered when
the bare finger was covered with a rigid sheath. The sheath eliminated
the array sensing provided by the SA T and SA II mechanoreceptors, but
allowed vibrations to be transmitted to the deeper mechanoreceptors in
the skin, the FA II units, or Pacinian corpuscles. From a broad battery of
tests comparing performance with the bare and sheath-covered finger, the
results were clear:

1. The ability to sense vibrations remained essentially intact when the
sheath was worn.

2. The ability to process roughness, presumably from vibration, declined
somewhat. Performance with roughness discriminations declined only
slightly (4%) when the surfaces were quite distinct, and hence easily
differentiated, but more so (18%) when they were similar. Magnitude
estimates for roughness when the sheath was worn were less sensitive
to stimulus variations by about 30%, relative to the bare finger.

3. When we turn from vibration-mediated properties to perception and
discrimination of overall force, the sheath had a considerably greater
negative impact on performance—force thresholds declined by 74%.
Finally,

4. when pattern perception was required, there was a very substantial
decrement: the two-point threshold declined by over 500%, and the
perceived orientation of a bar statically pressed into the finger was
at chance.

The results of this study, then, suggest that a rigid link from skin to
surface transmits vibration well, force less well, and fine structural detail
of surfaces not at all. However, the subjects in this experiment did not
have the chance to explore the contours of a larger object under their own
control. As people explore the contours of an object while maintaining con-
tact, presumably additional kinesthetic cues (i.e., from muscles, tendons,
and joints) can help to ameliorate the loss of surface detail. A starfish,
for example, will produce a star-shaped trajectory in space, even if the
coarseness of its surface is not available to the hand covered with a sheath
or holding a probe.

1.3. Object Identification: Direct vs. Indirect Exploration 13

Next, we turn to the complex task of identifying objects, when explora-
tion is mediated by a rigid link from the object to the skin.

1.3 Object Identification: Direct vs. Indirect
Exploration

In vision, objects are largely identified by the shape of the object envelope
as projected to a 2D retina. Visual processing is used to construct the
3D object from the retinal image, particularly using edges. Based on such
information, rapid recognition can be achieved. When mediated by a rigid
link like a sheathed finger or probe held in the hand, touch has access to
the fully 3D shape of an object; however, such access is spatiotemporally
distributed, because the object’s envelope must be explored over time. The
question, then, is: can the object be identified under these circumstances?

This question can be addressed by reducing the cues about an object’s
identity to those available from (a) the efference copy of motor commands
used to maintain contact with the object, and (b) kinesthetic afferent cues
as to the position of the contacting hand over time. In an initial study
[Klatzky et al. 03], the hand explored directly, but cutaneous cues to surface
microstructure were minimized by having the subject wear a thick glove,
which also damped vibration. Moreover, moveable parts of the object
were immobilized to eliminate part-motion cues. To preclude the hand’s
enclosing multiple surface regions, the subjects were required to wear finger
splints that kept the fingers outstretched.

People proved to do surprisingly well at this task. Understandably, they
identified objects more slowly than normal (about 30 s, on average, cf. 2 s
with unconstrained bare-hand exploration); however, they achieved close
to 100% success.

Another study asked whether the same level of success could be ob-
tained when people explored objects when using a finger covered with a
rigid sheath or a hand holding a rigid probe with a spherical tip that es-
sentially reduces contact with the object to a point (Experiment 1 in [Le-
derman and Klatzky 04]). These conditions were compared to exploration
with a single bare finger, which yielded accuracy above 90% at an average
duration of approximately 30 s. Performance fell to 42% with an average
of 83 s of exploration for the sheathed finger, and the point contact pro-
vided by the probe caused a further decrement, with accuracy declining to
approximately 40% and response times increasing to 85 s of exploration,
on average.

A second experiment in the previous study compared probe-based iden-
tification of two types of objects, named at the subordinate level of classi-

14 1. Perceiving Object Properties through a Rigid Link

fication (more specific than the common or “basic level” name [Rosch 78]).
For one set of objects, geometric properties (shape, size) were particularly
diagnostic (e.g., picture hook), and for the other set, texture was diagnos-
tic (e.g., clay flower pot). The task was a two-alternative forced choice
(true or false: was a named object the presented object?). Accuracy with
the probe was far from perfect (d' = 1.21 for the probe versus 2.50 for
the bare finger). The difference between the two sets of objects was par-
ticularly large for response time: the probe slowed positive identification
of the geometry-diagnostic objects by about 50% relative to the texture-
diagnostic set. We attribute this result to the extent of exploration required
to verify the object’s identity when geometry is diagnostic; that is, a large
segment of contour must be explored to encode the relevant geometric fea-
ture. In contrast, exploration could be confined to a small area but still
lead to identification of an object by its texture.

The results indicate that there is considerable efficacy in identifying
an object with a rigid link between skin and surface, particularly when
identification corresponds to giving the most common name. When an
object must be specified at a more detailed level, performance declines for
a probe relative to the bare skin; moreover, response times are considerably
slower when shape is diagnostic, and hence exploration must be extensive.

1.4 Intersensory Influences via Indirect Touch

The contributions of touch-produced sounds to roughness perception have
received some attention in the research literature, and they become more
important when exploration involves a rigid link from skin to surface.
The skin, a visco-elastic medium, tends to dampen sounds of exploration,
whereas a rigid probe or sheath contacting a textured surface produces a
strong audible signal. Indeed, the mean perceived roughness magnitudes in
the Lawrence et al. study cited above tended to be greater for exploration
with a probe than with the bare skin, presumably reflecting greater acoustic
amplitude with the rigid contact surface.

In most of the studies presented in this chapter on indirect perception
through a rigid link, touch-produced sounds are blocked by having sub-
jects wear earphones through which broad-spectrum noise is played. This
blocking is done to avoid contaminating tactile judgments with concomi-
tant sound cues. Some research, in contrast, has directly addressed the
contribution of audible vibrations to the perception of material proper-
ties of objects. For example, the “parchment-skin illusion” [Jousmaki and
Hari 98] refers to the finding that recordings of palms rubbing together,
when modulated in amplitude or frequency, can modify the perception of
skin softness (see also [Guest et al. 02]).

1.4. Intersensory Influences via Indirect Touch 15

In an early study with the bare finger, [Lederman 79] used a magnitude-
estimation procedure to examine the contribution of touch-produced au-
ditory cues to the perceived roughness of metal gratings. Subjects rated
the roughness magnitude of surfaces based on the sounds produced by an-
other person, the tactile cues produced when they explored the surfaces
themselves, or the concomitant tactile and auditory cues produced by their
exploration. The typical power function relating roughness magnitude to
interelement spacing (groove width) was obtained for the auditory-alone
condition, but the power parameter was lower than in the other two con-
ditions, suggesting weaker texture differentiation. Moreover, the bimodal
cues were no more salient than touch cues alone, which suggested that the
auditory cues were largely ignored.

[Lederman et al. 02] replicated Lederman’s 1979 study, with a rigid
probe used in place of the bare finger. Again, auditory cues alone produced
a power function for roughness magnitude in relation to interelement spac-
ing. However, in contrast to Lederman’s earlier work, this study found
that the bimodal condition produced roughness magnitudes greater than
those for audition alone, and less than touch alone. This pattern is con-
sistent with intersensory integration in the form of a weighted sum. The
weightings, as estimated from the response functions, were 62% for touch
versus 38% for audition. Several efforts to replicate this study have failed,
however, so at present the conclusion is limited to the fact that auditory
cues from a probe are sufficient to produce an orderly roughness report.

In subsequent studies [Lederman et al., manuscript, Lederman et al. 03],
an absolute-identification paradigm was used to assess the contribution of
touch-produced sound cues. Over a series of trials, subjects learned to
associate each texture with a common name. The course of learning, as
well as ultimate performance, was compared across audition only, touch
only, and bimodal tactile-auditory conditions.

Absolute identification offers a convergent methodology for evaluating
bimodal texture processing, one that speaks more directly to process than
does magnitude estimation. The task has two fundamental processing com-
ponents: forming a representation of each item in the stimulus set, and
associating unique item representations with unique identifiers. As long
as the set size is small, task performance should be limited not by the
associative aspect of the task, but by the process of forming a stimulus
representation. The goal over a series of trials is to convert a given input
to an internal representation, so that distinct inputs will differentially con-
verge on the possible responses. Absolute identification therefore motivates
bimodal processes that facilitate perceptual differentiation.

It is interesting to consider the absolute-identification task in the con-
text of maximum-likelihood (ML) models of intermodal integration [Ernst
and Banks 02]. An ML integrator weights each input in inverse proportion

16 1. Perceiving Object Properties through a Rigid Link

Texture Identification Performance (7 Stimuli)

0.7 7
0.6
©
@ 0.5 1
b
o\ R
5_3 044 ==
5 _ —
£ 031 z — —F
)
&
& 0.2 1 —— Touch
0.1 - —® - Audition
---A-- Touch+Audition
O T T T T
1 2 3 4
Block
Texture Identification Performance (5 Stimuli)
0.7 1
0.6
©
g 0.5
5]
© 04 A
c
K]
t 0.3 A
o
o
© 02 A ——Touch
o —m - Audition
0.1 1 ---&- Touch+Audition
0 T T T T
1 2 3 4
Block

Figure 1.1. Identification performance (mean proportion correct) as a function
of block number for touch, audition, and touch + audition conditions in two
experiments. The upper panel is taken from [Lederman et al. 03]. © IEEE
Computer Society.

to its variability, normalized by the total inverse variability across the input
modalities. It produces an intermediate distribution of values that sharp-
ens the distribution for each stimulus relative to the corresponding one for
either of the contributing modalities, and that also shifts its mean towards
an intermediate value. To adapt the ML approach to absolute identifica-

1.5. Rendered Textures 17

tion, one can assume that the output of the integrator is fed into a decision
process. A simple assumption is that response criteria are set between stim-
ulus pairs along the integrator output, such that the response shifts from
one member of the pair to the other when the criterion is reached. The
discriminability between any pair of stimuli in the input set then reflects
the difference in the integrator signals.

The results of the absolute-identification experiment with probe-
explored textures are presented in Figure 1.1. Successive trials have been
grouped into blocks, within which identification performance (mean pro-
portion correct) is computed. Accuracy is shown as a function of block
number for touch, audition, and touch + audition conditions. Panel A and
Panel B represent two experiments with different numbers of stimuli.

In these experiments, auditory cues alone proved sufficient for learning
to identify surface textures at levels above chance. However, touch cues
alone produced not only greater accuracy (particularly early in learning),
as shown, but higher confidence estimates. The addition of auditory cues to
tactile cues produced no better outcome than touch alone. These results
obtained with a rigid probe, then, are similar to those obtained in the
original study with the bare finger [Lederman 79]. More specifically, both
demonstrate that touch-produced sounds convey textural differences, but
only weakly, relative to touch itself when both modalities are present. In
terms of the ML model, this might occur because the variance for audition
is much greater than that for touch, reducing its weight to a negligible
value.

1.5 Rendered Textures

As was mentioned above, devices used in haptically rendering objects pre-
dominantly provide resultant forces, rather than a distributed array of
forces to the skin. The experimental work with real surfaces explored
through rigid links suggests that this can be an effective means of conveying
surface texture, particularly roughness. Efforts to render surface textures
bear this out, by showing that textural properties can be conveyed by a
variety of devices and algorithms—importantly, within the constraints of
device capabilities [Campion and Hayward 05, Choi and Tan 02, Choi and
Tan 03b).

Early work on texture rendering was conducted by [Minsky 95, Min-
sky and Lederman 96] using a 2-DOF device. The algorithm generated a
tangential force in proportion to the local gradient of the modeled surface
height. Subsequently, others used 3-dimensional algorithms by generating
surfaces from a sinusoid or alternative function [Choi and Tan 02, Choi and
Tan 03b, Colwell et al. 98, Ho et al. 04, Massie 96, Penn et al. 03b, Penn

18 1. Perceiving Object Properties through a Rigid Link

et al. 03a]. Local interactions were used as the basis for rendered textures
by [Siira and Pai 96], who generated tangential or tangential plus normal
forces by drawing randomly from a Gaussian distribution, then adding the
stochastic values to non-random effects of rigidity and friction. Data ob-
tained by measuring interactions with physical surfaces have also been used
as the basis for rendering algorithms [Jansson 98, Okamura et al. 98, Wall
and Harwin 99].

We have recently suggested an algorithm for rendering textures based
on viscosity [Klatzky and Lederman 06, Lederman et al. 06]. The nature of
the rendering device appears to be of critical importance for this algorithm,
as the magnitude-estimation functions were quite different in form for a
force-feedback device manipulated with the wrist (the WingMan® mouse,
from Logitech) in comparison to one manipulated with the forearm (the
PHANTOM®), SenseAble Technologies).

Several projects have attempted to reproduce, with rendered textures,
the quadratic form of the magnitude-estimation function (judged rough-
ness magnitude as a function of interelement spacing) found by Klatzky,
Lederman and associates when subjects explored real, raised-element tex-
tures with a rigid probe (see studies described above). [Otaduy and Lin 04]
reported a simulation that produced qualitative similarities. Quadratic
trends were found in psychophysical experiments by [Meyer-Spradow 05,
Unger et al. 07], using rendered textures and virtual probes with spherical
tips.

In contrast, a number of studies that measured magnitude estimation
in conjunction with rendered textures have produced monotonic decreasing
functions relating roughness to interelement spacing, particularly when the
device simulates a point contact rather than a spherically tipped probe (si-
nusoidal textures [Colwell et al. 98, Kornbrot et al. 07,Penn et al. 03b,Penn
et al. 03al]; and jittered-dot textures [Drewing et al. 04]). The monotonic
trend is not inconsistent with the idea that when subjects explore with a
probe, roughness peaks at approximately the level of interelement spacing
where the probe drops between raised elements, because for a point con-
tact, that spacing level would be infinitely small. That is, a point contact
would drop between elements even at the smallest spacing and would be
perturbed less and less by raised elements as spacing increased, leading to
reduced perceived roughness throughout the stimulus range, as has been
observed with these renderings.

1.6 Implications for Virtual Objects

The goal of rendering object properties with a substantial degree of realism
is a challenging one. The results indicate that force feedback, alone or with

1.6. Implications for Virtual Objects 19

auditory cues, can be a powerful mechanism for this endeavor. Important
implications for the rendering community are as follows.

First, when people explore with a rigid probe, vibratory coding of rough-
ness appears to be a highly natural and effective mechanism. We consis-
tently find that perceived roughness bears an orderly relation to the un-
derlying geometry of a textured surface. However, it is critically important
to consider the geometry of the surface in relation to the rendered end-
effector in detail, as the effect of a manipulation can depend dramatically
on interactions between these factors. Consider that increasing interele-
ment spacing in some ranges will heighten roughness and in other cases
diminish it, depending on the size of probe contacting the surface.

The work on touch-produced sounds has one clear implication at present,
namely, that auditory cues from exploration with a rigid link can convey
a sense of roughness that varies regularly with the geometry of the under-
lying surface. However, it is as yet unclear whether there will be a payoff
for combining audition and touch, at least in terms of perceived roughness
magnitude and discrimination. It may well be, however, that the addition
of sound has aesthetic contributions of some importance in applications
like e-commerce. We note informally that manufacturers of joysticks for
gaming appear to have adopted this assumption, by providing auditory
contexts for scenarios like helicopters versus tanks. (It appears to us that
often, the auditory cues in gaming devices are more discriminable than the
touch sensations.)

Another consideration concerns the contribution of material properties
to object identification. It has been found that when subjects explored with
a probe, difficult object-identification tasks could be performed better when
objects were diagnosed by texture than when geometry was the critical cue.
The combination of shape with material properties is likely to be a very
powerful cue. Note also that the difficulty of identifying objects by shape
in these tasks may stem in part from the effort to simply keep the probe
in contact with the object. In a force-feedback environment, this problem
could be alleviated by attracting the end-effector to the contours of the
underlying shape.

On the whole, although contact with an object through a rigid inter-
mediary is not equivalent to the force array available to the bare finger,
this mode of interaction appears to effectively mediate object properties
for identification and discrimination. It is suggested that force-feedback
devices, alone or in conjunction with visual and auditory cues, can render
a fairly rich sense of the shape and substance of objects in a distal world
beyond the fingertips.

2

Multi-Sensory Interactions

C. Spence, F. Pavani, A. Maravita, and
N. P. Holmes

In recent years, cognitive neuroscience researchers have become increasingly
interested in the question of how information from the various sensory ep-
ithelia (including visual, tactile, and proprioceptive cues concerning limb
position) is integrated in the brain in order to enable people to localize
tactile stimuli, as well as to give rise to the “felt” position of our limbs, and
ultimately, the multisensory representation of peripersonal space. Here, we
highlight recent research on this topic that has used the crossmodal congru-
ency task. In its basic form, this task involves participants having to make
speeded elevation discrimination responses to vibrotactile targets presented
to the thumb or index finger, while simultaneously trying to ignore irrele-
vant visual distractors presented from either the same (i.e., congruent) or a
different (i.e., incongruent) elevation. The largest crossmodal congruency
effects (calculated as the difference in performance between incongruent
and congruent trials) are seen when visual and vibrotactile stimuli are pre-
sented from the same region of space, thus providing an index of common
positions across different sensory modalities. Crossmodal congruency ef-
fects have now been demonstrated across a range of different target and
distractor modalities, using both spatial and non-spatial versions of the
congruency task. Cognitive neuroscientists are currently using the task to
investigate a number of questions related to the multisensory representa-
tion of space in normal participants, and to assess putative disturbances
to the multisensory representation of space in brain-damaged patients. In
this review, we highlight the key findings to have emerged from research
that has utilized the crossmodal congruency task over the last decade.

2.1 Introduction to Crossmodal Congruency

Scientists have, for many years, been trying to understand how the brain
derives common representations of external space across different sensory
modalities (such as vision, touch, proprioception, and audition), given that

21

22 2. Multi-Sensory Interactions

sensory information is coded at the peripheral receptor level in a variety of
different frames of reference (see [Spence and Driver 04]). To date, the most
impressive advances in our understanding in this area have emerged from
single-cell neurophysiology: for example, researchers have demonstrated
the existence of multisensory neurons in several areas of the cat and mon-
key brain, including the putamen, superior colliculus, ventral and dorsal
premotor cortex, and parital areas 7b and the ventral intraparietal sulcus,
that appear to represent visual and tactile stimuli in approximate spatial
register [Colby et al. 93, Graziano and Gross 93,Graziano et al. 94, Graziano
et al. 97,Groh and Sparks 96, Mountcastle et al. 75,Rizzolatti et al. 81,Stein
et al. 75]. Many of the cells in these brain areas that are responsive to tac-
tile stimuli on an animal’s hand and arm also have visual receptive fields
(RFs) for the region of space close to the animal’s arm. More importantly,
the visual RFs of these neurons appear to follow the hand around as the
arm is placed (by the experimenter) in different postures (see [Graziano and
Botvinick 02] for a review). A growing body of cognitive neuroscience re-
search in healthy human participants now supports the existence of similar
multisensory representations of peripersonal space in humans as well [Lloyd
et al. 06, Makin et al. 07, Spence and Driver 04]. Research with various
groups of neuropsychological patients has also started to show the sys-
tematic ways in which these multisensory spatial representations can be
impaired following selective brain damage.

While the involvement of bimodal visuotactile neurons in brain ar-
eas, such as those reported by Graziano and his colleagues [Graziano and
Gross 93, Graziano et al. 94, Graziano et al. 97] has often been put for-
ward as providing a possible explanation for human behavior in a variety
of normal and patient studies (e.g., see [di Pellegrino et al. 97, Kennett
et al. 02,Spence et al. 0la, Spence et al. 01b]), the involvement of these
areas has only recently been demonstrated directly in humans. In partic-
ular, [Lloyd et al. 03] have provided some of the first neuroimaging data
to suggest that the same network of neural structures is involved in the
multisensory representation of limb position in humans as has been re-
ported previously in primates, specifically the VIP-F4 circuit (see [Rizzo-
latti et al. 02]). Meanwhile, more recent studies have highlighted the role
that parietal, occipital, and premotor cortices play in the visual processing
of threatening and rapidly-approaching objects in peripersonal space [Ehrs-
son et al. 07,Lloyd et al. 06, Makin et al. 07].

2.2 The Crossmodal Congruency Task

One experimental paradigm that has been used extensively over the past
decade to investigate the multisensory representation of space in humans

2.2. The Crossmodal Congruency Task 23

is the crossmodal congruency task [Spence et al. 98, Spence et al. 04b].
In a prototypical study, participants have to make speeded elevation dis-
crimination responses to a series of target stimuli presented in one sensory
modality (most frequently touch), whilst simultaneously trying to ignore
irrelevant distractors presented in another sensory modality (typically vi-
sion). This visuotactile version of the crossmodal congruency task has
repeatedly been shown to provide a robust experimental index of common
spatial location across different sensory modalities. As a consequence, a
growing number of researchers have now started to use the task in order
to investigate the multisensory representation of visuotactile space in both
normal participants [Maravita et al. 06, Spence et al. 04b] and in brain-
damaged patients [Maravita et al. 05, Spence et al. 0la, Spence et al. 01b].
Researchers have also used the crossmodal congruency task to investi-
gate the consequences of prolonged tool use [Holmes et al. 04a, Maravita
et al. 02b], and the viewing of bodily shadows [Pavani and Castiello 04] on
the boundaries of peripersonal space and the multisensory representation of
the body.

In this review, we first describe the visuotactile crossmodal congruency
effect, before going on to highlight the results of a number of recent studies
that have used this task to investigate the consequences of posture change
on the multisensory representation of space. The subsequent sections of
this review then illustrate how the crossmodal congruency task is currently
being used to address increasingly sophisticated questions regarding the
representation of the body in peripersonal and virtual space.

In the most commonly used variant of the crossmodal congruency task,
participants are instructed to hold two foam blocks, one in either hand (see
Figure 2.1(left) for a schematic illustration of the experimental set-up). A
vibrator and an LED are embedded at the top and bottom of each block.
On each trial, a vibrotactile target and a visual distractor are presented
randomly and independently from one of four possible stimulus locations.
Vibrotactile targets (normally consisting of pulsed vibrations) are presented
to the index finger or thumb of either hand. Visual distractors usually
consist of the pulsed illumination of one of the four LEDs. Participants
have to make speeded elevation discrimination responses (i.e., “above,”
when the target is presented to the index finger; or “below,” when the
target is presented to the thumb) in response to the vibrotactile targets,
while simultaneously trying to ignore any visual distractors that happen
to be presented at around the same time. Note that the onset of the
visual distractors typically occurs around 30 ms before the onset of the
vibrotactile targets [Spence et al. 04b].

Although the visual distractors are just as likely to be presented from
the same elevation as the vibrotactile target, as from a different eleva-
tion, participants are typically much worse (i.e., they are both slower and

24 2. Multi-Sensory Interactions

Figure 2.1. Schematic view of a participant adopting both an uncrossed- (left)
and crossed-hands (right) posture while performing the crossmodal congruency
task. Two vibrotactile stimulators (small rectangles) and two visual distractor
lights (small circles) were embedded in each of the two foam cubes held by the
participants between their thumbs and index fingers. The participants made
speeded elevation discrimination responses (by raising the toe or heel of their right
foot), in response to vibrotactile targets presented either from the “top” by the
index finger of either hand, or from the “bottom” by either thumb, respectively.
The largest crossmodal congruency effects are elicited by the pair of distractors
placed closest to the location of the vibrotactile target (i.e., on the same foam
cube), no matter whether the hands are held in an uncrossed or crossed posture.

they make more errors) at discriminating the elevation of the vibrotactile
targets when the visual distractors are presented from an incongruent el-
evation (i.e., when the vibrotactile target is presented from the top and
the visual distractor from the bottom, or vice versa) than when they are
presented from the same (congruent) elevation (i.e., when both the target
and vibrator are either presented from the top or from the bottom). The
crossmodal congruency effect is calculated as the difference in performance
between incongruent and congruent distractor trials for a particular pair
of distractor LEDs. Crossmodal congruency effects are typically present in
the reaction time (RT) data and/or in the error data. Researchers there-
fore often combine these two measures into a single performance measure
known as inverse efficiency (IE)—where the inverse efficiency score equals
the mean or median RT for a particular condition, divided by the propor-
tion of correct responses for that condition [Spence et al. 0la, Townsend
and Ashby 83].

While the magnitude of the crossmodal congruency effect tends to de-
cline with practice, significant behavioral effects still occur even after par-

2.2. The Crossmodal Congruency Task 25

ticipants have performed many hundreds of trials [Maravita et al. 02b,
Spence et al. 04b]. The very existence of the effect highlights the difficulty
that people have in ignoring what they see, even when they are instructed
to respond only to what they feel: that is, the crossmodal congruency effect
provides one of a growing number of examples of the failure of crossmodal
selective attention (see [Driver and Spence 04] for a review). Smaller, but
nevertheless still significant, crossmodal congruency effects have also been
reported when the role of the two stimulus modalities is reversed; that is,
when participants are instructed to respond to the elevation of the visual
stimuli (targets), while attempting to ignore the elevation of the vibrotactile
stimuli (distractors) instead [Spence and Walton 05, Walton and Spence 04].
This asymmetrical pattern of crossmodal congruency effects may reflect an
underlying difference in the relative salience of the vibrotactile and visual
stimuli used in previous studies (though note that it is difficult, if not
impossible, to match stimulus intensity crossmodally [Spence et al. 0lc]).
However, it may also reflect the consequences of an inherent bias in par-
ticipants’ attentional resources toward the visual modality, at least when
people perform spatial tasks [Battaglia et al. 03, Posner et al. 76, Spence
et al. Olc]. Finally, [Merat et al. 99] have shown that vibrotactile distractors
also elicit robust crossmodal congruency effects when participants have to
try to discriminate the elevation of auditory targets as rapidly as possible
(see [Kitagawa and Spence 06] for a review).

2.2.1 The Spatial Modulation of the Crossmodal
Congruency Effect

The research published to date suggests that visuotactile crossmodal con-
gruency effects are largest when the target and distractor stimuli are pre-
sented from the same azimuthal location (i.e., when the distracting lights
are situated by the hand receiving the vibrotactile target), and decline
as the visual distractor and vibrotactile target hand are moved further
and further away from each other. [Spence et al. 04b] reported a num-
ber of experiments in which they investigated the consequences of various
basic postural manipulations on the crossmodal congruency effect. They
showed, for instance, that the magnitude of the crossmodal congruency ef-
fect elicited by a particular pair of visual stimuli tends to decrease as the
hand receiving the vibrotactile target is moved further away from them.
They also showed that when a participant crosses his or her hands over at
the midline (see Figure 2.1(right)), it is the visual distractors next to the
current target hand position that elicit the largest crossmodal congruency
effects; this despite the fact that the afferent signals from the vibrotactile
targets presented to the crossed hand initially project predominantly to the
opposite cerebral hemisphere with respect to the visual distractors.

26 2. Multi-Sensory Interactions

Mean crossmodal congruency effect (ms)
146 255 230 143

50left 10left o 10right 50 right

9

Figure 2.2. Schematic bird’s-eye view of the four different postures adopted by
participants in Maravita et al.’s [Maravita et al. 06] recent study of the con-
tribution of proprioceptive and tactile cues to perceived limb position during
measurement of the crossmodal congruency effect. On any block of trials, the
participant’s hand, hidden from view by means of an opaque screen, was passively
moved to one of the four positions by the experimenter. The participant fixated
on a central fixation light, which was placed between an upper and a lower vi-
sual distractor light, and responded to either upper or lower vibrotactile targets
delivered to the right hand. The magnitude of the crossmodal congruency effect
(in ms) at the four different positions is shown numerically above each hand po-
sition. Note that the crossmodal congruency effect was much stronger when the
participant’s hand was placed at an eccentricity of 10 degrees from the central
distractors than when placed at an eccentricity of 50 degrees on either side.

More recently, [Maravita et al. 06] have explored the specific contribu-
tion of proprioception to the spatial modulation of the visuotactile cross-
modal congruency effect. The participants in their study had to place their
hands below an opaque screen while judging the elevation of a sequence of
vibrotactile targets presented to their right hand and fixating centrally. The
participant’s hand was passively positioned by the experimenter in one of
four different spatial positions, 10 or 50 degrees to either side of central
fixation, in different blocks of experimental trials. Maravita et al. reported
that much smaller crossmodal congruency effects were elicited by the illu-
mination of one of two visual distractor lights presented directly above or

2.2. The Crossmodal Congruency Task 27

below the central fixation light when the participant’s hand was placed at
50 degrees from fixation, as compared to at 10 degrees (see Figure 2.2).
These results therefore show that proprioceptive and tactile cues regarding
the position of one’s limbs in space can by themselves provide sufficient in-
formation for the brain to code a particular light source as being either close
to, or far from, an unseen hand. Meanwhile, Lloyd et al.’s [Lloyd et al. 03]
neuroimaging study shows that the updating of proprioceptive information
concerning limb position critically depends upon activation in parietal cor-
tex. This result may then help to explain why the limb-position-dependent
modulation of crossmodal visuotactile extinction shown in certain parietal
patients appears to depend upon the patients being able to see their own
hand and arm [Ladavas et al. 00].

In a separate line of experimental research, [Kitagawa and Spence 05]
have shown that the introduction of a transparent barrier between a partici-
pant’s own hands (receiving the vibrotactile targets) and the visual distrac-
tors does not have any noticeable effect on the magnitude of the crossmodal
congruency effect (see also [Farne et al. 03] for similar findings from neu-
ropsychological studies of patients suffering from tactile extinction). These
results therefore suggest that the crossmodal congruency effect is insen-
sitive to the ease with which the participants can reach out to touch (or
grasp) the visual distractors, but rather is modulated just by the physical
distance between the target and distractor stimuli.

The human behavioral findings reported to date from studies using
the visuotactile crossmodal congruency task are consistent with the known
primate neurophysiology [Graziano et al. 97, Graziano 99]. In particu-
lar, they are consistent with previous research showing a hand-position-
dependent modulation of the visual RF of bimodal visuotactile neurons
reported by [Graziano and Gross 93, Graziano et al. 94, Graziano 99]. Just
as highlighted by the monkey data, the spatial modulation of the cross-
modal congruency effect does not appear to depend on vision of the hands,
as significant visuotactile congruency effects are still observed even when
the participants cannot see them [Maravita et al. 06], as well as when par-
ticipants perform the task in complete darkness [Spence et al. 04b].

2.2.2 The Non-Spatial Version of the Crossmodal
Congruency Task

Crossmodal congruency effects (in the elevation discrimination version of
the task) are sensitive to manipulations of a participant’s posture, and
to the spatial separation between visual and tactile stimuli. To a certain
extent, however, this spatial sensitivity seems to be task- and context-
dependent. For instance, [Holmes et al. 06a, Holmes et al. 07] have reported
experiments involving a non-spatial version of the crossmodal congruency

28 2. Multi-Sensory Interactions

task in which the participants had to discriminate the type (continuous
versus pulsed) rather than the elevation of the vibrotactile target stim-
uli. They showed that the simultaneous presentation of visual distractors
(unpredictably either continuous or pulsed) gave rise to large crossmodal
congruency effects, particularly in the error data (see also [Martino and
Marks 00] for further non-spatial cross-modal interactions between vision
and touch based on the synesthestic crossmodal correspondence between
visual lightness [black versus white] and vibrotactile frequency [low versus
highl]). These effects were found to be larger when the visual and tactile
stimuli were presented on the same side of space, regardless of where the
participants placed their hands (i.e., in either an uncrossed- or crossed-
hands posture). Interestingly, however, these spatial effects were only ob-
served in the error data. They were also much smaller than those re-
ported previously in the spatial (i.e., elevation) discrimination version of
the task [Spence et al. 04b]. What’s more, no significant spatial modu-
lation of the crossmodal congruency effect was observed when a smaller
group of participants performed the non-spatial discrimination task dur-
ing an fMRI scan, in which finger responses, rather than foot responses,
were required. It would therefore seem that the strong spatial modula-
tion of crossmodal congruency effects may be dependent upon participants
performing an explicitly spatial judgment [Spence et al. 00], and may per-
haps also be affected by the particular effector used to respond (though
see [Maravita et al. 02¢]). It should therefore be borne in mind that the
spatial and non-spatial versions of the crossmodal congruency task may
recruit somewhat different multisensory brain mechanisms.

2.2.3 Stimulus Timing and the Crossmodal
Congruency Effect

[Shore et al. 06] recently conducted a parametric investigation into the
effects of varying the timing of the presentation of the visual distractor rel-
ative to the onset of the vibrotactile target on the visuotactile crossmodal
congruency effect. The visual target and vibrotactile distractor in this
study were randomly presented at one of 10 different stimulus onset asyn-
chronies (SOAs, varying from £400 ms) on each trial. The results (see Fig-
ure 2.3) highlighted a pronounced temporal modulation of the crossmodal
congruency effect, with the largest interference effects being observed when
the visual distractors preceded the vibrotactile targets by approximately
100 ms (cf. [Spence et al. 04b]-Experiment 1). However, the temporal win-
dow in which significant crossmodal congruency effects were demonstrated
ranged from trials where the vibrotactile targets preceded the visual dis-
tractors by 100-200 ms, to trials where the visual distractors preceded the
vibrotactile targets by 400 ms.

2.2. The Crossmodal Congruency Task 29

1404 —c—Different sides
o - { -Same side

Mean crossmodal
congruency effect (ms)

7
—@6 -300 -200 —105)0 100 200 300 400

Tactile target Visual distractor
leads SOA (ms) leads

Figure 2.3. Graph highlighting the magnitude of the crossmodal congruency effect
(inverse efficiency, in ms) observed at each of 10 different SOAs in Shore et
al.’s [Shore et al. 06] recent study, plotted as a function of whether the vibrotactile
target and visual distractor were presented on the same versus different sides of
fixation. Note that the participants in this experiment adopted the uncrossed
hands posture highlighted in Figure 2.1(left).

2.2.4 Crossmodal Exogenous Spatial Attention
and the Crossmodal Congruency Effect

At this point, it is perhaps worth noting the methodological similarity
between the crossmodal congruency task and many previous studies of
crossmodal exogenous spatial attentional cuing (see [Spence et al. 04al, for
a review). Several groups of researchers have, for example, shown that
the presentation of a spatially-nonpredictive visual cue (to either the left
or right hand) facilitates elevation-discrimination responses to vibrotactile
targets presented from the same (as opposed to the opposite) hand for
several hundred milliseconds after the onset of the cue [Chong and Mattin-
gley 00,Kennett et al. 02,Spence et al. 98]. These crossmodal cuing effects
typically evidence themselves in terms of a facilitation of target discrimi-
nation response latencies of around 20-30 ms when the target is presented
from the cued, as opposed to the uncued, side (hand).

Given such findings, it would seem likely that the onset of the visual
distractor shortly before the vibrotactile target in the majority of previ-
ous studies of the crossmodal congruency effect would also have led to a
shift of “tactile” attention to the side (or location) of the visual distrac-
tor [Spence 02, Spence et al. 04a]. It is, however, important to note that

30 2. Multi-Sensory Interactions

while maximal facilitation would be expected to accrue at the particular
location of the visual stimulus (i.e., distractor), the other location (i.e.,
elevation) at the same azimuthal position as the visual distractor would
also likely have been facilitated to some extent (see Figure 11.5 in [Spence
et al. 04a], on this point). Consequently, a crossmodal shift of exogenous
spatial attention following the presentation of a visual distractor may well
result in a general speeding-up of responses to vibrotactile targets pre-
sented on the same (rather than opposite) side as the visual distractor. It
should, however, be noted that any such general speeding of participants’
responses would not be expected to have much of an effect on the magnitude
of the congruency effect itself, since that is calculated as the difference be-
tween performance on incongruent and congruent distractor trials. What’s
more, it should also be noted that even if crossmodal spatial attentional
cuing effects were to be localized spatially just to the digit placed closest
to the distractor light, they could not account for more than a fraction
of the crossmodal congruency effects that have typically been observed in
previous studies; for, while crossmodal cuing effects frequently result in
response latency effects of 100-200 ms, crossmodal exogenous congruency
effects rarely exceed 20-30 ms in magnitude [Spence et al. 04a]. Thus, at
best, crossmodal exogenous spatial cuing can only account for a relatively
small proportion of the crossmodal congruency effect.

2.2.5 Response Selection Conflict, Spatial Ventriloquism,
and the Crossmodal Congruency Effect

A more likely explanation for the crossmodal congruency effect is in terms
of competition at the level of response selection between the target and
distractor [Marks 04]. According to the response competition account, the
crossmodal congruency effect may reflect the consequences of competition
between the response tendencies elicited by the target and distractor on
incongruent trials. Presumably the presentation of both stimuli will prime
the response(s) associated with the elevation at which they are presented.
Given that the distractor will prime the incorrect response on incongruent
trials, this might be expected to lead to a slowing of responses, attributable
to the time taken by participants to overcome the incongruent (i.e., “inap-
propriate”) response tendency. In fact, the slowest responses in crossmodal
congruency experiments are usually reported on those trials in which the
visual distractor is presented from the same azimuthal position (or side) as
the vibrotactile target, but at an incongruent elevation [Spence et al. 04b].
By contrast, performance on congruent trials might be expected to show
some degree of response facilitation relative to a neutral baseline, since
the target and distractor stimuli would both prime the same “correct” re-
sponse [Marks 04].

2.2. The Crossmodal Congruency Task 31

A third explanation for at least a small part of the crossmodal congru-
ency effect is in terms of the “perceptual” integration of the visual and
tactile stimuli. That is, the perceived location of the vibrotactile target
in a prototypical study of the crossmodal congruency effect might be ex-
pected to be ventriloquized spatially toward the location of the incongruent
visual distractor [Bertelson and de Gelder 04]. When the visual distractor
is placed at a different elevation from the vibrotactile target, but still close
to it (i.e., on the same hand), the latter may be mislocalized toward the
former. Such spatial ventriloquism, should it occur, might lead to errors in
participants’ responses, or simply to their finding it harder (and therefore
taking more time) to discriminate the correct elevation of the target on the
incongruent distractor trials.

[Spence et al. 04b] empirically demonstrated a modest contribution
of visuotactile spatial ventriloquism to the crossmodal congruency effect.
They conducted an unspeeded version of the experiment, in which the par-
ticipants were not permitted to respond until at least 750 ms after the onset
of the target and distractor stimuli. The importance of response accuracy
over response speed was also stressed to the participants repeatedly. If
response competition is responsible for the crossmodal congruency effect,
then one might have expected that there should be virtually no residual
crossmodal congruency effect, given that participants in this unspeeded
version of the task presumably had sufficient time in which to resolve any
response conflict. However, the results demonstrated a small but signifi-
cant increase in errors when the visual distractor was presented from an
incongruent elevation on the same side as the target, suggesting some small
role for spatial ventriloquism in the crossmodal congruency effect.

More recently, [Holmes et al. 07] used functional magnetic resonance
imaging (fMRI) in order to investigate the brain areas in which activa-
tion significantly covaried with the magnitude of crossmodal congruency
effects across participants (note that a non-spatial version of the cross-
modal congruency task was used in this study). Further support for the
response competition account of the crossmodal congruency effect would
come from the observation of activity in medial frontal areas, since these
areas are known to be highly sensitive to response selection and the res-
olution of response conflicts [Nachev 06]. By contrast, additional support
for the spatial ventriloquism account of the crossmodal congruency effect
would come from the observation of activity in those brain areas associated
with the (visual) localization of tactile stimuli in higher-order occipital and
parietal areas [Macaluso et al. 04].

In fact, the neuroimaging evidence reported by [Holmes et al. 07] pro-
vided support for both accounts, although distinct mechanisms were im-
plicated for the RT and the error data. That is, crossmodal congruency
effects in both the RT and the error data covaried significantly with ac-

32 2. Multi-Sensory Interactions

bilateral occipital cortex

superior
parietal
cortex

cerebellum

Figure 2.4. Neural activity (fMRI BOLD signal change) significantly covarying
with the magnitude of non-spatial visuotactile crossmodal congruency effects dur-
ing a tool-use task [Holmes et al. 07]. Crossmodal congruency effects (in percent
errors) were calculated for each participant and entered into a whole-brain linear
regression analysis. Five clusters of significant activation were observed: the right
pre-supplementary motor area (pre-SMA) likely reflects the increased response
conflict on incongruent as compared to congruent distractor trials, and was also
activated for a separate analysis of the RT data. Right superior parietal cortex
and midline cerebellum may also reflect aspects of multisensory integration and
response selection. The activation in bilateral occipital cortex may reflect the
effectiveness of, or attention paid toward, the visual stimulus—greater activity in
occipital cortex, including V1 and V2—was associated with greater visuotactile
congruency effects.

tivity in the right pre-supplementary motor area, supporting the response
competition account. Additionally, however, the right medial occipital, the
lateral occipital cortex in both hemispheres, and the right posterior parietal
cortex activation covaried significantly with crossmodal congruency effects
expressed in the error scores only (see Figure 2.4). These latter activations,
which included primary, secondary, and higher-order visual cortex, along
with the superior parietal cortex, suggest that the processing of vibrotactile
stimuli is influenced directly by the level of activation in these areas (see
also [Macaluso et al. 00]). Taken together, the psychophysical and neu-
roimaging evidence published to date supports the contribution of at least
three relatively independent factors to the crossmodal congruency effect:
exogenous spatial attention, response selection conflict, and spatial ven-
triloquism. The fact that three different mechanisms conjointly contribute
to the effect may help to explain why the crossmodal congruency effect is
so much larger than many other behavioral effects used by researchers to
investigate multisensory spatial perception.

2.2. The Crossmodal Congruency Task 33

2.2.6 Do Top-Down Factors Influence the
Crossmodal Congruency Effect?

To date, only two studies have attempted to investigate whether top-down
factors modulate the crossmodal congruency effect [Shore and Simic 05,
Spence et al. 04b, Experiment 1]. The results of both studies have shown
that this particular form of crossmodal interference seems to be relatively
insensitive to top-down factors, suggesting the automaticity of the neural
processes underlying the effect. For example, Spence et al. investigated
whether shifting the focus of participants’ endogenous spatial attention
would influence the crossmodal congruency effect. They compared the
crossmodal congruency effects obtained in two different blocks of trials:
in one, the target was presented unpredictably on each trial to either the
participant’s left or right hand (divided attention condition); in the other
block, the vibrotactile targets were always presented to one or other of
the participant’s hands for a whole block of trials (focused attention con-
dition). Rather surprisingly, however, the magnitude of the congruency
effect was not affected by this endogenous attentional manipulation, de-
spite there being a small trend for the relative difference in congruency
effects between same-side and opposite-side bimodal trials to be larger for
the focused attention condition (60 ms) than for the neutral/divided at-
tention blocks (45 ms). Please see [Holmes et al. 07] for further discussion
and see Section 2.3 below.

At first glance, Spence et al.’s [Spence et al. 04b] results would ap-
pear to stand in marked contrast to those of a number of other studies of
endogenous spatial attention, in which elevation discrimination responses
for both vibrotactile and visual targets (presented individually, i.e., in the
absence of any distractors) have been shown to be facilitated by the di-
rection of a participant’s endogenous spatial attention to a particular side
or hand [Spence et al. 00, Driver and Spence 04, Chambers et al. 04, Kida
et al. 07, Vibell et al. 07]. One possible account for this null effect of en-
dogenous attention in Spence et al.’s [Spence et al. 04b] study is that while
directing one’s attention to a particular hand can speed response laten-
cies to stimuli presented near (or to) that hand, it may have little effect
on the pattern of crossmodal congruency effects, because performance on
both congruent and incongruent distractor trials will be facilitated to about
the same extent. Such a general speeding of participants’ responses would
not be apparent in the congruency effect, since that reflects a difference
score.

It is, however, perhaps also worth pointing out that the effects of en-
dogenous attentional manipulations typically reside in the costs associated
with the impaired behavioral performance seen on invalid trials (when
compared to performance on neutral trials), rather than in the benefits

34 2. Multi-Sensory Interactions

associated with valid cuing. Note here then that [Spence et al. 04b] only
compared performance on 100% valid blocks to the performance of partic-
ipants in blocks of trials where the target side was entirely unpredictable
(i.e., neutral blocks). Future research, in which participants’ performance
on trials where their attention was validly directed to the target hand
was compared to their performance in trials where the target was unex-
pectedly presented to the other hand (invalid trials), may well give rise
to significant effects of endogenous spatial attention. Demonstrating a
null effect of endogenous spatial attention under such conditions (when
participants’ performance on validly and invalidly cued trials is compared
directly) would therefore provide a more rigorous demonstration of the in-
sensitivity of the crossmodal congruency effect to this kind of top-down
manipulation.

In an independent series of experiments, [Shore and Simic 05] have
investigated whether the crossmodal congruency effect is sensitive to the
top-down modulations of performance that can sometimes be elicited by
varying the proportion of congruent vs. incongruent trials presented in a
given block of trials [Gratton et al. 92, Posner and Snyder 75]. In their first
experiment, Shore and Simic compared the magnitude of the crossmodal
congruency effect in blocks of trials, where the majority of the trials (75%)
were congruent while the remainder of trials (25%) were incongruent, to
the congruency effects seen in other blocks of trials where the probabilities
of congruent and incongruent trials were reversed (i.e., 25% congruent and
75% incongruent trials). Changing the proportion of congruent to incon-
gruent distractor trials had absolutely no effect on the magnitude of the
visuotactile crossmodal congruency effect.

A similar result was also obtained in a second experiment, in which an
even more extreme manipulation of the stimulus probabilities was intro-
duced (now only 11% congruent trials and 89% incongruent trials were pre-
sented). In fact, the only way in which Shore and Simic were able to show
any effect of varying the proportion of congruent and incongruent trials
on participants’ performance was when the onset of the visual distractors
occurred 100 ms before the onset of the vibrotactile targets (as compared
to the 30 ms visual lead used in their first two experiments). However, even
under these conditions, the effect of changing the proportion of congruent
to incongruent trials only showed up in the error data, but not in the RT
data. (In particular, an increased congruency effect was observed in the
75% congruent block, as compared to the 25% congruent block.) Shore
and Simic’s results therefore provide additional evidence to show that the
crossmodal congruency effect is relatively insensitive to various different
top-down manipulations, thus suggesting instead that it reflects a relatively
automatic (as opposed to controlled) process [Gratton et al. 92, Posner and
Snyder 75].

2.3. Using the Crossmodal Congruency Task 35

2.3 Using the Crossmodal Congruency Task
to Investigate What Constitutes
Peripersonal Space

Having characterized the crossmodal congruency effect and, more specifi-
cally, having demonstrated its reliability and robustness as an indicator of
common location across vision and touch, researchers have gone on to use
the crossmodal congruency task in order to ask a number of more sophisti-
cated questions regarding the multisensory representation of peripersonal
space.

2.3.1 Assessing the Relative Contribution of
Vision and Proprioceptive to Tactile Localization

Over the years, many researchers have shown how influential vision can
be in determining where people feel their limbs to be. In fact, the partial
or complete visual capture of proprioception by fake or alien limbs/digits
has now been reported in many different studies [Tastevin 37, Nielsen 63,
Sullivan 69, Welch 72, Botvinick and Cohen 98, Ehrsson et al. 04, Tsakiris
and Haggard 05, Azanén and Soto-Faraco 07,Costantini and Haggard 07,7].
Visual capture effects have also been demonstrated using prisms [Harris 63,
Hay et al. 65], mirrors [Holmes and Spence 04, Holmes et al. 04b, Holmes
et al. 06b], and even real-time video images [Ijsselsteijn et al. 05, Tsakiris
et al. 06, Pavani and Zampini 07] in order to manipulate the seen position
of a participant’s hand.

[Pavani et al. 00] used the crossmodal congruency task to examine the
relative contributions of visual and proprioceptive cues to the localization
of tactile stimuli in personal/peripersonal space. They used a modified
version of the rubber hand illusion [Botvinick and Cohen 98]. The par-
ticipants in Pavani et al.’s study wore a pair of rubber washing-up gloves
and held two foam cubes on each of which were mounted two vibrators.
The participants could not see their own hands, which were hidden be-
low an opaque screen (see Figure 2.5). The magnitude of the crossmodal
congruency effect elicited by the visual distractors increased when a pair
of rubber arms (actually a pair of stuffed rubber washing-up gloves) were
placed in a plausible posture (on top of the occluding screen in front of
the participants), apparently “holding” the visual distractors (see [Austen
et al. 04] for similar results). In a subsequent experiment, Pavani et al.
went on to show that the magnitude of the crossmodal congruency effect
was unaffected by the presence of the rubber arms if they were placed in
an implausible posture for the participants (i.e., when placed at 90 degrees
with respect to the participant’s own body).

36 2. Multi-Sensory Interactions

Figure 2.5. Schematic view of the experimental set-up in Pavani et al.’s [Pavani
et al. 00] rubber hand experiment, highlighting the location of the vibrotactile
stimulators (indicated by the four arrows) on the foam cubes held by the partici-
pant below an occluding screen, and the visual distractor lights (four open circles
on the upper cubes) held by the rubber hands that, when present, were aligned
with the participant’s own hands. Note that in some conditions (not shown),
the rubber arms were placed at 90 degrees with respect to the participant’s own
arms (i.e., in a posture that the participant could not possibly adopt).

[Pavani et al. 00] argued that the increased crossmodal congruency ef-
fects reported in the plausible rubber hand condition could be attributed
to the “apparent” perception of the vibrotactile targets as being close to
the distractor lights. In other words, they claimed that tactile (and not
just proprioceptive) stimuli were mislocalized towards the apparent visual
location of the seen limb (really a stuffed rubber washing-up glove; see
also [Walton and Spence 04] ref). In fact, the participants in Pavani et
al.’s study only experienced the rubber hand illusion (as revealed by their
responses to a questionnaire) in those blocks of trials in which the rub-
ber hands were placed in a plausible posture for the participants to have
adopted (see also [Kanayama and Ohira 07]). Furthermore, the magnitude
of this increase in the crossmodal congruency effect in the plausible rub-
ber hands condition was also shown to correlate with subjective reports
concerning the vividness of the rubber hand illusion, as indexed by partic-

2.3. Using the Crossmodal Congruency Task 37

ipant’s agreement with the statements: “‘I felt as if the rubber hands were
my hands,” and “It seemed as if I were feeling the vibration in the location
where I saw the rubber hands.”

Erin Austen and her colleagues at University of British Columbia [Austen
et al. 01] have shown that the fake limbs do not necessarily need to bear
much of a resemblance to the human form in order for their presence on
top of an occluding screen (as used by [Pavani et al. 00]) to modulate
the magnitude of the crossmodal congruency effect. In particular, Austen
et al. showed significantly larger crossmodal congruency effects when the
blocks on which the distractor lights were mounted were held by a pair of
“Frankenstein’s monster-like” green hairy arms than when no arms were
present (see also [Armel and Ramachandran 03, Graziano et al. 00]).

Neurophysiological data on the visual capture of perceived limb position
comes from a study by [Graziano 99] in which a monkey’s own arm was
hidden from view below an occluding screen while a taxidermist’s stuffed
monkey arm was placed above the occluding screen in front of the mon-
key. Bimodal premotor cells with hand-centred visual RFs were identified
with standard techniques. The visual stimulus position that elicited the
maximum response in each neuron was then measured, and this position
was compared between conditions when the monkey’s visible hand was
positioned on the left versus right side (i.e., visual-proprioceptive congru-
ent condition). The resulting “shift index” representing the effect of arm
posture change on the position of the maximum visual response, was also
measured when the monkey could not see its own hand in either posture
(proprioceptive-only condition) and when the posture of the fake hand was
changed while the real arm remained stationary (visual-proprioceptive con-
flict condition). While the sensitivity of 36 bimodal neurons was reduced
when the monkey’s arm was not visible (thus demonstrating the effects of
removing the visual contribution to the representation of hand position),
the visuospatial sensitivity was increased again for 17 neurons in which
the fake arm condition was studied (demonstrating the effects of adding
incongruent but plausible visual information). In a related experiment, the
position of the fake hand was also shown to modulate the tonic proprio-
ceptive firing of arm-position-dependent postural neurons in parietal area
5, thus providing a direct demonstration of the effects of visible fake body
parts on the representation of the animal’s own body position [Graziano
et al. 00].

2.3.2 Viewing One’s Own Limbs in a Mirror

[Maravita et al. 02¢| investigated whether the magnitude of the crossmodal
congruency effect could be modulated through a more abstract understand-
ing of the source of the visual stimuli in a scene. In particular, they as-

38 2. Multi-Sensory Interactions

Figure 2.6. Schematic view of the experimental set-up in Maravita et al.’s [Mar-
avita et al. 02c] experiments of the effects of viewing visual stimuli indirectly
via mirror reflection on the crossmodal congruency effect. The participants held
one foam cube in either hand below an opaque screen. A semi-reflecting mirror
was placed on one side of an open opaque box facing the participant. Depending
on the ambient illumination, participants either saw their own hands below the
occluding screen reflected in the mirror, or else they were able to see through
the mirror to reveal the contents of the box. Lines drawn from the distractor
lights on each sponge held by the observer and crossing the mirror suggest the
position of the virtual image produced on the mirror by such objects, as observed
by the participant. The foam cubes and distractor lights in the Far condition
were placed at the exact same position as the apparent position of these virtual
images in the Mirror condition.

sessed whether a spatial re-coding of distant visual stimuli would make
them equivalent to near stimuli in terms of the crossmodal congruency
effects that they elicited. To this end, participants saw their own limbs re-
flected in a mirror (with the direct view of their own hands being prevented
by means of an opaque screen). Maravita and his colleagues investigated
whether visual stimuli that appeared in the mirror to occupy a position in
far space (i.e., beyond peripersonal space) would be treated as originating
in near peripersonal space if the participants were made aware of the fact
that what they were looking at was a mirror reflection of their own body.

[Maravita et al. 02¢c] varied the position of the visual distractors, so
as to obtain two stimulation conditions, while participants made speeded
elevation discrimination responses to target vibrations presented to their
hands. In one condition, the visual distractors were placed near the par-
ticipant’s hands, occluded from their direct view by an opaque screen and
observed via their reflection in a mirror placed 90 cm away (Mirror con-
dition). Under these conditions, the retinal projection produced by the
reflection of the visual distractors was equivalent to that of visual stimuli
placed at a distance twice that between the real stimulus and the mirror
(plus the distance between the observer’s eyes and the stimulus itself; see

2.3. Using the Crossmodal Congruency Task 39

Figure 2.6). In a second condition, the visual distractors were located far
away from the participants’ own hands, inside a box, but now the par-
ticipants observed these stimuli by looking through the mirror (actually a
semi-reflecting mirror). Visual distractors in this condition were carefully
positioned so as to produce a retinal projection that was identical to the
virtual mirror image produced by the distractors in the previous Mirror
condition. Now the only clue indicating any difference between the ac-
tual positions of the distractors in the two conditions was the participant’s
knowledge about the experimental setting. Given that the largest cross-
modal congruency effects are typically reported when visual distractors are
situated close to the vibrotactile target stimuli [Maravita et al. 06, Pavani
et al. 00, Spence et al. 04b], a larger crossmodal congruency effect was ex-
pected in the Mirror condition, where the visual distractors were physically
located close to the participant’s own hands, than in the Far condition,
where the visual distractors were placed outside the participant’s periper-
sonal space (and behind a piece of glass). The results confirmed these
predictions, with larger crossmodal congruency effects being reported in
the Mirror condition than in the Far distractor condition. These results
therefore demonstrate that visual stimuli seen distally via a mirror reflec-
tion were correctly coded as originating in near peripersonal space when
they were presented from foam cubes that were held by the participant,
despite the fact that they could not be seen directly (see also [Maravita
et al. 00]).

2.3.3 Tool-Use: Consequences for Peripersonal Space

Thanks to the evolutionary liberation of the hands from any involvement in
locomotion, humans can efficiently use tools in order to extend the range of
their actions [Holmes and Spence 06]. Think, for example, of the croupier’s
rake, the smith’s hammer, or the surgeon’s knife. In fact, tool-use has
become such an integral part of modern life that there are relatively few
activities that are performed without them. This then raises a number of
important questions concerning how the sensory information arriving at
the somatosensory epithelia can be modulated and spatially re-coded by
tool-use. In particular, how is it that visual and somatosensory information
are integrated when people use a tool, and is functional peripersonal space
modified dynamically by active tool-use [Holmes and Spence 06, Maravita
and Iriki 04].

According to the classic neurology literature, the so-called body schema
is constructed from continuous input from somatosensory and propriocep-
tive afference [Head and Holmes 11, Holmes and Spence 06]. This schema
is most often thought of as an on going and constantly updated inter-
nal representation of the shape of the body, and of the position of the

40 2. Multi-Sensory Interactions

body in space, both in respect to the external world, and in relation
to its own parts [Berlucchi and Aglioti 97, Graziano and Botvinick 02].
Many researchers have argued that tools can be assimilated into the body
schema [Berlucchi and Aglioti 97, Wolpert et al. 98, Yamamoto and Ki-
tazawa 01]. Phantom phenomena, in particular, provide remarkable evi-
dence in support of the plasticity of the image of one’s own body, and its
extension by inanimate objects or tools [Holmes and Spence 06]. Many
amputees feel pain in their missing limb, and over time, their phantom and
its associated pain retract, “telescoping” toward the stump. The wearing
of a prosthetic limb, however, can suddenly relieve pain and restore the
phantom to its previous length, “fleshing out” the artificial limb. Several
accounts from primate studies, as well as from normal participants and
brain-damaged human patient populations, suggest that the manipulation
of tools and other external objects that frequently come into contact with
our bodies (such as rings worn on the hand) can also become incorporated
into the body schema [Aglioti et al. 96, Head and Holmes 11,Iriki et al. 96].
Primate neurophysiology has also suggested that the multisensory in-
tegration of visual and somatosensory inputs can be affected by the use of
tools (see [Ishibashi et al. 04] for a review). For example, [Iriki et al. 96]
reported the emergence of bimodal visuotactile cells in monkeys trained to
use tools when they recorded from cells in the anterior bank of the intra-
parietal sulcus. Many of the cells in this area responded both to tactile
or proprioceptive stimulation of, for example, the fingers, hand, and/or
arm, and to the presentation of visual stimuli (especially the sight of a
food reward) seen to be approaching the hand. Immediately after a short
period of tool-use, the visual RFs of these bimodal cells were reported to
be elongated or expanded along the length of the tool, such that visual
stimuli seen approaching the tip of the tool were now effective at driving
the neurons. Iriki and his colleagues speculated that the use of a tool could
plastically extend the representation of the hand in the body schema, so
that even distant stimuli could activate those multisensory neurons coding
for stimuli presented near the body. This explanation is similar to the idea
of peripersonal space being extended from around the hand to incorporate
all stimuli accessible by the tool, and not just by the hand (for further
discussion of these issues, see [Holmes and Spence 04, Holmes et al. 07]).
[Maravita et al. 02b] demonstrated behaviorally that the modifications
of the body-schema that can be induced by extended tool-use, such as
by the prolonged wielding of golf-club-like sticks, can result in changes in
the pattern of crossmodal congruency effects elicited by visual distractors
placed at the end of the wielded tools. The participants in Maravita et
al.’s studies had to make speeded elevation discrimination responses with
their right foot to vibrotactile targets presented from vibrators attached to
the proximal ends of two tools, one held in either hand. The participants

2.3. Using the Crossmodal Congruency Task 41

rested their index fingers and thumbs on these vibrators in a lower /upper
arrangement, respectively. The upper and lower visual distractors were now
placed at the far end of each tool. On some trials, the participants were
instructed to hold the tools in an uncrossed posture (see Figure 2.7(a)),
while on other trials they had to cross the tools over the midline (see
Figure 2.7(b)). Although there were visual distractors and vibrotactile
stimulators on each side of space in both conditions, the relative spatial
relationship between the pairs of visual distractors and the vibrotactile
targets connected by each tool changed when the tools were crossed over.
While each hand was “connected” by the tool with distractors on the same
side of space in the uncrossed-tools condition, each hand was “connected”
with distractors on the opposite side of space in the crossed-tools condition.

[Maravita et al. 02b] wanted to know whether reaching with the tool
to distractors on the opposite side of space could reduce, or even invert,
the usual pattern of crossmodal congruency effects (whereby visual distrac-
tors on the same side as vibrotactile targets usually produce larger cross-
modal congruency effects than those appearing on the opposite side [Spence
et al. 04b]), such that larger crossmodal congruency effects would be found
for opposite-side than for same-side distractors. A reversal of this kind
would be predicted if one believed that by extending the hand’s action
space via the tool, vibrotactile stimuli at the hand and visual distractors
on the far end of the tool would now share a common multisensory repre-
sentation (or at least have become, in some way, functionally connected)
and possibly show larger crossmodal congruency effects [Spence et al. 04b],
discussed earlier, for related results with crossed hands.

The results confirmed the prediction by showing that the typical pattern
of larger crossmodal congruency effects for same-side distractors demon-
strated in the uncrossed-tools posture was reversed when people used crossed
tools. Interestingly, however, while this pattern of results was found in the
first experiment, where participants actively switched between the two pos-
tures after every four trials, no such reversal of the crossmodal congruency
effect was reported in a second experiment when the participant’s posture
was changed passively by the experimenter after every 48 trials instead.
Under such conditions, the pattern of crossmodal congruency effects re-
mained very similar for the two postures. These results therefore suggest
that the tool-based spatial re-mapping of the crossmodal congruency effect
requires both the frequent and active use of the tools. [Maravita et al. 02b]
also compared the results from the earlier and later parts of each partic-
ipant’s experimental session. Interestingly, the critical spatial reversal of
the crossmodal congruency effect with crossed tools was only found to be
present in the second part of the experiment, and not in the first part,
presumably due to the prolonged practice with the tools participants had
had by the latter part of the experiment.

42 2. Multi-Sensory Interactions

he

| (b)

Figure 2.7. Schematic view of the experimental set-up used by [Maravita
et al. 02b] to investigate the possible modification of the body schema elicited
by extended tool use. The position of the vibrotactile stimulators is indicated by
the triangles close to the participant’s hands, while the circles at the distal tip of
the tools represent visual distractors. (a) Shows the uncrossed-tools condition.
(b) Shows the crossed-tools condition.

[Holmes et al. 04a,Holmes et al. 07] have gone on to extend this line of
research using several different versions of the crossmodal congruency task
(requiring both spatial and non-spatial speeded discrimination judgments),
involving several different types of tools, different numbers of tools (two
tools versus just a single tool held in one hand), different tool use tasks
(reaching and pushing distant buttons, perceiving distant vibrations, and
actively crossing the tools), and different tool-use target locations (near
the hand, far from the hand, and at an intermediate distance). These
diverse studies have revealed several important phenomena of relevance
to furthering our understanding of tool use, peripersonal space, and the
body schema: first of all, the effects of tool use on peripersonal space,
as measured by the crossmodal congruency effect, are most clearly and

2.3. Using the Crossmodal Congruency Task 43

@ Same-side [Different-sides

@ 200 +
E
k1
o 150 +
5 p<.005
>
2 100 t p=.15
H —
2
o
o

0 - + t

Near Middle Far

Visual distractor position

200 1 —&— Regular —-O--Random
150 +
100 +

50 +

Congruency effect (ms)

Trial after tool-use

Figure 2.8. Spatial and temporal modulation of crossmodal congruency effects
in Holmes et al.’s [Holmes et al. 07] study of tool-use. The upper panel shows
crossmodal congruency effects (inverse efficiency, IE) varying both as a function
of distance from the hands (“near” the hands, in the “middles” of the shafts of
the tools, and at the “far” tips of the tools), and relative sides (visual distrac-
tors on the “same side” as the vibrotactile targets, and distractors and targets
on “different sides”). The lower panel shows IE crossmodal congruency effects
varying as a function of the number of trials since the last tool use movement,
for regular (tool-use every four trials) and random tool use schedules (tool-use
on average every four trials, but randomly determined).

consistently seen at the distant tips of tools, but not, or only weakly, in
the middles of the shafts of tools [Holmes et al. 04a] (see Figure 2.8(top)).
This finding is inconsistent with a literal “extension” of peripersonal space
by tool use (since that would predict a strong spatial modulation of the
congruency effect along the length of the tool) and suggests instead that
the tips of the tools may represent some kind of “fovea” for multisensory
interactions during tool use.

Second, Holmes et al.’s [Holmes et al. 07] research has shown that, in
the non-spatial version of the crossmodal congruency task, the magnitude
of any crossmodal congruency effects on different sides of space depends
not only upon the position of a handheld tool, but also on whether just

44 2. Multi-Sensory Interactions

a single tool is being used or whether instead two tools are being manip-
ulated simultaneously. Third, the overall magnitude, but not the spatial
distribution, of crossmodal congruency effects, is affected by preparing to
use a tool: that is, [Holmes et al. 07] found that crossmodal congruency
effects were maximal on the trial immediately prior to an expected tool use
movement, and minimal immediately after the movement, but only when
the tool use movement was itself fully predictable (see Figure 2.8(bottom)).
This may be an important new finding in studies of the crossmodal con-
gruency effect—that preparing to move toward a visual goal increases the
magnitude of crossmodal congruency effects (though see [Kitagawa and
Spence 05]). Finally, Holmes et al.’s [Holmes et al. 07] recent fMRI study
of the effects of tool use on the neural processing of simple visual (dis-
tractor) stimuli during a vibrotactile discrimination task revealed that the
dominant frame of reference for multisensory interactions during tool use
is eye-centered rather than hand-centered (see also Figure 2.4).

Holmes et al.’s results suggest that the crossmodal congruency effect
can be modulated by any changes of spatial coding that follow tool-use.
The crossmodal congruency effect elicited by the visual distractors in this
task depend not only upon the physical distance between the target stim-
uli and the distractors, but also upon their “functional” proximity in terms
of action space (for logically related reports in brain-damaged patients,
see [Ackroyd et al. 02, Farne and Ladavas 00, Maravita et al. 01, Maravita
et al. 02a]). The results of studies using the visuotactile crossmodal con-
gruency task therefore suggest that once a region of space that is distant
from the hand is reached by a tool, it becomes, in some sense, equivalent
to a near, peripersonal source of stimulation. The latest results with the
crossmodal congruency task have therefore generated results that converge
with, but also considerably extend, those from single-cell studies in mon-
keys that have been taught to use tools [Iriki et al. 96].

2.3.4 The Role of Body Shadows in the Binding of
Personal and Extrapersonal Space

Researchers have recently started to investigate another kind of binding
between personal and extrapersonal space, one that can be elicited by the
viewing of one’s own body shadows. When the shadow of our own body is
cast in the environment, we see a projection of ourselves “reaching” toward
distal objects. While such projections may sometimes have little anatom-
ical resemblance to our own bodies, they nevertheless invariably move in
tight spatio-temporal correlation as our own body moves through space.
In this respect, body shadows can evoke both a sense of ownership and a
sense of agency in the mind of the observer [Jeannerod 03]. Body shadows
thus have the potential to influence the internal representation of our own

2.3. Using the Crossmodal Congruency Task 45

body, as well as playing an important role in self-recognition. Finally, body
shadows offer a potentially more ecologically plausible example than either
rubber hands [Botvinick and Cohen 98, Pavani et al. 00, Tsakiris and Hag-
gard 05] or real-time video images of the hand [Whiteley et al. 04,Ijsselsteijn
et al. 05, Schaefer et al. 06, Tsakiris et al. 06, Pavani and Zampini 07] for
the study of the interplay between peripersonal and extrapersonal space.
[Pavani and Castiello 04] conducted the first research to specifically ad-
dress the possible role of body shadows in modulating the representation
of peripersonal and extrapersonal space. They presented visual distractors
from a location on the body midline that was equidistant (30 cm) from
each of the tactually-stimulated hands, while participants had to decide
as quickly as possible on each trial whether they had received a touch at
the thumb or index finger, regardless of the side that was stimulated (see
Figure 2.9). During the experiment, the shadow of either the tactually-
stimulated hand or the unstimulated hand was cast on the table, by means
of a lateralised light source placed behind the participant. Throughout an
entire block of trials, the shadow of one of the participant’s hands stretched
from their own body to the distal visual distractors, as if to “grasp” them.
This experimental set-up created a situation in which the distracting stim-
uli were equidistant from the participant’s two hands, but in close proximity
to the cast shadow of one or the other of them. Despite the fact that par-

Figure 2.9. Schematic view of the experimental set-up used by [Pavani and Gal-
fano 07] in their study of the incorporation of body shadows into personal space
using the visuotactile crossmodal congruency task. Either the left or right lamp
was illuminated in each block of trials, in order to cast a shadow of one or the
other hand over the LEDs situated at the center of the table. Larger crossmodal
congruency effects were associated with the hand that cast the shadow than with
the other hand.

46 2. Multi-Sensory Interactions

ticipants were explicitly instructed to ignore both the visual distractor and
the cast shadow on the table top, Pavani and Castiello’s results showed that
crossmodal congruency effects were systematically larger when the tactile
targets were delivered to the hand casting the shadow than when delivered
to the other hand. No such modulation of the crossmodal congruency effect
emerged when the participants wore polygonally shaped gloves that cast an
unnatural hand shadow, or when the participants viewed the static outline
of either the stimulated or unstimulated hand in front of them (though
see [Igarashi et al. 04,Igarashi et al. 07]). Pavani and Castiello went on
to argue that natural body shadows may therefore favor the binding of
personal and extrapersonal space, and possibly also modify the perceived
image of the shape of the body and its extension in space.

The existence of such automatic links between a particular part of the
body and its corresponding cast shadow suggests that body shadows may
act as a powerful visual cue for orienting attention toward the body it-
self. This hypothesis was explicitly tested by [Galfano and Pavani 05] in
a follow-up experiment using a modified version of the classic exogenous
cuing paradigm (e.g., see [Kennett et al. 02]). The participants in this
study were instructed to perform a speeded spatial discrimination task in
response to tactile stimuli delivered to one of their hands, while viewing
the shadow of either their right or left hand cast in front of them, to the
right or left of visual fixation respectively, unpredictably in each trial. De-
spite the fact that the shadows were completely task-irrelevant, and were
presented almost two seconds before the tactile targets, the results never-
theless showed faster and more accurate tactile discrimination responses at
the hand casting the shadow than at the other hand. Just as in Pavani
and Castiello’s [Pavani and Castiello 04] original study, these hand-shadow
effects were rendered less reliable when the hand shadow was replaced by
the cast shadow of an object having a polygonal shape instead.

In two further studies, Pavani and his colleagues [Pavani and Gal-
fano 07, Pavani et al. 08] went on to examine the factors affecting the in-
terplay between personal and extrapersonal space in the presence of body
shadows. In addition to probing personal space using tactile stimuli (at
the hands), they also probed the extrapersonal space occupied by the cast
shadow using visual stimuli near the shadow. The results clearly showed
that even when the modality and location of the target were unpredictable
(i.e., visual targets near the shadow or tactile targets at the hands, inter-
mingled within each block of experimental trials), a hand-shadow appearing
more than two seconds before the target acted selectively as a cue only for
the tactile stimuli. In other words, the cast shadow selectively cued the
portion of space it referred to (i.e., the hand), thus showing that the brain
correctly and fully resolved the shadow correspondence problem [Mamas-
sian 04] during the long interval between the onset of the shadow and the

2.4. Using the Crossmodal Congruency Task 47

presentation of the target. Importantly, these cuing effects were immedi-
ately evident when the cue stimulus was the actual hand shadow, while
they were found to develop slowly during the block of trials in which the
participants wore polygonally shaped gloves that cast a shadow with un-
natural shape and only preserved the spatio-temporal correlation with the
participant’s hand movements (see [Maravita et al. 02b], described above,
for a somewhat similar learning effect when people use tools).

The result of a second series of experiments by [Pavani et al. 08] showed
that differential cuing effects emerge as a function of the time interval
between the onset of the shadow and the onset of the target. At very short
shadow-target SOAs (of 100 ms), cast shadows favoured responses to visual
targets (i.e., responses in the region of space that the cast shadow physically
occupied). At SOAs of 600 ms, the cast shadows produced inhibition of
return effects for the visual stimuli [Klein 00]. Finally, at SOAs of 1200
and 2400 ms, attentional cuing effects of the shadow emerged selectively for
the tactile targets, with significant validity (or cuing) effects being observed
only for the hand casting the shadow and not for the non-shadow hand. In
other words, the cast shadow acted as a lateralised cue only for the region
of space it referred to, and not for the region of space it occupied.

2.4 Using the Crossmodal Congruency Task
to Investigate the Neural Underpinnings
of Peripersonal Space

The behavioral results from the crossmodal congruency studies reviewed
so far are consistent with the existence in humans of visuotactile repre-
sentations of peripersonal space that are updated as posture changes, and
that can adapt to incorporate into peripersonal space those visual stimuli
that would normally be considered to be in far space instead. However, it
is not yet clear whether the maintenance of an accurate representation of
visuotactile space as posture changes relies on cortical structures (such as
ventral premotor cortex, ventral intraparietal area, and parietal area 7b),
sub-cortical structures (such as the putamen), or both, since bimodal visuo-
tactile neurons with tactile RF's on the hand and visual RFs that follow the
hands as they move have been reported in all of these structures [Graziano
and Gross 93, Graziano et al. 94].

2.4.1 The Representation of Visuotactile Space
in the Split-Brain

[Spence et al. 0la] attempted to address this question by testing a split-
brain patient on the crossmodal congruency task. For split-brain patients,

48 2. Multi-Sensory Interactions

the left hemisphere controls the right hand and receives direct visual pro-
jections from the right visual field, but (in contrast to normal participants)
receives little or no input from the ipsilateral side. Similarly, the right
hemisphere controls the left hand and receives direct visual projections
from the left visual field. In most situations, neural signals resulting from
the presentation of visual and tactile stimuli in the same spatial location
will project, at least initially, to the same hemisphere (i.e., the right hand
and the right visual field project to the left hemisphere, and the left hand
and left visual field project to the right hemisphere). It is unclear, though,
what happens when a hand is crossed over into the opposite hemifield. For
instance, if the right hand of a split-brain patient is placed in the left visual
field, would visual events in the left field map onto the tactile RFs of the
right hand, as they do in the intact human brain? If this normal remapping
did not occur, then bimodal cells in cortex structures such as the ventral
premotor cortex, parietal area 7b (or both)—which are disconnected in the
split brain—would appear to be crucial for remapping the visual RF onto
the tactile RF when the hand crosses over the midline. Conversely, if this
normal remapping does occur in the split brain, then bimodal cells in sub-
cortical structures such as the putamen or superior colliculus—which are
shared between the disconnected hemispheres—would appear to be impli-
cated instead.

[Spence et al. 01a] compared the performance of a split-brain patient
(J.W.) with that of two healthy age-matched neurologically normal control
participants on the crossmodal congruency task. At the time of testing,
J.W.’s corpus callosum had been completely sectioned for more than 20
years (with the anterior commissure left intact) in order to try to cure his
epilepsy. All three participants made elevation discrimination responses
with their right foot to vibrotactile targets presented to the thumb or in-
dex finger of their right hand, thus ensuring that both their perception
of the vibrotactile targets, and the initiation of their elevation discrimina-
tion responses, were controlled by the same (i.e., left) hemisphere. The
participants held a foam cube in their right hand in one of three different
postures, while their left arm rested passively in their lap. The visual dis-
tractor stimuli were presented from two foam cubes, one situated on either
side of fixation (see Figure 2.10 for a schematic illustration of the postures
adopted by the participants in the different blocks of trials, and the pattern
of crossmodal congruency results obtained).

Visual inspection of Figure 2.10 shows that the magnitude of the cross-
modal congruency effects elicited by the visual distractors on the right cube
was modulated by the relative position of the right hand: more specifically,
the right distractor lights elicited a larger crossmodal congruency effect
when the participant held the cube on which they were mounted in their
right hand, and decreased when the participants grasped a more eccen-

2.4. Using the Crossmodal Congruency Task 49

40 120

Figure 2.10. Schematic view of the foam cubes (represented by open rectangles)
and postures adopted by the normal control participants (top row) and by the
split-brain patient J.W. (bottom row), in Spence et al.’s [Spence et al. 01b] study
showing the direction of fixation (dotted line) and the different posture conditions.
The location of the vibrotactile targets, which were always presented to the right
hand, are indicated by the letter 7. Mean crossmodal congruency effects (inverse
efficiency scores, in ms) elicited by visual distractors are shown numerically next
to the cube on which they were situated. (The absence of any values next to
certain cubes shows that no distractor lights were attached to that particular
cube.) Crossmodal congruency effects represent a difference score: performance
on incongruent—distractor trials (i.e., trials on which the vibrotactile target and
visual distractor appeared at different elevations)—performance on congruent—
distractor trials (i.e., trials on which the target and distractor were presented
from the same elevation).

trically positioned cube instead. However, the most interesting result oc-
curred when the participants moved their right hand across the midline into
the left hemifield: for the two control participants, crossmodal congruency
effects were now much larger for distractor lights on the left cube (now
held by the crossed right hand) than for lights on the right cube, again
replicating Spence et al.’s [Spence et al. 04b] findings. By contrast, the
right distractor lights always interfered more than those on the left for the
split-brain patient J.W., no matter whether his right hand was placed in an
uncrossed or a crossed posture. This result therefore suggests a failure to
remap visuotactile space appropriately when the split-brain patient’s right
hand crossed into left hemispace.

Subsequent research confirmed that J.W.’s problem was not simply with
seeing lights presented ipsilateral to the responding hemisphere (i.e., on

50 2. Multi-Sensory Interactions

the left), but more specifically had to do with a failure to maintain an
accurate representation of visuotactile peripersonal space across the two
hemifields [Spence et al. 01b]. On the basis of these results, Spence and his
colleagues went on to argue that cross-cortical connections are critical for
the maintenance of an up-to-date representation of visuotactile peripersonal
space, at least when the right hand crosses the midline (and presumably
when the left hand is crossed over into the right hemispace as well). Inter-
estingly, preliminary data from [Maravita et al. 08] has also shown a lack
of any spatial modulation of crossmodal congruency effects on the side of
space contralateral to brain damage in a small group of neglect patients.

2.4.2 Disrupting the Representation of Visuotactile Space
with Repetitive Transcranial Magnetic Stimulation

The pattern of results obtained with the split-brain patient J.W. supports
the view that performance on the crossmodal congruency task may index
a relatively high-level (i.e., cortical) representation of visuotactile space.
However, given that J.W. has by now been tested on a near-daily basis
for much of the last 30 years, it is important that converging evidence
be found from other cognitive neuroscience methodologies to back up the
claims made on the basis of this rather unique patient. To this end, Wal-
ton et al. (in preparation) have been investigating whether it is possible to
elicit the abnormal pattern of crossmodal congruency effects demonstrated
by J.W. in a relatively normal population of Oxford undergraduates, by
using repetitive transcranial magnetic stimulation (rTMS) to disrupt ac-
tivity in a region corresponding approximately to the angular gyrus and
the posterior parts of the intraparietal sulcus. The preliminary results of
this research suggest that performance on the crossmodal congruency task
can also be selectively impaired in participants when they adopt a crossed-
hands posture (rather than an uncrossed posture) and rTMS is applied
in the region of the angular gyrus and posterior parts of the intraparietal
sulcus (rather than over primary visual or somatosensory areas, or when
sham rTMS is applied to the back of the neck). The pattern of crossmodal
congruency effects observed while using rTMS therefore provides converg-
ing evidence to support the critical importance of cortical structures (and
presumably also cross-cortical connections) in maintaining an up-to-date
representation of visuotactile peripersonal space.

2.5 Conclusion

It should, by now, hopefully be clear that variations in the magnitude
of the crossmodal congruency effect have provided researchers with both

2.5. Conclusion 51

a reliable and a robust index of common spatial position across differ-
ent sensory modalities, in particular, vision and touch. Over a number
of such studies, researchers have shown that visual distractors interfere
significantly with speeded elevation discrimination responses to vibrotac-
tile target stimuli presented to the thumb or index finger of either hand,
even when participants are instructed to ignore what they see. The largest
crossmodal congruency effects are observed when vision and touch are pre-
sented from approximately the same spatial location at around the same
time, and decrease as the relative spatiotemporal separation between target
and distractor stimuli increases [Maravita et al. 06, Shore et al. 06, Spence
et al. 04b]. The crossmodal congruency effects elicited by visual distrac-
tors follow the hands when they move through space, even when they cross
the midline in healthy participants, such that it is always distractor lights
near the participant’s current hand position that interfere more than lights
placed elsewhere [Holmes et al. 06a, Spence et al. 0la, Spence et al. 04b].
In the last few years, the crossmodal congruency task has been used
to investigate the flexibility of the representation of the body (or body
schema), as highlighted by the apparent displacement of the limbs seen in
the “rubber hand” illusion [Austen et al. 01, Austen et al. 04, Kanayama
and Ohira 07,Pavani et al. 00, Walton and Spence 04], and the changes in
peripersonal space that can occur following extended use of tools [Holmes
et al. 04a, Holmes et al. 07, Maravita et al. 02b]. These results are consis-
tent with the extant neurophysiology concerning the visuotactile represen-
tation of peripersonal space seen in primates [Graziano 99, Graziano and
Botvinick 02,Iriki et al. 96]. The crossmodal congruency task has also been
used to probe disturbances to the visuotactile representation of space seen
following specific brain damage, such as the sectioning of the corpus callo-
sum in split-brain patients [Spence et al. 01a,Spence et al. 01b], or neglect
of the side of space contralateral to brain damage [Maravita et al. 05].
It seems increasingly likely that our growing understanding of some of
the key factors governing whether or not particular distal events will be
functionally incorporated into the body schema and/or extend or shift the
boundary of peripersonal space may also have a number of important ap-
plications for the future design and implementation of teleoperation and
virtual haptic reality systems (e.g., see [Held and Durlach 93, Ijsselsteijn
et al. 05, Marescaux et al. 01,Sanchez-Vives and Slater 05, Slater et al. 07]).
Taken together, we believe that the results of the crossmodal congru-
ency studies that have been conducted over the last decade highlight the
utility of the paradigm for investigating the relative contributions of vi-
sual, tactile, and proprioceptive inputs to the multisensory representation
of peripersonal space in both normal participants and in various clinical pa-
tient populations. In the years to come, it is to be hoped that researchers
will be able to combine neurophysiological, electrophysiological, neuropsy-

52 2. Multi-Sensory Interactions

chological, and neuroimaging data with behavioral data from normal par-
ticipants on this task in order to try to bridge the gap between the rich body
of published single-cell neurophysiological data, and the human perceptual
experiences with which we are all familiar [Graziano and Botvinick 02]. We
believe that by adopting this converging methodologies approach, cognitive
neuroscience research will make significant inroads toward resolving the
challenging questions regarding the multisensory representation of space.

Acknowledgments

Our thanks go to Paola Rigo for drawing a number of the figures used in
this article.

3

Design Issues in Haptic
Devices

H. Iwata

The sense of touch is instrumental for understanding the physical world
surrounding us. The last decade has seen significant advance in the de-
velopment of haptic interface. However, methods for implementation of
haptic interface are still in their early stage. Compared to visual and audi-
tory displays, haptic interfaces have not been widely used in our daily life.
This chapter discuss issues and solutions in the design of haptic devices.

3.1 Towards Full-Body Virtual Touch

The sense of touch is instrumental for understanding the real world. Thus,
the use of force feedback to enhance computer-human interaction has often
been suggested to improve our immersion in the virtual environments. A
haptic interface is a feedback device that generates sensation to the skin
and muscles, including a sense of touch, weight, and rigidity. Compared
to ordinary visual and auditory sensations, haptics is difficult to synthe-
size. Visual and auditory sensations are gathered by specialized organs,
the eyes and ears. On the other hand, a sensation of force can occur
at any part of the human body and is therefore inseparable from actual
physical contact. These characteristics lead to many challenges when de-
veloping a haptic interface. Thus, the discussions in this chapter focus on
the specific part of the body where haptic sensation is dominant in human
activities.

First, finger and hand are indispensable for object manipulation. There
have been many haptic interfaces built for hand-object interaction. Ex-
oskeletons and pen-based haptic interface are popular, but they pose some
problems in natural interaction.

The other important part for haptic sensation is a foot. Walking on foot
is the most intuitive way to move about. It is well known that the sense of
distance or orientation while walking is much better than that while riding

53

54 3. Design Issues in Haptic Devices
in a vehicle. Several locomotion interfaces have been proposed, but some
devices do not provide natural walking.

This chapter discusses major issues in implementation of effective haptic
interface. Research on haptic interface started around 1986 in the author’s
laborarory. The research activities of the author over a long history suggest
several solutions for many of these issues.

3.2 Sensory Modes and Interface Devices

Sensory modes are classified into seven categories. Figure 3.1 shows these
modes, roles of each sensory mode, and existing interface devices corre-
sponding to each mode. Visual, auditory, olfactory, vestibular, and taste
are gathered by specialized sense organ: eye, ear, nose, semicircular canals,
and tongue, respectively.

Haptics is composed of proprioception and skin sensation. Proprio-
ception is complemented by mechanoreceptors of skeletal articulations and
muscles. There are three types of joint position receptors: free nerve end-
ing, as well as Ruffini and Pacinian corpuscles. Ruffini corpuscles detect
static force. On the other hand, Pacinian corpuscles function to measure
acceleration of the joint angle. Position and motion of the human body is

Sensory Roles of sense | Existing interface ,
modes organs devices Conventional
(Vision See TV, projector, etc media technology
(audio/visual)
\Auditory Hear Radio, audio, etc
Olfactory Smell Early stage of
research prototype
@stibular Acceleration Motion platform \
Taste Flavor/food Early stage of
texture research prototype
Skin sensation | Texture of Communication
surface aids for visual
disabilities
Proprioception | Rigidity/weight | Research prototypes
\\ 7

Haptics-related
media technology

Figure 3.1. Sensory modes and interface devices.

3.3. Locomotion Interfaces 55

perceived by these receptors. Force sensation is derived from mechanore-
ceptors of muscles: muscle spindles and Goldi tendons. These receptors
detect contact forces applied by an obstacle in the environment.

Skin sensation is derived from mechanoreceptors and thermoreceptors
of skin. Sense of touch is evoked by those receptors. Mechanoreceptors of
skin are classified into four types: Merkel disks, Ruffini Capsules, Meiss-
ner Corpuscles, and Pacinian Corpuscles. These receptors detect edge of
object, skin stretch, velocity, and vibration, respectively.

Acceleration generates not only vestibular sensation but also forces to
the whole body. Thus, it is related to proprioception. Vestibular sensation
also contributes to the sense of locomotion. Taste is gathered by chemical
receptors on the tongue. It is composed of food texture or vibration while
biting. Therefore, proprioception, skin sensation, taste, and vestibular
sensation are all related to haptics.

Please refer to Chapter 1 for a more detailed discussion on haptic per-
ception.

3.3 Locomotion Interfaces

In most applications of virtual environments, such as training or visual sim-
ulations, users need a good sensation of locomotion. We have developed
several prototypes of interface devices for walking since 1988. It has of-
ten been suggested that the best locomotion mechanism for virtual worlds
would be walking. The sense of distance or orientation while walking is
much better than that while riding in a vehicle. However, the proprio-
ceptive feedback of walking is not provided in most applications of virtual
environments.

Here we briefly describe a few locomotion interfaces developed at
H. Iwata’s lab. For more general information on locomotion interfaces,
please refer to Chapter 5 in this book.

3.3.1 Virtual Perambulator

A possible method for locomotion in virtual space is a hand controller. In
terms of natural interaction, the exertion of walking is essential to locomo-
tion. There are two objectives for this project. The first was the creation
of a sense of walking while the position of the walker is maintained in the
physical world. The second was to allow for the changing direction of the
walker’s feet.

In order to realize these functions, a user of the Virtual Perambulator
wore a parachute-like harness and omnidirectional roller skates [Iwata 90].
Figure 3.2 shows an overview of the device. The trunk of the walker was

56 3. Design Issues in Haptic Devices

F -

Figure 3.2. Virtual Perambulator (1989).

fixed to the framework of the system by the harness. An omnidirectional
sliding device is used for changing direction by feet. We developed a special-
ized roller skate equipped with four casters, which enabled two-dimensional
motion. The walker could freely move his/her feet in any direction. Motion
of the feet was measured by an ultrasonic range detector. From the result
of this measurement, an image of the virtual space was displayed in the
head-mounted display corresponding with the motion of the walker. The
direction of locomotion in virtual space was determined according to the
direction of the walker’s step.

We improved the harness and sliding device of the Virtual Perambulator
[Iwata and Fujii 96] and demonstrated it at SSIGGRAPH 95.

3.3.2 Torus Treadmill

The Virtual Perambulator achieved the objectives of the first stage; the
user can walk while his/her position is maintained and can freely change
direction. However, one problem remained. Walkers had to slide their feet
by themselves. In other words, the device was passive. Walkers had to get
accustomed to the sliding action. We therefore aimed to develop an active
device which moves corresponding to the motion of the walker.

3.3. Locomotion Interfaces 57

Figure 3.3. Torus Treadmill (1997).

A key principle of treadmill-based locomotion interface is to make the
floor move in a direction opposite to that of the walker [Christensen et al. 98].
The motion of the floor cancels the displacement of the walker in the real
world. The major problem of a treadmill-based locomotion interface is to
allow the walker to change direction. Omnidirectional motion can be real-
ized by spreading small rollers [Darken et al. 97], but this method suffers
from limited durability and mechanical noise.

The Torus Treadmill, developed in 1997, is an omnidirectional infinite
floor implemented by a group of belts connected to each other [Iwata 99].
Figure 3.3 shows an overall view of the Torus Treadmill. The device em-
ploys twelve treadmills. These treadmills move the walker along an “X”
direction. Twelve treadmills are connected side by side and driven in a
perpendicular direction. This motion moves the walker along a “Y” di-
rection. The combination of these motions enables the walker to perform
omnidirectional walking.

3.3.3 GaitMaster

One of the major research issues in locomotion interface is presentation of
uneven surface. Locomotion interfaces are often applied for simulation of

58 3. Design Issues in Haptic Devices

Figure 3.4. GaitMaster (1999).

buildings or urban spaces. Those spaces usually include stairs. A walker
should be provided the sense of climbing up or going down those stairs.
The Torus Treadmill achieved natural walking, but it is almost impossible
to present uneven surface by the use of treadmills.

We therefore designed a new locomotion interface that simulates an
omnidirectional uneven surface [Iwata et al. 0la]. The device is named
“GaitMaster.” Figure 3.4 shows a prototype GaitMaster. Core elements
of the device are two 6 DOF motion platforms mounted on a turntable.
A walker stands on the top plate of the motion platform. Each motion
base is controlled to trace the position of the foot. In order to keep the
position maintained, the motion platforms cancel the motion of the feet.
The vertical displacement of the walker is also canceled by up-and-down
motion of the top plate. The turntable is controlled to trace the orientation
of the walker. The motion of the turntable removes interference between
the two motion platforms.

We developed a simplified mechanism for the GateMaster, which en-
ables the device portable. We applied it to gait rehabilitation [Yano et al. 03].

3.3.4 CirculaFloor

From the results of our research into locomotion interface, we determined
that an infinite surface is an ideal device for creating a sense of walking. In

3.3. Locomotion Interfaces 59

Figure 3.5. CirculaFloor.

2004 we proposed a new locomotion interface named “CirculaFloor” [Iwata
et al. 04]. The device employs a group of omnidirectional movable tiles to
realize the locomotion interface. Each tile is equipped with a holonomic
mechanism that achieves omnidirectional motion. Infinite surface is simu-
lated by circulation of the movable tiles.

The major innovation of this work is a new method for creation of an
infinite floor. The easiest way to realize an infinite floor is the use of a
treadmill. However, a treadmill has difficulty in realizing omnidirectional
walking. A motion footpad for each foot is an alternative. It has the ability
to simulate omnidirectional walking, as well as walking on uneven surface.
The major limitation of this method is that high accuracy is required for
the footpad to trace the walker. Actually, the walker has to be careful
about mistracing of the footpad.

The CirculaFloor is a new method that takes advantage both from
treadmill and footpad. It creates omnidirectional infinite surface by the use
of a group of movable tiles. Combination of the floors provides sufficient
area for walking thus precision tracing of the foot position is not required.

The motion of the feet is measured by position sensors. The tiles move
opposite to the measured direction of the walker, so that the motion of the
step is canceled. The position of the walker is fixed in the real world by this
computer-controlled motion of the floors. The circulation of the tiles has
the ability to cancel the displacement of the walker in an arbitrary direction.
Thus, the walker can freely change direction while walking. Figure 3.5
shows an overall view of the prototype CirculaFloor.

60 3. Design Issues in Haptic Devices

Locomotion interfaces often require bulky hardware, because they have
to carry the whole body of the user. Also, the hardware is not easy to
reconfigure to improve its performance or add new functions. Considering
these issues, the CirculaFloor has scalable hardware. It is easy to install,
and its performance can be improved by upgrading actuators of each floor.
Moreover, it has the potential to create uneven surface by mounting an
up-and-down mechanism on each tile.

3.4 Desktop Displays

This section describes devices whose actuators are built in a desktop casing,
and the user perceives virtual haptic feedback through various types of light
end-effectors.

3.4.1 Desktop Force Display with Exoskeleton

The first step was the use of an ezoskeleton. An exoskeleton is a set of ac-
tuators attached to a hand or a body. In the field of robotics research, ex-
oskeletons have often been used as master-manipulators for tele-operations.
However, most master-manipulators entail a large amount of hardware and
therefore have a high cost, which restricts their use. More compact hard-
ware design is needed for common use in human-computer interactions.

Figure 3.6. Desktop force display (1989).

3.4. Desktop Displays 61

We therefore proposed the concept of the desktop force display, and the
first prototype was developed in 1989. The device is a compact exoskele-
ton for desktop use [Iwata 90]. Figure 3.6 shows an overall view of the
desktop force display. The core element of the device is a 6-DOF parallel
manipulator, in which three sets of pantograph link mechanisms are em-
ployed. Three actuators are set coaxially with the first joint of the thumb,
the forefinger, and the middle finger of the operator.

The concept of the desktop force display leads to the basic configuration
of commonly available haptic interfaces, including PHANTOM [Massie and
Salisbury 94].

3.4.2 Pen-Based Force Display

Users of exoskeletons feel troubled when they put on or take off these
devices. This disadvantage obstructs practical use of force displays. The
author proposed a concept of a tool-handling-type haptic interface, which
does not use a glove-like device.

The pen-based force display is a typical example of a tool-handling-type
haptic interface [Iwata 93]. Users are familiar with a pen in their everyday
life. Most of the human intellectual works are done with a pen. People
use spatulas or rakes for modeling solid objects. These devices have stick-
shaped grips similar to a pen. In this aspect, the pen-based force display is
easily applied to design of 3D shapes. Medical applications, such as surgical
simulators, can be developed using a pen-based force display.

ﬁ

Figure 3.7. Pen-based force display (1993).

62 3. Design Issues in Haptic Devices

In 1993, we developed a six-degree-of-freedom haptic interface which has
pen-shaped grip. The human hand has an ability of six-degree-of-freedom
motion in 3D space. In case a 6 degree-of-freedom master manipulator is
built using serial joints, each joint must support the weight of the upper
joints. This characteristic leads to large hardware of the manipulator.
We use a parallel mechanism in order to reduce the size and weight of
the manipulator. The pen-based force display employs two three-degree-
of-freedom manipulators. Both ends of the pen are connected to these
manipulators. The total degrees of freedom of the force display are six.
Force and torque are applied at the pen. An overall view of the force
display is shown in Figure 3.7. Each 3 DOF manipulator is composed of
a pantograph link. By this mechanism, the pen is free from the weight of
the actuators. The inertia of the motion parts of the linkages is so small
that compensation is not needed. The rotational angle around the axis of
the pen is determined by the distance between the end points of the two
pantographs. A screw motion mechanism is installed in the pen, which
converts the length of the pen into rotational motion.

3.4.3 Haptic Master

The Desktop Force Display was converted to a tool-handling-type haptic
interface. We removed the exoskeleton for the fingers and put a ball-shaped
grip. The device was called “HapticMaster” and was commercialized by
Nissho Electronics Co. It was demonstrated at SIGGRAPH 94 [Iwata 94]

Figure 3.8. Haptic Master (1994).

3.5. Flexible Surface Displays 63

as the first haptic interface in the world that was shown openly to public.
Figure 3.8 shows an early version of the HapticMaster. The HapticMaster
is a high-performance force feedback device for desktop use. This device
employs a parallel mechanism in which a top triangular platform and a
base triangular platform are connected by three sets of pantographs. The
top end of the pantograph is connected with a vertex of the top platform
by a spherical joint. This compact hardware has the ability to carry a large
payload. Each pantograph has three DC motors. The total number of mo-
tors is nine, which is redundant for a 6-DOF manipulator. The redundant
actuators are used for elimination of singular points. Parallel mechanisms
often include singular points in working space.

3.5 Flexible Surface Displays

The author demonstrated the haptic interfaces to a number of people and
found that some of them were unable to fully experience virtual objects
through the medium of synthesized haptic sensation. There seem to be
two reasons for this phenomenon. First, these haptic interfaces only allow
the users to touch the virtual object at a single point, or at a group of
points. These contact points are not spatially continuous, due to the hard-
ware configuration of the haptic interfaces. The user feels a reaction force
thorough a grip or thimble. Exoskeletons provide more contact points, but
these are achieved by using Velcro bands attached to specific parts of the
user’s fingers, which are not continuous. Therefore, these devices do not
recreate a natural interaction when compared to manual manipulation in
the real world.

The second reason why they fail to perceive the sensation is related
to a combination of the visual and haptic displays. A visual image is
usually combined with a haptic interface by using a conventional CRT
or projection screen. Thus, the user receives visual and haptic sensation
through different displays and therefore has to integrate the visual and
haptic images in his/her brain. Some users, especially elderly people, have
difficulty in this integration process.

Considering these problems, a new configuration of visual/haptic dis-
play was designed [Iwata et al. 01b]. The device is composed of a flexible
screen, an array of actuators, and a projector. The flexible screen is de-
formed by the actuators in order to simulate the shape of virtual objects.
An image of the virtual objects is projected onto the surface of the flexible
screen. Deformation of the screen converts the 2D image from the projec-
tor into a solid image. This configuration enables users to touch the image
directly using any part of their hands. The actuators are equipped with
force sensors to measure the force applied by the user. The hardness of

64 3. Design Issues in Haptic Devices

the virtual object is determined by the relationship between the measured
force and its position on the screen. If the virtual object is soft, a large
deformation is caused by a small applied force.

3.5.1 FEELEX 1

The FEELEX 1, developed in 1997, was designed to enable double-handed
interaction using the whole of the palms. The screen is connected to a linear
actuator array that deforms its shape. Each linear actuator is composed of
a screw mechanism driven by a DC motor. The screw mechanism converts
the rotation of an axis of the motor to the linear motion of a rod. The
motor must generate both motion, and a reaction force on the screen. The
diameter of the smallest motor that can drive the screen is 4 cm. We set
a 6 x 6 linear actuator array under the screen. The deformable screen is
made of a rubber plate and a white nylon cloth. Figure 3.9 shows an overall
view of the device.

3.5.2 FEELEX 2

The FEELEX 2 is designed to improve the resolution of the haptic surface.
A piston-crank mechanism is employed for the linear actuator that realizes
8 mm resolution (Figure 3.10). The piston-crank mechanism can easily

Figure 3.9. FEELEX 1 (1998). Figure 3.10. FEELEX 2 (2001).

3.5. Flexible Surface Displays 65

achieve offset position. A servomotor from a radio-controlled car is selected
as the actuator. The rotation of the axis of the servomotor is converted to
the linear motion of the rod by a crankshaft and a linkage.

3.5.3 Volflex

A major limitation of the FEELEX is that the linear actuator array can
only present the top surface of a virtual object. It cannot present the
side or bottom. Thus, the user cannot grasp the object. We therefore
developed a new haptic interface named “Volflex.” Figure 3.11 shows an
overall view of the device. It is composed of a group of computer-controlled
air balloons. The balloons fill the interaction surface. They are arranged
in a body-centered cubic lattice. A tube is connected to each balloon. The
volume of each balloon is controlled by an air cylinder. The tubes are
connected to each other by springs. This mechanical flexibility provides an
arbitrary shape of the interaction surface. Each air cylinder is equipped
with a pressure sensor that detects force applied by the user. According to
the pressure data, the device is programmed to perform like clay. Unlike
real clay, the Volflex allows the user to “undo” operations.

Virtual clay is one of the ultimate goals of interactive techniques for 3D
graphics. The Volflex provides an effective interface device for manipulation

Figure 3.11. Volflex.

66 3. Design Issues in Haptic Devices

of virtual clay by using a lattice of air balloons. Many 2D paint tools have
been popular, and a digital picture is easy to draw. The Volflex is a new
digital tool for making 3D shapes. It has potential to revolutionize methods
for industrial design. Designers use their palm or the joints of their fingers
to deform a clay model when carrying out rough design tasks. The Volflex
provides the ability to support such natural manipulation.

The Volflex is not only a tool for 3D shape design, but also for inter-
active artwork. Physical property of the virtual object can be designed by
programming controllers of the balloons. Images can be projected on the
surface. The combination of haptic/visual display provides a new platform
for interactive sculpture.

3.6 Summary

Visual and auditory displays have a long history of over 100 years. These
displays are widely used in everyday life. On the other hand, most haptic
interfaces are still used mostly in laboratories. Relatively little application
of haptic interfaces is used for information media.

The history of media technology may provide a hint for this problem.
It is well known that the father of paper media is Gutenberg. However,
he was not an inventor of the printing machine. Many people developed
it before Gutenberg. The reason why he remained prominent in history
is due to his content and fonts. Similar development may be said about
haptic interfaces. “A killer app” of haptic technology may be what will
lead to the widely successful adoption of haptic interfaces in everyday life.

4

Rendering for Multifinger
Haptic Devices

B. Hannaford and R. Leuschke

In order to support haptic perception with the whole hand, extensive tech-
nology still needs to be developed. Mechanical challenges include high
density of degrees of freedom, weight, representation of contact with multi-
ple finger surfaces and palm surfaces, and computational challenges related
to the above mechanical properties. This chapter will describe an approach
to broadening computer-based haptic interaction beyond the single finger-
tip or probe-tool styles supported by most devices today. We are still far
from having the technology to support full-hand haptics.

4.1 Literature Review

Many engineers have tackled the challenge of multi-finger haptic devices
(see [Burdea 96] for a comprehensive 1996 review). These devices tend to
be mechanically very complex, as structure, sensing, and actuation need to
be provided for a large number of coupled degrees of freedom (DOF) in a
small space. The following review is not meant to be comprehensive, but
instead to convey the common and necessary mechanical tradeoffs.

The Sarcos Dexterous Arm [Jacobsen et al. 91] provided force sensing
and hydraulic drive to the thumb and one finger in a 3-DOF configuration
optimized for grasping and tool use. The University of Tokyo Sensing
Glove II [Hashimoto et al. 94] was a tendon-drive exoskeleton, with 20
DOF, aimed at manipulation of virtual objects. The “Tactuator” [Tan and
Rabinowitz 96] was a very high bandwidth device designed and used for
psychophysical threshold measurements on a single DOF to each of three
fingers. With disk drive flat coil actuators, the Tactuator achieved band
widths of over 200 Hz and up to 25 mm displacement. The motion axes
drove the thumb, index finger, and middle finger in a relaxed cup-shaped
posture. The Rutgers Master [Burdea 96] used four custom pneumatic
pistons on gimbal mounts to generate internal forces between the palm and

67

68 4. Rendering for Multifinger Haptic Devices

the tips of the thumb and three fingers. The Cyberglove/Cyberforce system
[Turner et al. 98] was a multi-finger glove and wrist gimbal mounted in a
haptic device. The finger actuators were removed to the ground (for mass
and volume reduction) by tendon drives. Kron and Schmidt [Kron and
Schmidt 03] designed compact fingertip tactile actuators to overcome some
of the bandwidth limitations of the Cyberglove’s tendon drives. Gosselin
et al. [Gosselin et al. 05] developed a two-finger spatial device worn on the
wrist, which had three actuated degrees of freedom. Gillespie [Gillespie and
Rosenberg 94] studied a piano keyboard haptic device capable of simulating
the dynamics of linkages (such as piano mechanisms). High bandwidth and
multi-finger display were achieved in one degree of freedom per finger. The
human hand gives us at least 26 DOF (including the wrist) inside a very
compact space (estimate: 17.2 ml per DOF). This complexity makes it
inevitable that many compromises are made by engineers of haptic devices.
All of the above devices, and indeed our own device, trade away many
desirable properties. High bandwidth (e.g., [Tan and Rabinowitz 96]) can
be achieved with only three degrees of freedom. High degrees of freedom
(e.g [Turner et al. 98]) can be achieved with high friction tendon drives
which limit force feedback fidelity.

4.2 Multifinger Haptic Perception

Here we discuss relevant work on finger haptic perception, but please refer
to Chapter 1 for a more comprehensive discussion on haptic perception.

4.2.1 Psychophysics

Physiological responses can be detected from stimuli as high as 10 kHz,
and these perceptions have been linked to specific neural discharges and
receptor types [Srinivasan and LaMotte 87, LaMotte et al. 98]. Tan and
Rabinowitz’s device [Tan and Rabinowitz 96] confirmed earlier measure-
ments of a declining vibrotactile threshold up to 200 Hz. Other researchers
have quantified the spatial acuity of human tactile perception with the bare
finger [Moy et al. 00] as well as perception of textures via a rigid probe [Le-
derman and Klatzky 98] [Weisenberger et al. 00]. A study of Braille percep-
tion contributed adaptive thresholding algorithms to the study of tactile
perception [Stevens et al. 96]. In terms of amplitude, Jones [Jones 98]
measured a 6% ability (Weber fraction AF/F) to haptically discriminate
forces applied to the extended finger. Allin et al. [Allin et al. 02] got a just
noticeable difference (JND) of 9.9% in a similar experiment.

To our knowledge, the only similar work with multiple fingers has used
vibrotactile stimulation. Yuan et al. [Yuan et al. 05] studied the ability to

4.2. Multifinger Haptic Perception 69

Figure 4.1. Multifinger haptic device completed by the authors. Each finger is a
2-DOF planar mechanism, computer optimized to cover the workspace of human
fingers. The base contains all electronics and interfaces to the computer through
a single USB 2.0 cable.

detect onset time differences between the thumb and index finger. They
found a threshold of 34 ms below which onset order could not be distin-
guished. Craig [Craig 68] measured about a 2-dB drop in threshold when
100 Hz vibrotactile stimuli were applied to two fingertips simultaneously.
Presumably, sensory input from the two fingers sum at higher neural levels
to overcome a perceptual threshold. This spatial summation disappeared
when the frequency of vibration was 9 Hz. When fingers contacted a vibrat-
ing cylinder, a similar result was obtained in [Brisben et al. 99]. However,
Refshauge et al. [Refshauge et al. 03] found that tonic stimulation of adja-
cent fingers did not reduce thresholds for detection of passive movements.
Physiological mechanisms for aspects of these sensations are explored by
Collins et al. [Collins et al. 00].

West and Cutkosky [West and Cutkosky 97] compared the bare finger,
hand-held stylus, and stylus/haptic device in terms of users’ ability to
detect sinusoidal gratings in 1D and count the number of cycles present.
They found that detection performance with the haptic device was inferior
to the bare finger or stylus and depended on the stiffness parameter of the
virtual surface model.

70 4. Rendering for Multifinger Haptic Devices

Venema and Hannaford [Venema and Hannaford 00] compared haptic
feature detection performance with a single finger of the haptic device de-
scribed in this chapter and found optimal values of stiffness and damping
gains. The variable of interest in this experiment was the magnitude of C1
discontinuity between two line segments.

4.2.2 Exploratory Procedures

The psychological literature on human haptic exploration is dominated by
Lederman and Klatzky’s highly influential research [Klatzky et al. 85, Le-
derman and Klatzky 87, Lederman and Klatzky 90]. Their work defined
stereotyped hand motions—ezploratory procedures (EPs)—which are char-
acteristic of human haptic exploration. They placed objects into the hands
of blindfolded subjects and videotaped their hand motions. Their initial
experiments [Lederman and Klatzky 87] showed that the EPs used by sub-
jects could be predicted based on the object property (texture, mass, tem-
perature, etc.) that the subjects needed to discriminate. They also showed
that the EPs chosen by subjects were the ones best able to discriminate
that property.

Lederman and Klatzky’s eight EPs (Figure 4.2) and the property for
which they are optimal are:

1. Lateral Motion (texture);
2. Pressure (hardness);

Static Contact (temperature);

- W

Unsupported Holding (weight);

5. Enclosure (global shape, volume);

6. Contour Following (exact shape, volume);
7. Part Motion Test (part motion);

8. Function Testing (specific function).
"Lateral Motion" "Pressure" "Static Contact” "Unsupported Holding"

Figure 4.2. Illustration from Lederman and Klatzky [Lederman and Klatzky 87]
showing four of the eight exploratory procedures (EPs).

4.3. Design of a Multifinger Haptic Device 71

Each of these EPs is a bi-manual task involving contact with all interior
surfaces of the hand, motion of the wrist and all the degrees of freedom of
the hand, tactile and temperature sensors in the skin (e.g., EPs 1 and 3),
and kinesthetic sensors in the arm (EP 4). A haptic device capable of
supporting all of these EPs would clearly be beyond today’s state of the
art. However, the significance of these results for the design of haptic
interface appears to be very great, since it may allow us to derive device
requirements from the sensory tasks.

4.3 Design of a Multifinger Haptic Device

Figure 4.3. (a) Computer-synthesized device workspace and (b) completed mul-
tifinger haptic device.

72 4. Rendering for Multifinger Haptic Devices

150

125¢ 1

100, N B B 4

torque factor [Nmm/A]
~
(6]

50 1
25 o
o experimental
0 —— polynomial fit
0 15 30 45 60 75 90

6 [°]

Figure 4.4. Torque factor over the actuator range.

4.3.1 Hardware

We recently completed a 4-finger, 8-DOF haptic device [Leuschke et al. 05],
the multifinger haptic device (MFHD). We support four fingers in their
flexion-extension planes by making four copies of our 1997 single-finger de-
vice [Venema and Hannaford 00, Venema et al. 02] (Figure 4.1) and setting
them next to each other.

Mechanism. The device supports planar motion of the four fingertips.
Each finger contains two custom wound flat-coil actuators driven by perma-
nent magnets of Nyodimium-Iron-Boron and having 90° of motion range.
The actuators have a near constant torque factor (see Figure 4.4). The
torque is ripple free and varies just 7% across the motion range.

Thermal modeling enables peak torques of up to 0.6 Nm—equivalent to
about 6N fingertip force. The thermal limit of the actuator is given by the
maximum operating temperature of the coil at 130°C. Figure 4.5 shows a
near linear relationship between input power and link temperature in the
operating range. Small differences in temperature depending on thermo-
couple location can be observed. The maximum steady state power was
determined to be 20.5 W, and thermal resistance Rp=5.2°/W. Conserva-
tively, we rate the thermal resistance of the coil as 7.5°/W. A time constant
of 160 s was determined for the actuator. The thermal model can be used
for open loop tracking of device temperature to ensure operation within
thermal limits.

Embedded Sensors. In the new device, miniature interferometric optical
encoders from Micro-E Inc. were integrated inside to allow the fingers close

4.3. Design of a Multifinger Haptic Device 73

140

120+

100+

80+

60

temperature I°Cl

40}

—v— thermocouple #1 |

g »— thermocouple #2 ||
20 —e— thermocouple #3
o - - thermal limit
0 5 10 15 20 25

power |WI|

Figure 4.5. Link temperatures for constant power input, steady state response
(three sensor locations).

proximity and to increase position sensing resolution. Table 4.1 lists some
of the device characteristics.

Power electronics and 1/0O. All power electronic and input-output hard-
ware is housed in the base of the device. I/O between the CPU and sen-
sors/actuators is accomplished by a custom built USB 2.0 board [Lum
et al. 06]. The board contains 8 channels of 24-bit quadrature encoder
counters and 8 channels of 16-bit D-to-A converters. The associated driver
software for RTAI Linux can read all eight sensors and write to all eight
actuator outputs in 125 psec.

| | FHD v2004 |
Actuator torque, steady state | 164 Nmm
Max current steady state 1.4 A
Torque output resolution 0.036 Nmm
Encoder cpr 1,048,576
Joint position resolution 6.0 prad
Fingertip position
Resolution ~0.6 pm

| Kinematic isotropy | > 0.75 |

Table 4.1. FHD specifications.

74 4. Rendering for Multifinger Haptic Devices

4.3.2 Software Architecture

Our haptic rendering algorithm (below) has been implemented in a real-
time multiprocessing environment based on Linux with the RTAI real-time
extensions. Separate threads are established for haptics and graphics com-
putations which contain identical copies of the polygonal surface model.
The two threads can be on the same or different processors.

RTAI set-up. RTAI is a set of Linux extensions that allows code to be ex-
ecuted satisfying hard realtime requirements. In order to achieve this, the
real-time task has to be compiled and executed as a kernel module. A sched-
uler separate from the standard Linux scheduler ensures that our haptics
code is executed every millisecond. Our haptic rendering real-time module
reads data from the USB I/O board, performs computations, communi-
cates with the graphics process, and writes data back to the I/O board.
To ensure real-time performance, all computations have to complete in less
than a millisecond.

Application architecture. Our system’s real-time haptics computation con-
sists of the hardware I/O code, forward and inverse kinematics, gravity
compensation, and a communication interface to non-realtime components
of the software.

The graphics thread is a user space process that can be run on the
same or different processor as the real-time haptics module. This module
presents a user interface that allows loading of different models and visu-
alization of the haptic interaction. Since this thread runs in user space
and possibly over a network, updates of the graphics are not deterministic.
Refresh rates of around 30 Hz are generally sufficient for graphics and have
been achieved for complex models with reasonable hardware requirements
(see below). The GUI is implemented with the QT library. The model is
visually rendered using OpenGL using a QGLWidget.

Models can be loaded from files in two different formats. For general
purpose polygon models, we have chosen the PLY data format. The format
is easy to use and flexible enough to define additional attributes for models,
should they be needed. Bitmap images can be converted to PLY polygon
surfaces with a separate filter we have developed. We also included an
input filter to directly read MRI and CT scan data in Analyze and Genesis
Signa formats. Support is being added for medical images in the other
formats as well.

Haptics and graphics threads need to communicate model and state
data. RTAI provides a number of mechanisms for this purpose. Here we
have implemented communication through FIFOs. When a new model is
loaded through the user interface, the haptics thread terminates haptic
interaction calculations for the old model. The new model is then sent to

4.4. Multifinger Rendering Method 75

the haptics thread via FIFO. The data written into the FIFO corresponds
closely to the PLY format. Once the model is completely transmitted, the
triangle cache (see below) is pre-computed, and then the haptics thread
starts real-time haptic interaction.

It is usually desirable to visualize the surface contact point as the user
moves it around with the haptic device. In our implementation, state data
is sent from the haptics thread to the graphics thread through another
FIFO. Currently, our models are static, and no model data is updated dur-
ing haptic interaction. Device positions are transmitted to the graphics
module to visualize the haptic interaction points. The graphics thread also
contains code to simulate the haptics computations, so that geometric con-
structions in the algorithm and the resulting force vector can be visualized
in real time, if desired.

4.4 Multifinger Rendering Method

We have developed a new variation on haptic rendering methods, which is
suited to efficient rendering for multi-finger exploration of surfaces. The
interaction between each finger and other objects is modeled as a single
point contact, therefore it falls in the category of 3-DOF rendering. We
refer the reader to Chapter 15 for more information on 3-DOF rendering,
and to Chapter 10 for the specifics on collision detection.

We use polygons like [Ho et al. 99, Zilles and Salisbury 95, Ruspini and
Khatib 01,Gregory et al. 00b], but we incorporate a low-dimensional spatial
quantization and caching mechanism to reduce the complexity of the all
important collision detection process to constant time.

Our interpretation of the rendering problem is initially based on:

1. Haptic exploration of non-deformable surfaces with one or more fin-
gers.

2. Approximating fingertip contact with a single-point contact.

3. The kinematic characteristics of our 4-finger haptic device in which
the fingers’” motion is constrained to their flexion-extension planes.

4. That the surface is shallow compared to the height of the finger mo-
tion planes.

5. That the surface representation is a collection of triangles (without
gaps).

We will explain below how the algorithm we have developed allows some
of these restrictions to be relaxed.

76

4. Rendering for Multifinger Haptic Devices

e Surface contact maps are a one- or two-dimensional manifold and an

associated normal vector, which may be a function of the position
on the manifold. A surface contact map is a simplified representa-
tion of the contact surface. We assume initially that the surface is
single-valued when represented on the manifold and that there is an
efficient method to project points in space onto the manifold. In the
simplest cases, the map is located “inside” or “below” the surface to
be rendered. The map’s dimensions should match that of the surface
or the workspace of the haptic device, whichever is smaller. Obvious
candidates for maps include planes, spheres, and lines.

Assume a surface model consisting of n triangles. Generally, exact
edge matching of triangles is desirable for haptic rendering, so that
point contact models do not “fall through.” However, the proposed
algorithm is not particularly sensitive to slight numerical errors in
triangle adjacency. Once we have selected a map, placed it in relation
to the surface, and defined its dimensional extent and area, A, we
quantize it into M cells. Creation of the map is complete when we
pre-compute a list of all triangles in the surface which are “above”
each cell. By above, we mean that at least some part of the triangle
projects into the cell.

For example, to render a human head, you would select a spherical
map inside the head. To render a flute, a cylindrical map would be
selected and placed down the length of the flute’s body. The map’s
surface is quantized, and a cache of triangle pointers is created for
each patch in the map.

Cache size grows in the following manner, depending on how big the
cache bins are compared to the triangles. If the cache bin size is
s = A/M, and the average triangle size is ¢, then the size of the cache
grows as follows:

s<<t O(M) (4.1)
s>>t Constant. (4.2)

If the number of cache cells, M, is large, the number of covering
triangles per patch is smaller and the collision detection faster. In-
terestingly, for small M (equivalent to Equation (4.2)), the size of the
cache does not grow with M. As long as the bins are large compared
to the triangle size, the number of triangles appearing in more than
one patch should be small. We expect that most implementations
would be tuned to match Equation (4.2).

The cache of each patch is represented as a collection of pointers to a
fixed list of triangles, so the penalty for triangles appearing in more

4.4. Multifinger Rendering Method 77

than one cache is small (pointers take less memory, approximately
log n per pointer). In planned work, we will numerically characterize
this tradeoff in terms of memory size, rendering speed, and human
haptic fidelity.

All rendering methods must somehow store the surface model. The
only extra storage that is required by the proposed method is the
polygon cache, which consists only of pointers to the list of polygons.
More precisely, the cache storage grows according to M logn.

e Most often, the rendering process proceeds by detecting contact (the
collision detection problem) and then computing force, based on inter-
penetration. The point representing the user (typically the fingertip)
can be referred to as the haptic interaction point (HIP) following the
nomenclature of Ho et al. [Ho et al. 99]. (See Chapter 15 for more
information.) If the HIP is inside the object, the algorithm must also
find a point on the surface from which interpenetration is computed
(often but not always the closest point on the surface). This second
point is designated the intermediate haptic interaction point (IHIP).
Once the HIP and THIP are identified, force is often rendered by a
virtual spring between the points according to

Ax = (rarp — THIP), (4.3)

f=kAz. (4.4)
Optionally, a damping term can be added:

f = kA + bi. (4.5)

Recently, Frisoli et al. [Frisoli et al. 06] have added a tangential fric-
tion component to this method.

e Rendering for the MFHD requires that we consider each finger inde-
pendently, but they interact by point contact with the same model.
The problem reduces to finding possible collisions between the HIP
(constrained to move in a vertical plane intersecting the surface) and
a surface described by a collection of triangles. Immediately, we can
simplify the problem by considering only triangles which intersect the
plane of the finger—more generally, only triangles which project onto
the map. Once penetration of the HIP into a triangle is detected, we
compute force by computing the distance to the surface or edge of
the nearest triangle (see below).

For our device, a natural map is a line (at the bottom of the finger
motion plane) and a list of triangles which lie above that line. We

78 4. Rendering for Multifinger Haptic Devices

Bin
\\k
N
HI P\
Map

Figure 4.6. 1-D schematic representation of the collision detection and haptic
rendering algorithm.

speed up the search for collisions by dividing the line into bins and
pre-computing a list of all triangles which lie above each bin. Thus,
if we quantize the HIP’s projection onto the line into a bin number,
we get a short list of polygons which much be checked for collisions.

e (Collision detection in constant time is accomplished as follows once
a map and its associated cache are constructed:

1. Project the HIP onto the map.
2. Quantize the projection of the HIP into a bin number.

3. Define the vertical (i.e., map normal) line from the map projec-
tion of the HIP.

4. Search all triangles in the current bin for the one which intersects
the vertical line. If the HIP is below the point where the vertical
intersects the triangle, call this triangle the “contact triangle.”

This process takes a fixed amount of time regardless of how many
triangles are in the surface. The time depends on the number of
triangles per bin. A schematic representation of the algorithm in one
dimension is given in Figure 4.6.

e Contact force rendering if performed as follows. When a contact
triangle is detected, render contact force as follows:

1. Project the HIP onto the plane of the contact triangle to get the
THIP.

4.4. Multifinger Rendering Method 79

2. If the THIP is inside the contact triangle, compute the penetra-
tion vector between the HIP and the THIP.

3. If the THIP is outside the triangle,

(a) Find the intersection between the vertical and the plane of
the contact triangle.

(b) Determine the closest feature (edge or vertex) of the contact
triangle to this intersection.

(¢) Move the THIP to the projection of the IHIP onto the closest
feature.

4. Compute force by using equation (4.4) or (4.5).

We have implemented an OpenGL-based visual counterpart to the
haptic rendering algorithm, which works as a second thread or on a
second processor. The graphics component contains its own copy of
the model and also can simulate and graphically render the haptic
rendering algorithm.

4.4.1 Demonstrations and Screenshots

Several demonstration applications have been developed for algorithm test-
ing (Figure 4.7). The software can read in models of any resolution and
convert them to a selected resolution for display. Cache size and location
and the coarseness of triangle cache bins are fully configurable via a config
file. Users can rotate the images and light source to view above and below
the surface. For the sinc function (Figure 4.7(a)), surface and force vectors
appear to be always produced in the right place, as expected from a physics
model in which the IHIP slides smoothly along the surface without friction.
The MRI scan slice (Figure 4.7(b), MRI Image courtesy of Ceon Ramon)
was first converted to a height field by a simple mapping of brightness to
height. Although this is not meant to represent the actual geometry of
the brain, it can be hand tuned to contain structure visually suggestive of
the brain’s convolutions. Finally, shortly after the software was developed,
NASA returned images of Comet Temple-1 from the Deeplmpact project
(http://deepimpact.jpl.nasa.gov). This image was converted to renderable
form (Figure 4.7(c)) by the same method as used in the MRI image, just af-
ter it was released by NASA | illustrating the potential for haptic technology
to connect visually disabled users to exciting new sources of information.
We will incorporate better algorithms for deriving shape-from-shading in
the future. The relevant geometric parameters for these rendering exam-
ples are given in Table 4.2. Note that the number of cache bins refers to a
1-D cache (for one finger only), so that not all the triangles are linked into
the cache.

80 4. Rendering for Multifinger Haptic Devices

Figure 4.7. Example applications of the rendering algorithm. (a) The sinc(r)
function with coarse triangle resolution. (b) Surface based on MRI slice. (c)
Surface based on image of Comet Temple-1 five minutes prior to impact.

Triangles | # Cache bins
sinc Function 512 20
MRI Scan 31,752 80
Comet 32,768 25

Table 4.2. Geometric rendering parameters for the three examples in Figure 4.7.

4.5. Future Work 81

n Graphics (sec 1) | Haptics (sec™ 1)
100 978 188000
1000 939 180000
10* 325 165000
10° 34 151000

Table 4.3. Performance of a prototype implementation of the proposed
algorithm.

4.4.2 Performance

Tests were carried out on PC with a 2.0 GHz AMD X2 3800+ processor
and Nvidia 7600 GS graphics card running Fedora Core 5 Linux. Nvidia
graphics drivers were installed for direct rendering of Open GL graphics.
The model for this test was a surface consisting of triangles approximating
a sinc(r) function. The resolution of the approximation was adjusted to
obtain model sizes of 10? through 10° triangles. For benchmarking the
graphics performance, the model was continuously rotated on the screen
and the frame rate recorded. Haptic performance was measured in a user
space process without any significant other computations running at the
same time.

The performance achieved is given in Table 4.3. The haptics update
shows essentially constant rendering time, as predicted.

4.5 Future Work

We have described a new multifinger device and a new rendering method
which uses some manual input to significantly speed up the rendering pro-
cess (chiefly the collision detection step) without large demands on memory.
At this point, we envision that the designer of a haptic simulation would
interactively place one or more maps inside or below the surface to be ex-
plored. In many cases, this task is trivial or can be done based only on the
constraints of the haptic device. For example, in our multifinger device,
the line at the bottom of the workspace should suffice for any surface.

A remaining issue is what to do about multi-valued surfaces. If the
map is placed properly “inside” or “below” the surface, then there will
always be an odd number of intersections (> 1) of the map normal with
the surface. In the cases of n > 1, history can be used to determine which
is the contacted triangle (as in earlier methods).

Two basic strategies will be employed to expand to bi-manual tasks.
First, we will add a non-haptic control to the other hand. This technique
could be used typically by the non-dominant hand, for example, to slide

82 4. Rendering for Multifinger Haptic Devices

the surface left-right under the fingers in the multifinger device. Although
left-right force components will not be felt, we might be able to measure
improved surface recognition performance. The second strategy will be to
combine our device with a stylus haptic device such as the Phantom Omni
(of which we have several). This approach can be used as above, but with
force feedback applied to the other hand, or to simulate a combination of
tool use and multifinger touch.

5

Locomotion Interfaces and
Rendering

J. Hollerbach

The aim of locomotion interfaces is to provide realistic walking and running
in virtual environments. The design of locomotion interfaces is difficult
because of the varied terrain that is to be rendered, and because of the
athleticism and diversity of human motions. The familiar cardio devices in
a fitness center can be viewed as locomotion interfaces, such as treadmills,
stair steppers, and elliptical trainers. These cardio devices can be hooked
up to virtual environment displays to provide basic locomotion interfaces.
When attempting to implement different locomotion tasks, such as slope
walking, navigating uneven terrain, turning, and speed changes, the limita-
tions of ordinary cardio devices become apparent. A number of locomotion
interface designs can be understood as the redesign of treadmills and stair
steppers to provide added flexibility. The result can be a large, expensive,
or complicated device that may also give safety concerns. To date, none of
the proposed designs can render the full diversity of human locomotory ac-
tions. One is then left to consider tradeoffs as to what aspects of locomotion
are the most important, what can be implemented the most conveniently,
and what designs are the most cost effective and likely to proliferate. The
answer to these concerns is not apparent yet, and researchers continue to
investigate alternative designs.

5.1 Locomotion Interface Designs

There are two main types of designs: those incorporating a treadmill and
those providing for programmable foot platforms. Other designs than these
have been proposed but have not matured to the same extent.

5.1.1 Treadmill Style Locomotion Interfaces

Treadmills offer considerable advantages, including being commodity de-
vices, accomodating easy transition between slow and fast motion, and

83

84 5. Locomotion Interfaces and Rendering

Figure 5.1. (a) The ATR ATLAS. (b) The ATR Ground Surface Simulator. (Pho-
tos courtesy of H. Noma.)

allowing different body postures (crawling, sidling, etc.) given that the
belt surface is large enough. Treadmills typically have a tilting mechanism,
so that frontal slopes are easily displayed. A few tilt sideways as well, al-
lowing side slope walking. Turning can be an issue on linear treadmills, but
there are two-dimensional treadmill designs that allow the user to easily
change direction. Although the belt is typically flat, so that only smooth
slopes can be displayed, there have been proposals for deformable belts
that can display step-like terrain. Features of some of the main designs are
discussed below.

The ATR ATLAS (Figure 5.1(a)) places a small linear treadmill (145 mm
by 55 mm) on an active spherical joint that can roll, pitch, and yaw [Noma
and Miyasato 98]. Besides the normal pitching motion for frontal slope,
the treadmill can also roll to display side slopes. The yaw motion swivels
the treadmill like a turntable for turning control. Turning is achieved by
swiveling the treadmill in the direction that the user is stepping. The re-
sponsiveness of the system is quite good, so that the user feels free to change
direction at will. The platform cannot rotate continuously and so must be
reindexed to center beyond a certain angle. Although a head-mounted dis-
play can be employed for the visual display, the small belt surface makes
blind walking unsafe. A back projection visual display was attached to the
front of the treadmill, so that it moves along with the treadmill. Due to
the cascaded electric motor drives and their gearing for the spherical joint,
there is a significant amount of backlash and flexibility of the platform in
response to user steps.

5.1. Locomotion Interface Designs 85

Figure 5.2. The Omni-Directional Treadmill. (From http://www.vsdevices.com.)

The ATR Ground Surface Simulator displays uneven step-like terrain
(Figure 5.1(b)) by deformation of the flexible treadmill belt by six verti-
cally actuated stages underneath [Noma and Miyasato 98]. A slope of 5
degrees can be presented. An active tensioning system adjusts for the belt
deformation by the stages.

The Omni-Directional Treadmill [Darken et al. 97] provides a two-
dimensional treadmill surface designed to facilitate turning (Figure 5.2).
A two-orthogonal belt arrangement creates the two-dimensional surface. A
top belt is comprised of rollers whose axes are parallel to the direction of
rotation of that belt. These rollers are rotated underneath by another belt
orthogonal to the first. Both a head-mounted display and a CAVE-like
display have been employed for the visuals.

The Torus Treadmill is a two-dimensional treadmill design (see Fig-
ure 3.3 in Chapter 3) that employs twelve small treadmills connected side-
by-side to form a large belt to allow arbitrary planar motion [Iwata and
Yoshida 99]. In the initial implementation of the Torus Treadmill concept,
the speed and area limitations limit walking to a slow speed, with rela-
tively short steps. The belt speeds of the individual treadmills were not
sensed and controlled, so that the belts moved at different speeds and made
walking difficult.

The Sarcos Treadport (Figure 5.3) contains a large linear treadmill (6-
by-10 feet) and a fast tilt mechanism [Hollerbach et al. 00]. The visual
display is a 3-wall CAVE-like back projection system. An active mechanical
tether attaches to a user at the back of a body harness to measure user
position and orientation, and to exert a force in the forward horizontal

86 5. Locomotion Interfaces and Rendering

Figure 5.3. The second-generation Sarcos Treadport.

direction. Because of the belt size, a variety of body postures can be
supported, including crouching and crawling. The relatively large belt also
allows the user to concentrate on the visual display, without worrying about
stepping off the belt. An important factor is adequate torque capability of
the belt drive motor, so that friction forces arising from impact of the belt
by the foot do not significanlty slow down the belt.

5.1.2 Programmable Foot Platforms

A generalization of a stair stepper exercise machine is individually pro-
grammable foot platforms, where each platform can be positioned in three
dimensions. Their strength is the ability to present uneven stair-like ter-
rain. Each foot platform is essentially a robot manipulator, whose end
effector is a foot surface. The robot manipulators are necessarily power-
ful to support the forces of walking, and this introduces safety concerns.
Walking speeds are limited to be slow to moderate, not just because of
the limited speeds of the foot platforms, but because of limited structural
rigidity which would make control of fast walking unstable. Turning is an
issue because the robot manipulators cannot cross and interfere with each
other.

The Sarcos Biport (Figure 5.4) employs hydraulically actuated three-
degree-of-freedom serial-link arms on which the user stands [Hollerbach 02].
The user’s feet are attached to the platforms with releasable bindings.
Force sensors are located near the attachment points, and are employed in
force control strategies and steering control. When the user lifts a foot, the
attached arm must follow with zero force to avoid dragging the foot. When

5.2. Locomotion Rendering 87

Figure 5.4. The Sarcos Biport.

the user steps to contact a surface, the arm must be servoed to present a
rigid surface.

The GaitMaster (see Figure 3.4 in Chapter 3) comprises two three-
degree-of-freedom parallel drive platforms [Iwata 00]. Unlike the Sarcos
Biport, the user’s feet are not attached to the foot platforms, but position
sensing of the feet is used to position the foot platforms underneath. To
avoid the platforms crossing during turning, they do not move sideways
but are mounted on a turntable. Like the ATR Atlas, a side step by the
user results in the platforms being swiveled towards the intended direction
of walking.

5.2 Locomotion Rendering

Various issues in rendering aspects of locomotion are now summarized.
Certain issues are more particular to treadmills than to programmable
foot platforms, and vice versa.

5.2.1 Speed Control

A big difference between exercise treadmills and locomotion interface tread-
mills is that belt speed has to be instantly responsive to the intended
motions of the user. The user’s motion has been sensed either by mea-
suring the foot position optically [Noma and Miyasato 98], magnetically,
or mechanically [Iwata and Yoshida 99], or by measuring body position
mechanically [Hollerbach et al. 00, Darken et al. 97]. For foot position sens-
ing, the stance time has been used to predict walking speed [Noma and
Miyasato 98], since the faster the walking, the less is the stance time.

88 5. Locomotion Interfaces and Rendering

In both the Omni-Directional Treadmill and the Sarcos Treadport, body
position is measured by a six-axis mechanical tether attached to a harness
worn by the user. The belt velocity is made proportional to how far for-
ward from center a user moves. Walking backwards is also possible. For
the Sarcos Treadport, natural forward motion speeds are supported: ac-
celerations of 1 g and peak velocities of 12 mph. If the user is stationary,
small motions should not cause the belt to move; otherwise it would be
impossible to stand still.

5.2.2 Centering

The user has to be kept safely within the workspace of the locomotion
interface. For the Sarcos Treadport, where velocity is controlled by user
position, there is the risk of the user reaching the front of the treadmill
during fast acceleration and velocity. An integral control term is added
that gradually recenters the user, to prevent the user getting too close to
the front edge [Christensen et al. 00]. A similar method is employed in the
Sarcos Biport to attract the user back towards the center of the device.
There are hard limit stops on the Treadport’s tether to prevent excursion
beyond the front edge. A software linear spring is also simulated by the
active mechanical tether to provide a kinesthetic cue to the user about the
amount of forward deviation from center.

The other danger is the user falling off the sides. Even with back-
projected displays, users might become engrossed and lose track of their
positions on the belt. Hardware springs are provided on a base rotary joint
and an attachment-end rotary joint on the mechanical tether of the Sarcos
Treadport to provide kinesthetic cues about the amount of sideways devi-
ation. In the Omni-Directional Treadmill, centering forces are provided by
an actuated mechanical position tracker on the overhead boom attached
to a harness worn by the user. However, [Darken et al. 97] reports that
a mismatch between a user’s walking direction and the centering motion
of the belt could occur, which causes the user to stumble. The mismatch
presumably arises due to system lags and bandwidth limitations that per-
mit the user to move off center. This kind of mismatch would seem to be
a potential problem for any two-dimensional motion stage.

5.2.3 Collision Forces

To simulate collisions with objects, the active tether of the Sarcos Treadport
provides a spring-like penalty force while the treadmill is stopped. This
penalty force is similar to viscoelastic opposing forces applied by haptic
interfaces when a user attempts to push into a hard surface.

5.2. Locomotion Rendering 89

5.2.4 Inertial Forces

Because the user running on a treadmill is stationary with respect to the
ground, the user does not accelerate his or her body (except for the swinging
of arms and legs). Consequently, a Newton’s force f = ma, where m is
the user’s mass and a is the acceleration, is missing. This makes treadmill
running energetically much easier than running on the ground, on the order
of 35%. In [Christensen et al. 00], the active tether of the Sarcos Treadport
was employed to provide this simulated inertial force.

User studies showed a preference for such an inertial force display over
conditions of no tether force or of a spring-like tether force. Actually,
because of the responsiveness of the belt to user-intended motion, it is
practically impossible to locomote on the Treadport without inertial force
feedback. The sensation is very much like having the rug pulled out from
underneath one’s feet. The reason this kind of instability, such as one on
exercise treadmills, has not been noticed before, is the lack of responsiveness
to user-intended motion.

5.2.5 Slope Display

Instead of treadmill tilt, slope can also be displayed by applying horizontal
forces to the torso. During slope walking , a gravity force f = mgsin 6 acts
on the body, which has been synthetically applied by the Treadport’s tether
to simulate slope walking on a level belt surface. The simulation of slope by
torso forces has been shown to be biomechanically and energetically similar
to real slope walking [Hollerbach et al. 01,Parker et al. 05]. Real tilt can be
combined with torso forces to simulate higher slopes than would otherwise
be possible by tilt alone, and to simulate fast slope changes. Side slopes
can be simulated as well by side pull [Hollerbach et al. 03].

One issue is the harness design, which provides good mechanical cou-
pling of the tether forces to the body. Initial harness designs for the Tread-
port employed just one point of force application to the small of the back.
More recent harness designs have used telescoping mechanisms to distribute
forces in a controlled manner between hips and shoulders, and to adjust
to complicated motions of the back without the slipping that results from
using straps alone [Checcacci et al. 03, Grow and Hollerbach 06].

5.2.6 Vertical Support

Vertical forces applied to the torso have a number of potential uses. For
rehabilitation purposes, partial weight support will help patients to re-
gain walking after stroke or other health problems. Reduced gravity en-
vironments such as walking on Mars can be simulated; even though the

90 5. Locomotion Interfaces and Rendering

Figure 5.5. Body weight support harness integrated with the mechanism-based
harness.

weight of the limbs is not supported, the vertical support is apparently ad-
equate [Chang et al. 00]. When simulating steep slopes by torso forces, it is
necessary to pull up on the body so that the net sum of forces acting on the
body is equal to the user’s weight. The design of a harness to support body
weight comfortably over an extended period of time has been achieved by
incorporating a rehabilitation harness [Grow and Hollerbach 06]; see Fig-
ure 5.5.

5.2.7 Turning

Because the Treadport uses a linear treadmill, the issue of how to control
turning arises. In an initial implementation, body pose measurements from
the mechanical tether were employed to control the rate of turning. Two
control regimes are used: for stationary users, the amount of twist about
the vertical axis controls the rate of turning; and for rapidly walking or
running users, the amount by which the user is displaced sideways from the
treadmill center controls the rate of turning. For intermediate locomotion
speeds, the two control regimes are blended. The use of rate control requires
reindexing: the user has to move back to a center position to stop turning,
then move the other direction from center to turn the other way.

The large treadmill size allows an alternate proportional control strat-
egy to be implemented, based on gaze direction, measured by sensing the
orientation of the head. When we change directions, the torso turns along
with the head towards the new direction. By using a torso trigger to
avoid turning when merely looking around, a more natural turning action

5.3. Discussion 91

is achieved which has been shown to facilitate obstacle avoidance when
walking in a cluttered corridor [Vijayakar and Hollerbach 02]. The ability
of stepping sideways for a step, before having to reindex, is important for
this strategy to work.

5.3 Discussion

Application contexts that drive device design are largely missing: there are
hardly any fielded systems, and research only takes place in a few labora-
tories. In contrast, haptic interfaces have proliferated widely and for which
many uses have been developed. Certainly, a number of applications of
locomotion interfaces have been proposed, including mission rehearsal and
training, walk-through architectural designs, exercise and recreation, reha-
bilitation, education, and psychological research. Of necessity, locomotion
interfaces have to be much larger and more powerful than haptic interfaces,
and so they are unlikely to proliferate the way desktop systems have.

Nevertheless, the experience of walking through virtual environments
is sufficiently compelling to warrant the continued development of locomo-
tion interfaces. The energy expenditure in walking through virtual environ-
ments is realistic, and when coupled with a good visual display, can seem
quite immersive. Because we know our stride length, locomotion interacts
with vision to calibrate distances in a virtual world, which otherwise are
seriously underestimated by vision alone [Rieser et al. 95, Mohler et al. 07].
We also care more about other sensory modalities when walking, such as
ambient sounds, wind, and olfaction, which are not usually concerns for
haptic interfaces. In terms of one’s experience in a virtual environment, lo-
comotion interfaces can seem much more engaging and realistic than haptic
interfaces.

Acknowledgment
This research was supported by NSF grant I11S-0428856.

6

Variable Friction Haptic
Displays

L. Winfield and J. E. Colgate

In this chapter we discuss haptic displays that can, under computer control,
change their feel from slippery to sticky. These devices, most of which em-
ploy ultrasonic vibrations to modulate apparent coefficient of friction, build
on a long tradition of displaying haptic information through the control of
lateral or shear forces. For instance, one of the earliest studies in the field
of haptics was Minsky’s [Minsky 95] sandpaper system. Minsky used varia-
tions in lateral forces through a joystick to create the sensation of a bumpy
surface. The newer displays discussed here are similar, but can be touched
by the fingertips directly (thus, they might be considered tactile displays).
In addition, they control only frictional resistance to fingertip motion but
do not have the ability to apply active forces to the fingertips. Nonethe-
less, spatial and temporal modulation of friction enables these displays to
emulate a wide variety of textures.

The chapter is arranged as follows. We begin with two brief reviews:
one of human perception of lateral forces, the other of friction reduction
theory. We then review variable friction devices, focusing especially on the
T-PaD developed by the authors. We go on to present two studies, the first
quantifying friction reduction, and the second characterizing the range of
perceptions that can be produced with friction modulation. We conclude
with a discussion of future prospects and research challenges.

This work is based on “T-PaD: Tactile Pattern Display Through Vari-
able Friction Reduction,” by Winfield, Colgate, Peshkin and Glassmire,
which appeared in the Proceedings of the 2007 World Haptics Conference
in Tsukuba, Japan. (©2007 IEEE.

6.1 Human Perception of Friction

This section reviews human perception of lateral forces, but please refer to
Chapter 1 for a more comprehensive discussion on human tactile percep-
tion.

93

94 6. Variable Friction Haptic Displays

Minsky’s work using lateral force fields (LFFs) to display virtual tex-
tures is considered to be one of the founding works in haptics [Minsky 95].
The idea that textures and surface features could be represented by lateral
force fields sprouted from the observation that sideways spring forces can
feel like downward/gravitational forces. Consequently, a spring potential
field can feel like a valley, where zero potential rests at the bottom of the
valley. Minsky used this observation to develop a lateral force gradient
algorithm for textures. Using this algorithm, Minsky developed LFFs to
display virtual gratings, virtual two-dimensional grids, and a series of ran-
dom (Perlin) textures. LFFs displayed through haptic manipulanda have
also been shown to be sufficient in displaying larger scale surface features
such as bumps and holes. [Robles-De-La-Torres and Hayward 01, Robles-
De-La-Torres and Hayward 00]. Despite the loss of all proprioceptive and
kinesthetic geometric cues, Robles-De-La-Torres and Hayward found sub-
jects were able to identify virtual bumps and holes, given the appropriate
lateral force fields. When subjects were given the physical displacement of
a bump but played the LFF of a hole, the subjects ignored the geometric
cues and identified the object as a hole. The same neglecting of geometric
cues was found for physical holes masked with virtual bump forces.

These studies indicate that lateral force fields through haptic manip-
ulanda are successful in portraying virtual textures. However, one of the
main goals in haptics is to make the virtual environment feel as real as
possible. When exploring our world we do not often do so using a stylus,
but instead we feel surface features and textures using our fingertips. An
ideal haptic field display should allow us to do the same: feel virtual tex-
tures with our fingers, and not through a manipulandum. Variable friction
haptic displays are an effort to use LFFs at the fingerpad in the creation
of virtual textures and surface features.

In the remainder of this section we review a number of studies that
underscore the importance of fingerpad shear forces in texture perception.
These studies, however, do not directly indicate whether shear force modu-
lation at the fingertip alone would be sufficient to display texture. To begin,
we look at a study comparing the perceived intensities of normal and tan-
gential displacements. Biggs [Biggs and Srinivasan 02] had subjects try to
match the “intensities” of normal and tangential displacements of stimuli
at the fingerpad. The subjects were given a reference stimulus (the flat end
of a cylinder) displaced 1.5 mm against the fingerpad. Then, an adjustable
stimulus was presented. This stimulus was a displacement in the tangential
plane. Subjects could adjust the displacement of the adjustable stimulus
with a knob until its intensity matched that of the reference stimulus. Biggs
found that the subjects matched intensities of tangential displacements that
were 0.6 times smaller than the reference normal displacements. The force
on the fingerpad was calculated on measured mechanical impedances of the

6.1. Human Perception of Friction 95

a b

zero maximum N zero
Surface slope - slope slope

height, N
m f lateral force |Mmaximum
/ X direction slope
lateral force
direction

Lateral A
force
magnitude
N

Figure 6.1. Lateral force field for a virtual bump and hole. (This figure is taken
from [Robles-De-La-Torre 02], ©2002 IEEE.)

Workspace position,m

fingerpad in both the tangential and normal directions. the forces ion the
finger were approximately four times larger for tangential stimuli than for
the reference normal stimuli. This is because the fingerpad hasa over five
times higher impedance for tangential displacements than for normal dis-
placements [Diller 01]. Hayward [Hayward and Cruz-Hernandez 00] finds
that humans are sensitive to lateral displacements of only £50 pm.

Because friction is dissipative, a variable friction display cannot actively
move the user’s finger. It can only resist lateral forces applied to the fin-
ger. Therefore, active exploration by the user is required. It was found by
Robles-De-La-Torres [Robles-De-La-Torre 02] that active touch is neces-
sary to remove ambiguity while interacting with lateral force fields (LFFs).
When subjects were played virtual LFFs for bumps and holes under pas-
sive touch conditions (stationary finger feeling a moving virtual surface),
the virtual bumps and holes were indiscernible from each other. Ambi-
guity also appeared under differential touch where the finger was actively
exploring the LFF while the LFF was in motion. Subject performance in
classifying virtual bumps or holes was greatly improved with active touch of
a stationary LFF. Therefore, it is a very important feature of VFHDs that
the pattern of friction remain stationary in space during active exploration
in order to depict virtual textures effectively. Interesting sensations are
still felt when the friction is modulated temporally; however, perception of
surface textures is not as clear.

Pasquero and Hayward’s [Pasquero and Hayward 03] STReSS tactile
display relies on lateral skin stretching patterns to display haptic effects.
Levesque and Hayward [Levesque and Hayward 03] observed fingerpad

96 6. Variable Friction Haptic Displays

deformations during exploration of flat surfaces and geometrical features
and found significant skin deformation. Unique deformation patterns were
found for moving over a bump and hole. It is hoped that playing back
these patterns with a lateral skin stretching device will result in the feeling
of moving over an actual bump or hole.

Lederman and Klatzky [Lederman and Klatzky 97] studied the impor-
tance of spatially distributed fingertip forces during several sensing tasks.
Subjects performed each task with and without a fiberglass sheath cov-
ering their finger to mask spatial distribution cues. They found subjects
were better at determining differences in surface roughness without the
sheath. However, when wearing the sheath “subjects were still able to use
the temporal cues to differentiate on the basis of perceived roughness quite
well.”

Salada et al [Salada et al. 05] describe an experiment in which subjects
were asked to use their finger to track features across a rotating drum under
three conditions. The subjects explored the surface with a bare finger, with
a fixed mechanical filter between the drum and the finger to eliminate shear
forces, and with a mechanical filter free to float. The subject performance
dropped significantly when the shear forces were masked with the fixed
mechanical filter.

Taken together, these studies underscore the importance of fingerpad
shear forces in texture perception, but do not indicate whether shear force
modulation alone would be sufficient to display texture.

6.2 Friction Reduction Theory

Ultrasonic vibration is the primary method for controlling friction in most
variable friction haptic displays. However, alternate methods have been
shown to work. Yamamoto et al. use electrostatics [Yamamoto et al. 03]
to control the friction force on a slider under the fingertip. Their device
consists of stator electrodes and an aluminum coated thin film slider. The
feeling of surface roughness is created by applying voltage patterns to the
stator electrodes, which generate various friction distributions on the slider.

The principal theory behind friction reduction in friction haptic dis-
plays is the presence of a squeeze film. The squeeze film theory, believed to
be the cause of friction reduction for the T-PaD and several other friction
varying devices, is described in detail. The air squeeze film effect is a conse-
quence of the relationship between air’s compressibility and viscous effects.
Salbu [Salbu 64] studied the presence of an air squeeze film between “paral-
lel, coaxial, flat disks with relative motion imposed between the surfaces.”
Given a high enough frequency of relative motion and a small gap distance
(relative to the size of the plate), viscous forces in the air between the

6.2. Friction Reduction Theory 97
F = P*A R: 1R

Bsin(wt): SF—STF—M 0 —AC: 1/C
R R— A P

I Bsin(wh Bond Graph Represenfation

Figure 6.2. Simplified model of air between two parallel plates with sinusoidal
motion imposed on the bottom plate. Here, C is the compliance of the trapped
air; R is the viscous resistance of the air escaping. The force on the fixed upper
plate is equal to the pressure of the trapped air multiplied by the area of the
plate.

plates will restrict air flow out of the plates, while compressibility effects
will result in an average pressure between the plates above atmospheric.
Salbu modeled this effect using a normalized general Reynolds equation,
the governing equation for isothermal flow in thin gas films.

The squeeze number, o, used by Salbu and shown in Equation (6.1)
contains information on the relationship between the viscous and com-
pressibility effects of the air:

12w R?
o=—""

NI (6.1)

where R, is the disk radius, p, is the atmospheric pressure, h, is the mean
clearance between disks, w is the frequency of motion, and p is the air
viscosity.

When examining a simplified model of this system, shown in Figure 6.2,
the squeeze number is equivalent to the non-dimensional RC' time constant.
The values for R, the viscous resistance of the air escaping, and C, the com-
pliance of the trapped air, are estimated from equations of Poiseuille chan-
nel flow (Equations (6.2)-(6.8)) and a linearization of Boyle’s law (Equa-
tions (6.9)-(6.16)).

Figure 6.3. Poiseuille channel flow.

98 6. Variable Friction Haptic Displays

For Poiseuille channel flow, depicted in Figure 6.3, we begin with the
Navier-Stokes Equation (6.2) for incompressible, fully developed, steady
flow, and neglect any gravitational effects, where p is the viscosity of air,
v is the velocity in the x direction, and AP is the pressure drop across
the channel. The variables [, h,, and [, are the length, height, and width
of the channel as shown in Figure 6.3. According to the equation,

0%v, AP
— =0. 6.2
e T (6.2)
Integrating twice and imposing no slip boundary conditions at y = —h,/2

and y = h,/2, the velocity becomes:

1ar
2u Iy

v (y) =

(%)2 - y?} (6.3)

The viscous resistance, R, is equal to the change in pressure, AP, over
the volumetric flow rate, Q.

Q= [d: /;dy-my), (6.4)
0

1.h3 AP
Q= T2 L (6.5)
Q= Lap (6.6)
= AP, ,
12pl,
R= T (6.7)

An approximation of the viscous resistance for radial flow between two
disks is obtained by replacing [, with R,, the radius of the disk, and [,
with mR,, (see Figure 6.4). We imagine most of the significant radial flow

= ‘

Figure 6.4. Radial flow between two disks.

6.2. Friction Reduction Theory 99

occurs near the edges of the disk and zero flow in the center of the disk by
symmetry:
124
wh3’
To determine an estimation of the compliance, C, of the trapped air due
to compressibility, we begin with Boyle’s Law (Equation (6.9)), where R,
is the disk radius, p, is the atmospheric pressure, h, is the mean clearance
between disks, and ¢ is the amplitude of oscillation:

R= (6.8)

PV =C, (6.9)
Paho = P(hy — 0), (6.10)
Paho
P = . 6.11
T (6.11)
We then linearize the pressure, P, with respect to the displacement, 9:
ap — —Lelo s (6.12)
(ho —6)
AP = %Aé. (6.13)

The capacitance, C, is equal to the change in volume, AV, over the
change in pressure, AP:

1
AP ==A 14
AV, (6.14)
AP = — P Ay (6.15)
he-mR2 ™’
hom R2
67::—7555. (6.16)

The non-dimensional RC' time constant for this simplified model shown
in Equation (6.17) is therefore equivalent to the squeeze number, o (Equa-
tion (6.1)). The value of the squeeze number determines the system be-
havior. A large squeeze number (o > 10) represents an air film which acts
very much like a nonlinear spring obeying Boyle’s law. This is because the
high viscous forces (large R) prevent the air from escaping out of the edges.
A system with a small squeeze number will result in the energy (air) being
dissipated and no apparent spring-like force:

_ 12uR?

RC 2o, w=o (6.17)

100 6. Variable Friction Haptic Displays

The dynamics of a human finger are much different than that of a fixed
rigid plate. However, it has been observed that a reduction of friction will
also occur between a human finger and a vibrating plate [Watanabe and
Fukui 95, Winfield et al. 07]. Although no evidence has been found to prove
the existence of a squeeze film under the fingerpad, the extreme reduction
of friction suggests its presence is likely.

It has also been observed [Watanabe and Fukui 95, Winfield et al. 07]
that the amount of friction reduction is variable with the amplitude of os-
cillation. No clear theory has been advanced to explain this phenomenon.
Wantanabe offers an explanation of load sharing between contact force
and squeeze force, claiming the squeeze force is a function of the amplitude
of oscillation. However, this does not explain how the fingerpad under-
goes physical contact and is simultaneously supported by the squeeze film.
Minkes [Minikes and Bucher 03] found the pressure profile of a squeeze
film to resemble a parabolic shape. The maximum air pressure would be
found towards the center of the plate, while the air at the edge of the plate
would be at atmospheric pressure. The authors hypothesize that the area
of this profile increases with increased amplitude, decreasing the area of
contact between the finger and the plate and therefore decreasing the total
distributed friction force on the finger.

An alternative explanation doesn’t require the presence of a squeeze
film at all, but relies on periodic contact. It stands to reason that (in
the absence of a squeeze film) a vibrating surface will contact the finger
near the peaks of its excursion and lose contact near the troughs. When
the surface is moving upward against the finger, it will apply an upward
normal force. The size of this normal force presumably depends on the
amplitude of oscillation, but at the same time, its average must exactly
equal the downward force that the finger is applying on the surface. We
conclude that as the vibration amplitude increases, the period of contact
decreases.

We can create a crude model of this effect that predicts variable fric-
tion (see Figure 6.5). We begin by assuming that whenever the surface is
in contact with the finger, the skin is effectively “stuck.” We are, in effect,
assuming that the normal force increases rapidly to a value much larger
than any lateral forces being applied by the finger. This does not stop any
lateral motion of the finger, however, but creates a stretching between the
moving bone and the stuck skin. Stretching stores energy in the elastic
tissue of the finger pad. Our next assumption is that when the vibrating
surface breaks contact, the skin and tissue “spring back,” dissipating all
the energy that had been stored in stretching. Examining an impedance
model of the finger, the distributed force, P, on the finger is equal to the
characteristic impedance of the finger, Z, multiplied by the finger veloc-
ity, V,. Although the impedance model assumes persistent excitation of

6.2. Friction Reduction Theory 101

V()
skin

—T1 | —

—AMA—

»;“ ® Periodic Confact

bone

Figure 6.5. Model of finger during periodic contact. The finger bone moves at
constant velocity V,(t). The skin represented by a spring and damper is subjected
to stick/slip, modeled with a switch.

a continuous medium, we will incorporate a duty cycle due to periodic
contact:

P=2ZxV, (6.18)

In the following equations, P is the average distributed normal force
exerted on the finger, w is the frequency of motion, A is the amplitude of
motion, and o= is the fraction of the total time which is spent in contact
(see Figure 6.6).

The finger is in contact with the surface between § —a and 7 of the 27
period. It is assumed that after the surface has reached maximum deflection
during contact, the fingerpad does not continue to follow the surface down-
ward. However, we assume the fingerpad does come to rest in its original
position before the next contact period. The average distributed normal
force exerted on the finger is equivalent to the characteristic impedance

us us

multiplied by the integral of the velocity from § — «a to 7, divided by the
total 27 period:

P = % Aw cos(wt)d(wt), (6.19)
P= Z;lrw {sin (g) — sin (g - a)} , (6.20)
p= Z2_f7l:u [1—cos(a)]. (6.21)

While exploring the vibrating surface, the finger does not experience a
net acceleration and can be assumed to maintain a constant normal force.
Hence, P is constant. This leads to the conclusion that as the amplitude
A increases, 1 — cos(«) must decrease.

102 6. Variable Friction Haptic Displays

>
Position [0
= = = Velocitylo

—
In Contact

<

.0

3=

[9)

=

[]

Q

)

S

=]

w =

>

=

Q

o

(]

>

T

2]

Q

S

7]

(o]

£

[

112/2

Figure 6.6. (a) Position and velocity of the vibrating surface, (b) Velocity of the
fingerpad. The finger comes in contact with the surface between 3 —a and 3 of
the period.

During regular surface exploration, it can be assumed the normal force
applied by the finger will not exceed 10 N. Assuming the area of the fin-
gerpad is greater than 0.01 m?, an upper bound on the average distributed
normal force is placed at 1000%. By approximating the characteristic
impedance of the fingerpad with that of water 1.5 x 10_6% and setting the
frequency of motion, w, equal to 27 * 40000%, the relationship between
the period of contact o and the amplitude of oscillation can be found. This
relationship is shown in Figure 6.7.

For values of « less than 1, cos(«) is approximately equal to 1 — 0‘72
Substituting for cos(w):

_ ZAwa?
P ——— 6.22
2r 2 ()

4P
o= (6.23)

6.2. Friction Reduction Theory 103

3.5

w

L
o

N

Period of Contact , o
=9 ‘-;
gr——

N

0.2 0.4 0.6 0.8 1
x 10

Amplitude, A

Figure 6.7. Period of contact, o vs. Amplitude of oscillation, A. Highlighted
region shows area for which Equations (6.22),(6.23) and (6.29) are valid

In Equations (6.24) through (6.29) below, we develop an expression for
the effective damping due to periodic contact. The following equations
maintain the assumption that the energy stored during the skin stretching
phase is completely dissipated during the spring back phase. To begin,
we consider the energy stored during the stretching phase, where x is the
displacement and k is the stiffness of the skin.

1
Estored = 5/«52, (6.24)
1 a 27 2
Es ored — k|l ——" ‘/o 5 6.25
tored 3 <27r w) (6:25)
1 2
Egtored = gk%‘/o? (626)

Now considering the power dissipated, Pyissipated, We determine the ef-
fective damping due to periodic contact.

Estorcd
2
Pdissipatcd - - bcﬁoctivc : Vo) (627)

o
w

2

beffective =k <a—) . (628)

4w

104 6. Variable Friction Haptic Displays

Substituting for a:
P
be ective = k . 6.29
fective = Koz r (6:29)
It can be seen from Equation (6.29) that the effective damping is inversely
proportional to the amplitude of oscillation. This is consistent with the
data from Section 6.4 shown in Figure 6.23.

6.3 Variable Friction Devices

In this section, we review previous work on VFHDs. The haptic fields
displays rely on the presence of a squeeze film, as discussed in the previous
section. Two families of displays have been studied: ultrasonic vibrating
plate displays, usually operating in the range from 20 to 90 kHz; and surface
acoustic wave displays, operating in the MHz range.

6.3.1 Ultrasonic Plate Vibration

The first ultrasonic vibrating plate haptic display for controlling surface
roughness was developed by Wantanabe [Watanabe and Fukui 95]. His
device comprises two Langevin-type vibrators mounted beneath and on
either end of a rectangular plate (display surface). The Langevin-type
vibrators create waves in the rectangular plate. Two vibrators are required
for progressive waves, while only one is needed for a standing wave. All
experiments were performed with the standing wave (see Figure 6.8). The
amplitude of vibration of the display surface was measured with a laser
Doppler vibrometer. The device operates at resonance at 75 kHz and has
an average vibration amplitude of 2 pm.

Through experiments with this device, Wantanabe found the squeeze
film effect occurred in the ultrasonic range only. Subjects reported a “feel-

Mirror Laser Doppler vibrometer

~

Vibration Plate

used in experiments

Figure 6.8. Standing wave vibration. (This figure was taken from [Watanabe and
Fukui 95] ©1995 IEEE.)

6.3. Variable Friction Devices 105

Voice coil
for vibrating
symmetric

Lamb wave

Voice coil

for vibrating
anti-symmetric
Lamb wave

Silicon rubber Voice coils
(width 2[cm]) for absorbing
vibrations

Figure 6.9. Nara’s Tactile Display Construction. (This figure was taken from
[Nara et al. 98] ©1998 IEEE.)

ing of air smoothness” when exploring the display surface. Wantanabe
tested the device with #800, #1000, #1200, and #1500 grit abrasive pa-
per on the display surface. He found that subjects reported increased
smoothness on the surface with increased vibration amplitude. The rougher
surfaces required a larger vibration amplitude to create the smooth feel-
ing. He also found that turning the vibrations on for very short periods
of time (10 ms) resulted in the feeling of increased resistance or a surface
protrusion.

Nara et al. created a similar device with voice coil actuators and a sili-
con rubber beam (see Figure 6.9). [Nara et al. 98] Nara et al. first explored
traveling elastic “lamb” waves in the beam: two superimposed sinusoidal
waves. However, they found a more controllable method by replacing the
beam with a tapered plate (see Figure 6.10) [Nara et al. 98]. When im-
posing simple harmonic (SH) waves on the plate, Nara et al. observed a
turning point at which the amplitude of the waves was drastically attenu-
ated. Modulation of the frequency of the SH waves moves the location of
this turning point. Because the amplitude of vibration drops at the turning
point, the squeeze film disappears, and to an exploring human finger there
is a sensation of transitioning from slippery to sticky.

Figure 6.10. Tapered Plate. (This figure was taken from [Nara et al. 98] ©1998
IEEE.)

106 6. Variable Friction Haptic Displays

Linear -~
position sensor

Stator of the TWUM |
actuator \

Figure 6.11. TWUM test device. (This figure was taken from [Beit et al. 06],
©2006 IEEE.)

Biet developed a VFHD using the stator of a Traveling Wave Ultrasonic
Motor (TWUM) [Beit et al. 06]. The TWUM shown in Figure 6.11 operates
by using a two-phase alternative supply actuator to create a traveling wave
in the stator, which controls the movement of the rotor. The TWUM
operates at a resonance of 40 kHz. To create a VFHD, Biet removed the
rotor and used the stator as the display surface, which the finger contacts.
While exploring the surface, the lateral stretching force is imposed on the
finger. This force is hypothesized to be a function of the viscous friction
and the difference in velocities of the traveling wave and the finger. A
linear position sensor was used to measure the velocity of the finger, in
order to tune the velocity of the traveling wave. Due to the traveling wave,
points along the surface of the display experience elliptical displacements
(see Figure 6.12). This displacement causes the generation of a squeeze
film, which reduces the friction between the finger and the surface of the
stator. To modulate the lateral force on the finger, Biet modulates the wave
amplitude. Both the velocity of the traveling wave and friction reduction
are functions of wave amplitude.

Finger's
. speed (vq)
Tangential
wave's speed

Figure 6.12. A traveling wave under the finger. (This figure was taken from [Beit
et al. 06], (©2006 IEEE.)

6.3. Variable Friction Devices 107

Figure 6.13. Glassmire’s variable friction display. (This figure was taken from

[Glassmire 06].)
A,
e\ P
gt

Figure 6.14. Langevin-type piezoelectric actuator. The masses on the end (A) are
forced together with the set screw (C), which serves to clamp the four piezoelectric
crystals (B). (This figure was taken from [Glassmire 06].)

Glassmire created a variable friction haptic display with six individu-
ally actuated tiles, rather than creating waves across a continuous medium
[Glassmire 06]. Glassmire’s VFHD has a 1.5 by 2.25 inch tactile workspace
composed of six Langevin piezoelectric actuators in a 2 by 3 grid. Atop
each Langevin actuator is a 0.73 inch square, flat, perforated aluminum
tile (see Figures 6.13 and 6.14). The device is operated at a resonance of
50 kHz. To create illusions of texture on the display surface, Glassmire
modulated the amplitude of the vibrations, and thereby the degree of fric-
tion reduction, as a function of finger position. The finger position was
read by a pantograph mechanism [Campion et al. 05].

6.3.2 Surface Acoustic Waves

Tactile displays utilizing surface acoustic waves (SAWs) comprise the sec-
ond family of VFHDs. [Nara et al. 00,Nara et al. 00, Takasaki et al. 01] These
tactile displays create SAWs on the surface of a piezoelectric substrate. In-
terdigital Transducers (IDTs) on the substrate convert electrical signals to
surface acoustic waves (see Figure 6.15). The IDTs are arranged to form
two opposing progressive waves, which result in one standing Rayliegh
wave. The device operates at 15 MHz and has a power consumption of
several watts. The amplitude of vibration on the surface is only 10 nm.

108 6. Variable Friction Haptic Displays

Steel
Interdigital
/gmnmm
% ezoelectric
{ ¥ Substrate

Figure 6.15. Basic structure of SAW tactile display using standing Rayliegh wave.
(This figure was taken from [Takasaki et al. 01], ©2001 IEEE.)

Vibrations of this amplitude and frequency cannot setup a squeeze film
under a compliant finger, but can reduce friction under a slider consisting
of steel balls glued to a latex film.

The same two mechanisms that were discussed earlier—periodic contact
and a squeeze film—have been postulated to explain the friction reduction.
However, the theory of a squeeze film in this case is not well supported. The
characteristic length of this system (10nm) is smaller than the mean free
path of air molecules at atmospheric pressure(67 nm), which prevents the
use of a continuum model of air such as that used in describing a squeeze
film.

The reduction of friction with the SAW device is transferred to the
finger on the slider. By implementing bursts of SAWSs, this device produces
a stick/slip tactile sensation.

6.3.3 T-PaD

Concept The T-PaD variable friction device is in the family of displays
using ultrasonic vibrating plates for friction control. [Winfield et al. 07]
This device was inspired by the air-bearing design proposed by Weisendan-
ger [Weisendanger 01]. His design utilized piezoelectric bending elements
to create the necessary motion for a squeeze film effect. A piezoelectric
bending element is constructed of two layers: a piezo-ceramic layer glued
to a passive support layer. When voltage is applied across the piezo layer,
it attempts to expand or contract, but due to its bond with the passive
support layer, cannot. The resulting stresses cause bending.

Design freedoms for a bending disk element include the disk radius,
piezo-ceramic disk thickness, support layer material, and support layer
thickness. For a given disk diameter, Figure 6.16 shows the relationship be-
tween relative amplitude of bending and the ratios of thickness and elastic

6.3. Variable Friction Devices 109

e Steel
121 1" Glass

Relative Amplitude

0.5 1 15
Thickness Ratio of Support and Piezo Layer

Figure 6.16. Relative amplitude of piezo-bending element static deflection. Shown
for steel, glass and brass support layers. Dotted crosshair shows relative am-
plitude of Weisendanger’s bending element prototype, dashed crosshair shows
relative amplitude of the T-PaD-bending element.

modulus between the support layer and the piezo-ceramic disk [Weisendan-
ger 01]. Figure 6.17 shows an approximation of how the resonant frequency,
w, of the system is affected through changes in system parameters [Weisen-
danger 01]. Experimental values for resonant frequencies were found to be
a few kHz higher than those calculated.

35

30

I
o

Resonant Frequency
N
3

5 L L

0.5 1 15
Thickness Ratio of Support and Piezo Layer

Figure 6.17. Resonant frequency of piezo-bending element. Shown for steel, glass
and brass support layers. Dotted crosshair shows expected resonant frequency
of Weisendanger’s bending element prototype, dashed crosshair shows expected
resonant frequency of the T-PaD-bending element. Note that experimental res-
onant frequencies were found to be higher than those expected

110 6. Variable Friction Haptic Displays

Figure 6.19. 01 Vibration mode of bending element.

Design considerations. In designing the T-PaD, we felt it was imperative
to fulfill the four following criteria: Slim Design, High Surface Friction,
and Inaudible and Controllable Friction. Since this device only reduces
friction, it is desirable to start with a surface of relatively high friction.
It is also important for all parts of the device to resonate outside of the
audible range. Finally, a mapping between the excitation voltage and the
level of friction reduction (oscillation amplitude) must be determined for
successful friction control.

Bending element construction. The T-PaD modeled in Figure 6.18 com-
prises a 25 mm diameter, 1 mm thick piezo ceramic disk epoxied to a glass
disk of equal diameter and 1.59 mm thickness. The disks are epoxied to a
mounting ring, which ensures vibration in the 01 mode (see Figure 6.19).
The piezo-ceramic disk used is identical to those used by Weisendanger.
However, the steel support layer is replaced with a thicker glass layer. A
thicker glass is beneficial in several ways. A glass interface has a higher co-
efficient of friction than steel, allowing for a broader range of shear forces.
The thicker support layer of glass increases the resonant frequency, en-
suring operation out of the audible range, while not sacrificing amplitude.
This is illustrated in Figures 6.16 and 6.17. The bending element has a
total height of only 2.59 mm and the mounting rings can have a height of
less than 5 mm (the realized prototype used a mounting ring with height
of approximately 20 mm due to ease of manufacturing).

Driving electronics. The device is driven at resonance, approximately
33 kHz, with an amplitude ranging from 0 to 40 Volts peak-to-peak. A
33 kHz, 10 volt peak-to-peak signal is produced by a signal generator and
scaled to a computer-controlled amplitude using an analog multiplier chip

6.4. Friction Reduction Measurements 111

(ADG633AN). The signal is amplified and then stepped up by a 70 V line
transformer. In our implementation, a computer-generated output level of
5 volts DC, corresponding to a 33 KHz signal amplitude at the piezo of
40 V peak-to-peak, resulted in approximately a ten-fold reduction of the
coefficient of friction. The amplitude of the 33 kHz signal can be modu-
lated either temporally or with respect to finger position to produce tactile
sensations.

Finger position sensing. Linear sensor array (LSA) and infrared LED array
pairs were used to measure finger position and velocity in two dimensions.
The LSA comprises 768 photodiodes, which generate photocurrent when
exposed to a light source. Circuitry within the LSA integrates the pho-
tocurrent at each photodiode and outputs a voltage for each photodiode
proportional to the the light intensity on the photodiode during integra-
tion. The photodiodes are most sensitive to infrared light. Therefore, an
array of infrared LEDs are placed on the side of the T-PaD opposite the
LSA. When a finger explores the surface of the T-PaD, its shadow is cast
on the LSA and its position can be interpreted from the output of the LSA.

6.4 Friction Reduction Measurements

As discussed in the previous section the T-PaD is capable of producing
a continuously variable range of friction levels, not just on and off levels.
[Winfield et al. 07]. Although this effect is quite salient to users of the
haptic display, a variable friction experiment was performed to quantify it
and develop a mapping from excitation voltage to the coefficient of friction
on the display surface. The coefficient of friction between a human finger
and the display surface was measured during different levels of excitation
voltage, corresponding to different amplitudes of surface deflection. An
increased excitation voltage corresponds to an increase in the amplitude of
motion of the piezo, which is shown to lead to a decrease in friction.

6.4.1 Experimental Setup

The coefficient of friction between the finger and the display surface was
calculated using the formula for Coulomb friction. The values of normal
and friction (tangential) forces were measured using two one-axis load cells
configured as shown in 6.20. The T-PaD was fixed to the top of a 250 gram
load cell for measuring the normal forces. The T-PaD and load cell were
fixed to an L bracket, which was attached to a precision crossed-roller slide
assembly. The slide assembly had negligible friction effects. A 50-gram
load cell used for measuring the tangential (friction) force was mounted

112 6. Variable Friction Haptic Displays

Load cell for
tangential force

Load cell for

normal force ‘ -\\

Figure 6.21. Pantograph for finger position data.

to the vertical side of the L bracket and was preloaded with an upright
cantilever beam. The cantilever beam was also used for overload protection.
A pantograph mechanism [Campion et al. 05] was used to measure finger
position and velocity. The pantograph shown in Figure 6.21 was strapped
to the finger using Velcro (Velcro strap not shown).

6.4.2 Data Collection

A total of 18 data collection trials were performed. During each trial the
experimenter moved her finger back and forth on the disk, attempting to
maintain a constant normal force and velocity. Throughout each trial the
excitation voltage at the piezo was stepped through a range of zero to ap-
proximately 40 volts peak-to-peak. This was done by choosing six equally
spaced computer-controlled scaling factors each of which correspond to a
voltage excitation level between 0 and 40 volts. The six scaling factors were
presented in pseudo-random order (no repeats) during each trial, spend-

6.4. Friction Reduction Measurements 113

_Friction Force

285 29 295 30

:
C

b
b
C

.
26.5 27 275 28 28.5 29 29.5 30
2
£
& 1f i
@
[)]
£ o R
o
>
_1
26.5 27 275 28 28.5 29 29.5 30
Time (s)

Figure 6.22. Data collection thresholds (high friction data); force data was ex-
tracted if finger velocity is above 0.8 in/sec and friction force was above 0.025 N.

ing approximately seven seconds at each level. The experimenter moved
her finger back and forth approximately seven times at each level. Due
to the dynamics of the piezo, the excitation voltage at the piezo varied
slightly during finger contact. Therefore, the peak voltage at the piezo
was recorded throughout the trial. The normal forces, friction forces, and
the finger position data were also recorded throughout the trial, with a
sampling rate of 2000 Hz. The velocity of the finger was derived through
differentiation of the position. The tangential load cell is unilateral and
measures only positive (left-to-right) forces; negative forces were recorded
as zero. Because data was collected continually throughout each trial, the
relevant normal and friction force data needed to be deciphered. Relevant
data was extracted by placing thresholds (Figure 6.22) on both finger veloc-
ity and friction force. Data points were neglected if the finger velocity was
less than 20.3 mm/s (0.8 in/s). This threshold ensured that we were mea-
suring kinematic, rather than static, friction and also helped to eliminate
velocity readings from compliance in the pantograph-to-finger connection
or twisting of the finger. A threshold was also placed on the friction force,
restricting its value to be above 0.025 N to neglect any data points that may
be considered noise. After the thresholds were placed, the mean coefficient
of friction for each scaling factor was calculated by dividing friction force
by normal force and averaging those values. The mean excitation voltage
was also calculated for each scaling factor. Approximately 2000 data points
per trial for each scaling factor were used.

114 6. Variable Friction Haptic Displays

Coefficient of Friction

0 5 10 15 20 25 30 35 40
Excitation Voltage

Figure 6.23. Coefficient of friction with increased voltage excitation, correspond-
ing to increased amplitude of disk motion. Error ellipses show one standard
deviation in friction coefficients (y-axis) and one standard deviation in peak-to-
peak excitation voltage (z-axis).

6.4.3 Results

The mean value of the coefficient of friction for all 18 trials is shown in
Figure 6.23 for each scaling factor. A statistical t-test proves each of the
mean values (other than the first two and the last two) to be statistically
different. This implies the effect does not begin until some point between
8 volts peak-to-peak and 16 volts peak-to-peak of the piezo.

6.4.4 T-PaD Response

Quantitative data during finger exploration of virtual texture sensations
is shown in Figure 6.24 and Figure 6.25. The top and middle plots of
both figures show the friction and normal forces, and the coefficient of
friction across the haptic display. The bottom plot in both figures shows
the computer-controlled scaling factor scheme used to create the sensation.
Figure 6.25 depicts a step change in voltage gain (scaling factor), which is
perceived as an instantaneous change from sticky to smooth. The response
time for the device to change the shear force / coefficient of friction shown in
both the top and middle plots of Figure 6.25 is only about 4 ms. Figure 6.24
highlights the spatial response of the T-PaD. The spatial sine wave pattern
of the coeflicient of friction commanded is produced across the surface of
the T-PaD.

6.5. Friction Patterns to Mimic Textures 115

= 021 1

Z Normal Forcex

8 Friction Force=.

= 0.1 4

S

[y

0
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

s

= T T T T T T

2

L 06 4

S 04l]

]

s 02r 1

% o

8 -0.2 0 0.2 0.4 0.6 0.8 1 12
c 4r B
‘®
(O]

O 2+ B
j=2]
hud
o
>0 L L L L L L 7
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
X Position (in)

Figure 6.24. “Smooth bumps” texture sensation generated by a sine wave pattern
of friction coefficients across the plate.

T T T T T T T
g 0.2k Normal Force—
8 o01f - 1
2 Friction Force—>
(S 3
i
_01
S 3.8 3.85 3.9 3.95 4 4.05 41 4.15 4.2
T 1
i
2os 1
C
9]
©
= 0 ot
8 3.8 3.85 3.9 3.95 4 4.05 41 4.15 4.2
o
c
o 4f]
& 2t i
=
S]
=0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
3.8 3.85 3.9 3.95 4 4.05 41 4.15 4.2

Time (s)

Figure 6.25. Friction response to a step increase in voltage. The oscillating
transient following the step change is a result of the force sensor’s dynamics.

6.5 Friction Patterns to Mimic Textures

By controlling the surface friction, we can therefore control the shear forces
on the finger interacting with the display. Knowing the location of the finger

116 6. Variable Friction Haptic Displays

Figure 6.26. Visual friction pattern. Shading in this figure cannot be seen by the
user, but has been added to illustrate the friction levels. Darker colors correspond
to higher coefficients of friction.

Figure 6.27. Visual friction pattern. Shading in this figure cannot be seen by the
user, but has been added to illustrate the friction levels. Darker colors correspond
to higher coefficients of friction.

on the display allows for the creation of shear force patterns on the display
(see Figures 6.26 and 6.27), i.e., the coefficient of friction on the surface
is a function of the finger location. These patterns result in compelling
illusions of texture on the surface.

Each of the patterns shown in Figure 6.28, as well as variations on
the patterns, have been implemented on the T-PaD. Some observations
are in order. First, although the entire fingerpad is feeling one level of
friction, at a time it feels as though multiple features are beneath the
fingerpad while it is exploring the surface. Users most often characterize the
tactile sensations as smooth, bumpy, slippery, rough, gritty, sharp-edged
and sticky. These descriptions correspond to the following friction patterns.
Slippery tactile sensations occur under a constant friction reduction across

6.6. Multidimensional Scaling 117

Smooth bumps Smooth bumps File grating Low profile
edge

\\\ /4 4

Rough Rough spot Sticky Circle

Figure 6.28. Surface plots of friction coefficient patterns.

the surface. Smooth tactile sensations are the result of continuous changes
in friction along the surface. Bumps are implemented with a sinusoidal
pattern of friction coefficients. The smooth bumps patterns in Figure 6.28,
as their name suggests, are examples of both smooth and bumpy sensations.
Discontinuous patterns in friction, such as the low profile edge and the file
grating in Figure 6.28, are perceived as feeling sharp-edged. High spatial
frequency patterns, with periods less than about 0.07 inches, are felt as
rough or gritty sensations. Gritty most commonly refers to high-spatial-
frequency discontinuous patterns (e.g., square wave).

Combining these tactile sensations with visual feedback delivers remark-
able realism. When feeling the velocity-dependent pattern labeled “fish-
scales,” a slippery sensation when moving to the left and a sharp-edged
sensation when moving to the right, and viewing a picture of a fish the
tactile sensation becomes quite convincing. Friction patterns representing
surface features such as the sticky circle or rough spot in Figure 6.28 are
also enhanced with visual feedback.

It should be noted that temporal modulation of the coefficient of friction
was also explored and found to produce more of a vibratory sensation,
rather than a texture.

6.6 Multidimensional Scaling

In order to design a diverse library of virtual textures, it is advantageous
to first identify the parameters which have the greatest impact on texture
perception. A virtual texture on a VFHD is created by generating a two-
dimensional pattern of varying coeflicients of friction on the surface of the
device. Several parameters define this pattern, including the spatial fre-
quency, waveform, amplitude, and velocity dependence. Changes in any
or all of these parameters create new virtual textures. The relationship

118 6. Variable Friction Haptic Displays

between how users perceive virtual textures and the individual parameters
defining the textures can be difficult to decipher.

Multidimensional scaling (MDS) is a useful technique for visualizing
similarities and/or dissimilarities between stimuli. An MDS analysis cre-
ates an n-dimensional map of individual stimuli. The distance between
any two stimuli on the map is related to how dissimilar the two stimuli
are judged to be. The MDS algorithm is input a dissimilarity matrix with
m*(m-1)/2 individual dissimilarity scores between m stimuli. MDS uses an
optimization algorithm to transform the dissimilarity scores d;; into dis-
tances d;; between the stimuli ¢ an j on the n-dimensional map [Young 85].
The number of dimensions of the map is chosen by the researcher to best
suit the data. A large number of dimensions will have less error between the
map distances d;; and the dissimilarity scores d;;; however, the map may
be difficult to interpret. Conversely, a smaller number of dimensions will
have greater error between map distances, but will enable the researcher
to more clearly draw primary conclusions [Pasquero et al. 06]. Once a di-
mension is selected, it is up to the researcher to infer the meaning of the
axes from how the stimuli are grouped. The axes most often represent the
most salient parameters of the stimuli. Many statistical software packages
include tools for creating MDS maps.

One of the first MDS analyses performed in the field of haptics was
by Yoshida [Yoshida 68]. Yoshida used an MDS analysis to determine
the distinguishing characteristics between the perceptions of several tactile
surfaces. In-depth studies of the validity of the MDS technique have been
performed by Pasquero et al. [Pasquero et al. 06], who believe that MDS
is a “valuable tool to evaluate the expressive capability of haptic devices.”
Pasquero et al. offer suggestions on performing and interpreting MDS anal-
yses. They also offer ways of inspecting data subsets to extract previously
unapparent but relevant data.

Judging the difference between two stimuli is most commonly performed
in one of two ways: the pair-wise comparison method or the cluster-sorting
method [Ward 77]. In the case of judging several virtual texture stimuli,
the cluster-sorting method is preferred. The pair-wise comparison method
requires each stimulus to be compared with every other stimulus and their
dissimilarity to be numerically ranked. This method can be lengthy and
may cause subjects to forget their methods of ranking [Pasquero et al. 06].

The cluster-sorting method described by Ward [Ward 77] requires sub-
jects to perform several trials in which they sort similar stimuli into clus-
ters. All stimuli are placed. The number of clusters is changed with each
trial. The dissimilarity score between any two stimuli is based on their
appearance in the same cluster over the several trials. Two stimuli never
placed in the same trial will be ranked the most dissimilar, while two al-
ways placed together will be ranked the least dissimilar. Ward’s method

6.6. Multidimensional Scaling 119

consisted of five trials, where 8 subjects sorted 20 stimuli (photographs).
During the first trial the subjects were able to choose the number of clus-
ters. In subsequent trials, subjects sorted into 3, 6, 9, 12, and 15 clusters
in pseudorandom order, excluding the number of clusters nearest to that
chosen during the first trial. The dissimilarity scores d;; are calculated by
first creating a similarity matrix S and then inverting the entries of the
matrix, such that the numerical value representing the least similar stimuli
now represents the most dissimilar stimuli, and visa versa. The similarity
matrix is a square matrix with the 20 stimuli representing the rows and
columns. The dissimilarity scores are computed as follows:

8 5
S = Z Z [(# of clustersintrial) - (Aijts)], (6.30)

Subjects=1 Trials=1

where A;j, = 1 if stimuli ¢ and j are in the same cluster for trial ¢ and
subject s, A;jis = 0 if stimuli ¢ and j are not in the same cluster for trial ¢

and subject s,

1000
;= 1000 — ————8,. 31
8ij = 1000 (S)Sj (6.31)

6.6.1 Variable Friction Haptic Display MDS

A preliminary study using the MDS technique was performed on a one-
dimensional version of Glassmire’s Langevin VFHD [Glassmire 06]. A li-
brary of nineteen virtual textures was created, and a total of eight subjects
(graduate students familiar with haptics) were asked to explore the haptic
display for each of the different virtual textures. To collect similarity rank-
ings for the virtual textures, the subjects performed two sorting trials. As
noted, this was a preliminary study; a more formal study would require a
larger number of sorting trials. In each trial the subject sorted the stimuli
into clusters of similar stimuli. The subject was asked to characterize each
cluster with descriptive words. During the first trial, the subject chose the
number of clusters to sort the stimuli, either 4 or 8. The unused number
of clusters was then implemented in the second trial. Once all the subjects
completed both trials, the dissimilarity matrix shown in Figure 6.29 was
constructed.

Using Matlab’s cmdscale function, the MDS map shown in Figure 6.30
was created. The MDS plot shows a few trends, the most salient of which
is the trend of low to high spatial frequencies as you move across the plot
from left to right; this is highlighted with the purple ellipses. It can be
inferred from this data that spatial frequency of the friction variation is
very noticeable to human subjects. It can also be noted that velocity-
dependent patterns (i.e., fish scales in which the direction of finger velocity

120 6. Variable Friction Haptic Displays

1 2 3 4 5 6 7 8 9 10 11 12 183 14 15 16 17 18 19

1 0
2 833 0
3| 47| 917| o
4] 917 | 708 | 958 0
5 542 875 | 750 958 0
6| 917 | 500 833 | 625 | 792 0
7| 958 | 875|833 | 917 | 500 | 750 0
8| 958 | 875|833 | 958 | 625 | 875 | 542 0
9| 917 | 542 | 958 | 708 | 917 | 708 | 958 | 708 0
10 { 1000 833 | 875 625 | 1000 | 792 | 875 | 917 667 0
11 875 958 | 792 | 1000 667 | 792 | 750 | 625 917 | 1000 0
12| 875 | 917 | 833 | 750 | 875 | 792 | 875 | 833 | 917 | 833 | 958 0
13]| 875 | 1000 | 875 | 958 | 1000 | 958 | 958 | 917 | 1000 | 958 | 750 | 792 0
14| 750 | 958 | 833 | 833 | 1000 | 917 | 958 | 958 | 875 | 1000 | 792 | 833 | 375 0
15 || 1000 | 1000 | 958 | 1000 | 625 | 833 | 750 | 625 | 958 | 1000 | 417 | 1000 | 958 | 958 0
16 || 1000 | 1000 | 958 | 1000 833 | 917 | 792 | 792 | 1000 | 1000 | 667 958 917 958 | 500 0
17 { 1000 750 | 875 833 | 1000 | 792 | 958 | 958 750 792 | 958 875 | 1000 | 1000 | 958 | 958 0
18 || 750 | 958 | 917 | 917 | 792 | 833 | 875 | 875 | 1000 | 792 | 917 | 750 | 875 | 1000 | 958 | 833 | 417 0
19| 833 | 958 | 917 | 958 | 750 | 833 | 833 | 917 | 1000 | 833 | 875 | 792 | 917 | 1000 | 917 | 792 | 333 | 125 0
Figure 6.29. Dissimilarity matrix.
VDS mep LEGEND
500 : : ‘ ‘ —r ‘ ‘
* Il Fui Amplitude
400~ ‘ 1 |l Half Amplitude
] m Low Spafial Frequency
. Intermediate Spatial Frequency
. High Spatial Frequency
=
.i_a * Sqrare Wave Pattern
; ¢
k% Localized Piise Pattern
e
a [l Censiant Friciion
* % A Velacity Dependent 1
v Velocity Dependent 2
300l + Randam Pattern
v @ Sine Wave Pattern
-400 + R
[l Added Spatial Ncise
-50Q X [l 'nverted Pattern
500 -400 -300 -200 -100 0 100 200 300 400
Dissimilarity

Figure 6.30. MDS for virtual textures. Spatial frequency is most salient parame-
ter. Added spatial noise masks other spatial frequencies. The velocity-dependent
patterns and localized patterns are distinguishable from other patterns.

dictates the friction pattern felt by the subject) and localized friction pat-
terns are both distinguishable from continuous and discontinuous periodic
spatial friction patterns. There is no apparent difference on the map be-
tween full and half amplitude signals. However, subjects did note that
the full amplitude signals delivered a slightly stronger sensation. Subjects
most often characterized the sensations with words analogous to one of the

6.7. Summary 121

following categories: smooth/slippery, bumpy/notched, viscous/rubbery,
rough/gritty.

It should be noted that in many cases not all the parameters may be
known or initially considered and may actually be discovered during inspec-
tion of the MDS map. Often it is very difficult to create stimuli that only
differ by certain selected parameters. To help reveal hidden parameters, it
is useful to have subjects give verbal descriptions of the clusters.

This preliminary study delivered key information regarding the creation
of virtual textures with a variable friction display. For instance, spatial
frequency was found to be a most salient parameter; therefore several dif-
ferent virtual textures can be made from the same initial waveform just by
varying the spatial frequency. It can also be seen that patterns should be
implemented at full amplitude. The half amplitude patterns created only
a weaker version of the same virtual texture.

A more formal study should be performed with the T-PaD to gain
further knowledge on the capabilities of this device. This would include a
larger library of virtual textures, perhaps from models of actual textures,
an increased number of sorting trials, and an analysis into maps, with a
greater number of dimensions.

6.7 Summary

In this chapter we have discussed the many studies which serve as motiva-
tion for variable friction haptic displays, the theories behind variable fric-
tion, the several current embodiments, and the capabilities of such devices
in producing virtual textures. Minsky’s sandpaper system opened the door
to creating virtual textures with lateral force fields. Several other studies,
including [Biggs and Srinivasan 02] and [Hayward and Cruz-Hernandez 00]
have shown the sensitivity of the fingerpad to shear forces, suggesting that
lateral force fields at the fingerpad would easily be detected.

The majority of variable friction haptic displays rely on the ability to
reduce surface friction levels to create lateral force fields. The leading
theory of friction reduction is the presence of a squeeze film. Squeeze
films appear between two surfaces with relative motion imposed between
the surfaces. In the case of most VFHDs, the non-vibrating surface is
either the finger or a slider mechanism on which the finger rests. During
motion, viscous forces trap air under the finger and the air then compresses,
resulting in an average pressure under the finger above atmospheric. The
phenomenon of variable friction reduction has no clear explanation, but is
believed to be due to changes in the total area of the squeeze film under
the fingerpad. In this chapter we show, however, that periodic contact is
a viable alternative model. Ultimately, high quality measurements of the

122 6. Variable Friction Haptic Displays

surface-fingertip interface will be needed to clearly elucidate the variable
friction behavior.

Highlighting the T-PaD, we showed this display is capable of reducing
its surface friction almost ten-fold. The T-PaD uses position sensing to cre-
ate lateral force fields on the display, which results in compelling illusions
of texture. Variable friction haptic displays are a valuable haptic technol-
ogy capable of displaying a multitude of tactile sensations. Future work
in this field involves developing a firm understanding of the friction reduc-
tion mechanism in ultrasonic vibrating VFHDs and designing low-power,
application-centered prototypes.

/
Stability of Haptic Displays

D. W. Weir and J. E. Colgate

This chapter reviews the issue of instability in haptic devices, as well as
the related concept of Z-width. Methods for improving haptic display per-
formance (expanding the Z-width) are also discussed.

7.1 Definitions

Haptic displays can be considered to be devices which generate mechanical
impedances. Impedance here is defined as a dynamic relationship between
velocity and force. The behavior of the haptic display depends on the
virtual environment being rendered. For instance, if the desired behavior
is that of a point mass, the haptic display must exert forces proportional
to acceleration. Similarly, if the desired behavior is that of a spring, the
haptic display must exert forces proportional to displacement [Colgate and
Brown 94].

Passivity has proved to be a useful tool for studying both the stability
and performance of haptic displays. A one-port system is passive if the
integral of the power extracted over time does not exceed the initial energy
stored in the system. For a translational mechanical system, power is the
product of force (f) and velocity (&), with the sign convention that power
is positive when energy flows into the system. Typically, the initial energy
is defined to be zero, resulting in the following inequality:

/t f(r)&(r)dr >0, vt > 0. (7.1)
0

A passive system, coupled with any other passive system, is necessarily
stable. Ordinary physical objects, such as springs, masses, and dampers,
are passive, and common experience suggests that humans remain stable
when interacting with passive systems. Therefore, the human user is typi-
cally considered a passive impedance, particularly at high frequencies above
the bandwidth of voluntary motion. If a haptic display rendering an ar-
bitrary virtual environment can be guaranteed passive, then the complete

123

124 7. Stability of Haptic Displays

system will be stable when the display is coupled with the human operator.
This property frees the designer from having to analyze the interaction of
the haptic display and virtual environment with the human operator under
all possible configurations.

In the real world, objects interact according to a set of physical laws
that govern their behavior. In the virtual world, this interaction is only
approximated. Even though the approximate behavior may be very close
to the real behavior, the implications of these errors can be profound. In-
stability and limit cycle oscillations are two common ways in which haptic
interactions deviate from their physical counterparts, both of which result
from non-passivity. Small amplitude limit cycle oscillations can be partic-
ularly problematic even if they do not escalate to gross instability because
human tactile perception is extremely sensitive to vibrations in the 100 Hz
to 1 kHz range [Bolanowski et al. 88]. Maintaining passivity is one way,
albeit sometimes restrictive, of ensuring that virtual objects behave in a
stable manner when interacting.

Everyday interaction with common objects involves experiencing a wide
range of impedances. Moving in free space implies almost zero resistance
to motion, while interacting with tables, walls, and other massive objects
provides almost complete resistance to motion. The challenge is to design
a haptic interface that can display as wide a range of dynamic impedances
as possible.

The dynamic range of impedances that can be rendered by a haptic
display while maintaining passivity is termed its Z-width. Since a dis-
play with larger Z-width will usually render “better”-feeling virtual envi-
ronments, Z-width may be viewed as a measure of quality for the haptic
display.

As a final note, we should mention that haptic displays are often re-
ferred to as “impedance type” or “admittance type.” Impedance displays
measure the endpoint motion and output a force or torque in response.
Admittance displays measure the applied force or torque and output a
motion. Both systems respond according to the (imperfectly) simulated
physics of the virtual environment being rendered. This chapter will ad-
dress both impedance and admittance displays, but will focus primarily
on impedance causality displays. Note, however, that for either type, the
notions of passivity and Z-width are equally valid.

7.2 Designing for Passivity

Expanding the impedance range of a haptic display as a method for im-
proving performance begins with passivity. Maintaining passivity places
severe restrictions on virtual environment stiffness and damping; therefore,

7.3. Passive Rendering of a Virtual Wall 125

a number of techniques have been developed to facilitate haptic rendering
of high impedance environments.

Due to the nature of impedance causality haptic displays, the lower
bound on impedance is generally limited by the quality of force sensing and
feedback, and the mechanical design. Often, impedance causality displays
feature low inertia designs enabling low impedance renderings. The upper
bound on passive impedance can be limited by sensor quantization, sampled
data effects, time delay, and noise [Colgate and Schenkel 97]. Thus, most
research efforts have focused on increasing the maximum impedance that
can be displayed as a way of increasing the Z-width of haptic displays.

A number of methods exist to increase the maximum passive impedance
of a haptic interface. These fall into a number of broad categories: con-
trollers, physical mechanisms, and electrical mechanisms. The category of
controllers includes virtual couplings and passivity observers. Virtual cou-
plings act as mediators between the haptic display and the virtual environ-
ment. Passivity observers and passivity controllers function by adjusting
the energy present in the system to maintain passivity. Mechanical meth-
ods are generally the most direct, whereby physical dissipation is added to
the mechanism to expand the passive impedance range of a haptic display
by counteracting the effects of energy leaks. Electrical methods are a blend
of physical methods implemented electrically and controller approaches im-
plemented using analog electronics.

In a slightly different category are psychophysical techniques that act
to alter the user’s perception of the impedance range of the haptic display.
These include methods such as rate hardness and event-based rendering.

7.3 Passive Rendering of a Virtual Wall
7.3.1 A Simple Passivity Result

Haptic displays are sampled-data systems, i.e., they combine a continuous-
time mechanical system with a discrete-time controller. The effects of sam-
pling, even assuming ideal sensors and actuators in the continuous-time
plant, cause a haptic display to lose passivity.

[Colgate and Schenkel 97] derive an analytical passivity criterion for a
simple 1-degree-of-freedom haptic interface, as shown in Figure 7.1. The
discrete-time controller models a virtual wall, including a unilateral con-
straint operator and includes analog-to-digital (A/D) and digital-to-analog
(D/A) converters in the feedback loop. A block diagram for this sampled-
data system is shown in Figure 7.2. The unilateral constraint is chosen as
a fundamental building block for virtual environments, because it models
a simple form of contact and collision between two objects.

126 7. Stability of Haptic Displays

displacement
ransducer

actuator

program

Clock

Figure 7.1. A simple 1-DOF haptic display [Colgate and Schenkel 97].

r operator

f v
_+

1-e T4
s ms + b

zero order hold

Xg X
H(z) [== 4_’4> <_T

unilateral constraint

Figure 7.2. Block diagram of a haptic display and operator-sampled-data system
[Colgate and Schenkel 97].

A necessary and sufficient condition for passivity of the sampled data
system in Figure 7.1 is

T 1

b> 21— cos(wT)

R{(1 — e 7TYH (T} for 0<w<wy, (7.2)

where b is the physical damping present in the mechanism, 7 is the sampling
rate, H(z) is a pulse transfer function representing the virtual environment,
and wy = 7 is the Nyquist frequency [Colgate and Schenkel 97].

7.3. Passive Rendering of a Virtual Wall 127

The result can be simplified to an analytical expression relating the
sampling rate, virtual stiffness, virtual damping, and dissipation within
the haptic display. [Colgate and Schenkel 97| analyze a wall consisting of
a virtual spring and damper in mechanical parallel, together with a uni-
lateral constraint operator. A velocity estimate is obtained from backward
difference differentiation of the position sensor data. This results in the
following transfer function within the wall:

z—1
Tz’

where K > 0 is the virtual stiffness and B is the virtual damping coefficient

(B is allowed to be positive or negative). Equation (7.2) combined with

Equation (7.3) simplifies to the following passivity condition: [Colgate and
Schenkel 97]

H(z)=K+B

(7.3)

b> T+|B|. (7.4)

The physical damping present in the mechanism must be sufficient to
dissipate the excess energy created by errors introduced by sampling in the
discrete-time controller, commonly referred to as “energy leaks.”

7.3.2 Importance of Damping

The physical damping present in the haptic display is critically impor-
tant, due to its role in counteracting the energy generation from errors
introduced by sensing and discrete-time control. [Colgate et al. 93b] ex-
pand on the passivity bound of Equation (7.4) and provide simulation data
showing how maximizing sensor resolution and minimizing sampling rate
improves performance. Colgate and co-authors also introduce the concept
of adding physical damping to the system in order to increase the limits of
virtual stiffness and virtual damping that can be passively achieved [Col-
gate et al. 93b, Colgate and Schenkel 97, Colgate and Brown 94].

The implications of Equation (7.4) are somewhat counterintuitive: to
increase the maximum impedance of a haptic display, increase the vis-
cous damping in the mechanism in order to maintain passivity. The ad-
dition of physical damping can dramatically increase the maximum pas-
sive impedance a device can render. When low impedances are rendered,
virtual damping in the discrete-time controller can be negative, masking
the increased physical damping in the device. However, simulated or vir-
tual damping cannot substitute for real, physical dissipation in the mech-
anism [Colgate and Brown 94]. Physical damping can be added to the
haptic interface through a variety of techniques that will be discussed in
Section 7.6.

128 7. Stability of Haptic Displays

First detected extra-wall position which
toggles off control law

05- . Manipulandum displacement y(t) /

05 . / i

Displacement and Force

Commanded force f(t)
fk =1"* Yk

.
1.3 1.4 15 116 1.7 1.8 1.9 2 211 2.2 23
Time

a Aty— —

Figure 7.3. The effect of sampling: actual position, sampled position, commanded
force [Gillespie and Cutkosky 96].

7.3.3 Virtual Wall as a Benchmark

The virtual wall is the standard haptic task. Since most interaction with
virtual environments can be simplified to interaction with a virtual wall
of varying stiffness and damping, the virtual wall is commonly used as a
performance benchmark for haptic interfaces. For example, see [Colgate
and Brown 94, Gillespie and Cutkosky 96, Zilles and Salisbury 95, Adams
and Hannaford 99, Abbott and Okamura 05].

Due to the nature of sampling, simulating the behavior of a stiff virtual
wall is a difficult task. To characterize the general problem, consider the
following example. As a general rule, there is always some penetration of
the position of the haptic display into the virtual wall. As a consequence,
at the next sampling interval, the discrete controller detects the wall pene-
tration, and the virtual environment computes large output forces normal
to the wall surface. This large force has a tendency to rapidly push the
haptic display outside of the virtual wall into free space. This situation
now reverses, where at some future sampling interval, the position of the
haptic display is outside the virtual wall, so the forces return to zero. This
sequence is depicted in Figure 7.3. Oscillations arise when this cycle of
free space and wall penetration is repeated. Sampling prevents detecting

7.3. Passive Rendering of a Virtual Wall 129

=)

g Physical damper engaged (1 KHz)
- - == Physical damper engaged (100 Hz)

§ EGRRCCEEEREEY — No physical damping (1 KHz) ~ f----------- -
- - - - No physical damping (100 Hz)

§ S s o S — |

300
1
i

Virtual Stiffness (Nm/rad)
200
!
i

100

I I
0.5 1.5 2
Virtual Damping (Nm-sec/rad)

Figure 7.4. Typical Z-width plot illustrating maximum passive impedance range
[Colgate and Brown 94]. (© 1994 IEEE)

the exact time when the haptic display contacts the surface of the virtual
wall, and position sensing resolution has the effect of quantizing penetra-
tion distance into the virtual wall, both of which are destabilizing effects.
These errors can lead to energy generation and active, non-passive behav-
ior. These effects will be further addressed in in the next section.

The virtual wall is also traditionally used to characterize the impedance
range, or Z-width of haptic interfaces. Z-width is often displayed using
virtual stiffness-virtual damping plots, showing that the maximum passive
impedance boundary as the stiffness and damping vary, typically under a
variety of conditions, as shown in Figure 7.4.

However this method does not show how the Z-width varies according
to frequency. It also does not show the minimum stable impedance that can
be rendered. The importance of this is illustrated in the following example.
If a single haptic display has maximum and minimum impedances of Zi,
and Zpax, respectively, then two of them in mechanical parallel will have a
maximum impedance of 27,,,x, increasing the boundary on the K-B plot.
The minimum impedance is also increased to 27 i, so the system Z-width
has not changed, but this is not apparent on the K-B plot. This lack
of minimum impedance information makes it difficult to compare various
haptic interfaces.

For these reasons, a more useful figure of merit and way of displaying
Z-width information may be a set of curves, showing the extremes of both
impedance and admittance as a function of frequency, while maintaining
passivity.

130 7. Stability of Haptic Displays

o
—>
<

Figure 7.5. Mapping between actual position and quantized position, with sensor
resolution A [Abbott and Okamura 05]. ((© 2005 IEEE)

7.4 Extensions to the Passivity Framework

7.4.1 Quantization and Time Delay

The most common position-sensing technique for haptic displays is the
use of optical encoders. One consequence of optical encoders is that po-
sition information is quantized based on the encoder resolution. Other
position-sensing techniques are also frequently quantized, such as analog
potentiometers that are sampled by a finite resolution analog-to-digital
converter. Such a position signal would also be subject to electrical noise,
but that will be not be addressed here. The distinction between sampling
and sensor quantization should be emphasized. Sampling introduces un-
certainty with respect to when events occur and what happens between
sampling intervals. Sensor quantization causes a loss of information due
to sensing only discrete changes in the value of a signal, as indicated in
Figure 7.5. The actual position can lie anywhere between two quantized
position measurements. Sensor quantization is independent of the sampling
frequency.

In [Abbott and Okamura 05], position quantization and Coulomb-plus-
viscous friction in the haptic device are explicitly modeled, as shown in
Figures 7.3, 7.5, and 7.6. Analyzing the worst-case scenarios of compressing
and extending a virtual spring, representing the virtual wall with a haptic
display, results in this passivity condition:

. (20 2f.
< — .
K_mm(T,A), (7.5)

7.4. Extensions to the Passivity Framework 131

£.(0) X(t)

ZOH
(D/A) Discrete Quantization
Unilateral (Encoder)
Spring

Figure 7.6. Model of haptic device rendering a virtual wall used by [Abbott and
Okamura 05]. (© 2005 IEEE)

where b is the viscous damping in the mechanism, 7' is the sampling time,
A is the position quantization interval, and f. is the Coulomb friction. The
haptic display is assumed to consist of a mass plus friction, and the virtual
wall consists of a unilateral constraint. The first part of the inequality,
2%7, is the same as Equation (7.4) when the virtual damping is equal to
zero. The stiffness is limited by the physical damping in the system, which
must be sufficient to dissipate at least as much energy as the energy leaks
introduced by sampling. The second term of the inequality, 2£“ , relates the
Coulomb friction in the device to the encoder resolution. It should be noted
that normally one of the terms is the dominating effect and provides the
limiting factor for passive virtual stiffness. In the experimental verification
of this passivity condition presented by [Abbott and Okamura 05], the
maximum virtual stiffness limited by damping and sampling rate, 2%’, is
almost two orders of magnitude smaller than the Coulomb friction limited
virtual stiffness, ZJA—C.

Consider the following simplified conceptual derivation of the passivity
criterion in Equation (7.5) to provide an intuitive understanding of the
passivity limit of virtual stiffness. Imagine compressing an ideal spring
with constitutive law F' = kx. The energy stored in the ideal spring after

compressing a distance Az = x4 1 —x, = v during one sampling period is

1
E= §km2. (7.6)

132 7. Stability of Haptic Displays

F Slope =k
Energy Leak
Flat Line Due
to Sampling
| | >
I I X v
Xt Xt+1

Figure 7.7. Detail of energy leak due to sampling.

Due to sampling, the force of the virtual spring remains constant be-
tween sampling intervals, as shown in Figure 7.7. Equation (7.7) is the re-
sulting energy leak due to sampling, while at the same time, Equation (7.8)
is the energy dissipated by viscous damping (assuming constant intersam-
ple velocity). In order to maintain passivity, the energy dissipated must
be greater than the energy introduced by the energy leak (Equation (7.9));
therefore, it is possible to calculate the maximum passive virtual stiffness,
given the sampling rate and the physical dissipation (damping) in the me-
chanical system (Equation (7.11)):

1
Eleax = §K(UT)2 (77)
Edissip = b'UQT (78)
Eleax < Edissip (79)
1
ngﬂT? < Tho? (7.10)
2
K < — 7.11
. (711)

A similar derivation can be made for the virtual stiffness limit due to
friction and quantization interval. Continuing with the conceptual example
of rendering an ideal spring, the position of the haptic display can change
to a distance equal to the quantization interval, A, without being sensed.
This would introduce an energy leak equal to the compression of the ideal
spring by a distance A (see Equation (7.12)). The friction in the mechanism
must dissipate at least as much energy as that introduced by the energy
leak, which is the work done by the friction force (Equation (7.13)). This
inequality leads to a maximum passive virtual stiffness, given the position
sensing quantization and the friction in the mechanism (Equation (7.16)):

7.4. Extensions to the Passivity Framework 133

maxt1 Locally
2 |

Stable

Globally

Stable (Passive)

El LocY

Unstable

v

i

Figure 7.8. Dimensionless stability plane with characteristic regions for zero delay

where 3 := 22~ and 0 := 3 and &(r) = £L [Diolaiti et al. 06]. (© 2006 IEEE)
1 2
Eleak — §KA 5 (712)
Edissip - cha (713)
Elcak S Edissipa (714)
1 A
_KAQ < c\ T 7.15
KA < (2T (7.15)
2fe
K < . 7.16
< 2 (7.16)

Equation (7.5) can be nondimensionalized by dividing by 2K. The two
resulting terms, § and o, are used as axes to define a nondimensional plane
depicting stability regions according to behavior, shown in Figure 7.8. This
is a graphical way of depicting Equation (7.5). [Diolaiti et al. 06] analyze a
similar system with the added inclusion of time delay and introduce a new
nondimensionalized velocity parameter, f :

b
g = = (7.17)
o = Je (7.18)

KA’

134 7. Stability of Haptic Displays

x
11 = — 1
position £ A (7.19)
. t
time T = T (7.20)
) T
velocity &(1) = % (7.21)

One advantage of this plot is the identification of varying types of in-
stability between regions of the plane. The variable £ defines a new type of
behavior: it is the maximum allowed velocity of the haptic display, faster
than which the small effect of Coulombic friction and virtual environment
parameters can cause instability. The stability boundaries at § = 0 = %
correspond to the effective dissipation limits for ensuring passivity, with §
representing the effective limit for viscous dissipation and o corresponding
to the effective limit for Coulombic dissipation.

Quantization also limits performance through velocity estimation. Con-
sider, for example, a slowly changing position signal with a very fast sam-

pling rate. The finite difference method for estimating velocity is

. Yk — Yr—1

U = T . (7.22)
If at sample times t5_o and t;_1 the position information remains constant,
Ux—1 = 0. However, if at sample time ¢; the position increases by one
quanta, d, then the resulting velocity suddenly jumps to a very large value,
U = %. This rapidly varying velocity estimate can lead to instability.
One common method to reduce this effect is to low-pass filter the resulting
velocity signal, thereby smoothing out the jumps. With increasing sample
rate, filtering becomes more imperative to obtain velocity signals. This
presents a trade-off, however, as increased filtering leads to increased time
delay and phase distortion, which can cause instability. The precision of
the velocity estimate improves with decreased sample rate, as illustrated in
Figure 7.9. However the reliability of the signal decreases due to the longer
time delay. This has the effect of averaging the velocity over a longer
period of time, or over a number of samples, as shown in Figure 7.9 and
Equation (7.23):

n—1
. 1 . Yk — Yk—n
= — E = 7.23
. K 7=0 o nT ()

Fixed filters, such as a Butterworth filter, compute velocity from a
weighted sum of the raw velocity signal, 0;, and past filtered velocity esti-
mates, 0;.

Uy, = Z bj'{);C,j + Z aj0k—j, (7.24)
§=0 j=1

7.4. Extensions to the Passivity Framework 135

I IT——T1

Figure 7.9. Effect of window length on the variance of velocity [Janabi-Sharifi
et al. 00]. (© 2000 IEEE)

where a; and b; are the filter coefficients, and 7 is the order of the filter. As
n increases, the filter becomes more like an ideal low-pass filter; however,
the delay and phase distortion are also increased. An additional subtlety
is that the signal is filtered along with the noise, so that heavy filtering
leads to poor transient response. To address this, [Janabi-Sharifi et al. 00]
introduce a velocity filtering technique that relies on a first-order adap-
tive window length. The basic concept is that, when position signals are
changing slowly, the window should be long to provide a precise estimate of
the velocity. However, when the position is rapidly changing, the window
length should be short to improve velocity reliability and prevent introduc-
tion of excessive delay. The window criterion exists to determine whether
the slope of a straight line reliably approximates the derivative of the signal
between two samples, x; and xy_,. If the noise, d, in the position signal
can be assumed to be uniformly distributed, such that d = |leg||oo V&, then
mathematically, the adaptive window problem becomes finding a solution
for the largest possible window length n that satisfies the following:

[Yk—i — Ly, ;| < d, Vie{l,2,...,n}, (7.25)
where Ly, . = an+by(k—10)T, given that, (7.26)
kyk—n —k
o = Bt =Ry g (7.27)
n
nY Yk =2 ik
o =b, = —=0 =0 . (7.28)

Tnn+1)(n+2)/6

The solution for the window length, n, is found iteratively where the win-
dow grows from n = 1 until the window no longer fits the enclosed data;
then the previous n is used to compute the velocity estimate. The variable
b, is the slope of a line that is a least-square approximation that minimizes
the error in the velocity signal [Janabi-Sharifi et al. 00].

7.4.2 Nonlinearities

Nonlinearities are an important consideration for haptic displays in virtual
environments. Essentially, almost all useful virtual environments are non-
linear in that impedances change dramatically upon contact with objects

136 7. Stability of Haptic Displays

in the virtual environment. [Miller et al. 00] analyze the passivity of nonlin-
ear delayed and non-delayed virtual environments. The authors establish
a passivity criterion relating the haptic display and human operator, the
virtual coupling, and the virtual environment for both delayed and non-
delayed environments. Virtual couplings will be introduced in more detail
in Section 7.5.1.

Again, the physical dissipation in the mechanism is a critical parameter.
In addition to the passivity criterion, a key result is a limit to an environ-
ment parameter, o, measuring the lack of passivity exhibited by the virtual
environment. It can be expressed as a function of inertia, damping and stiff-
ness parameters. The variable « is related to the physical dissipation in
the system, ¢, and is modulated by the impedance of the virtual coupling
7, if present [Miller et al. 00]:

a < 0, (7.29)

oy
< - 7.30
@ 0+~ ()

Many common haptic devices also have nonlinear kinematics. Through
an analysis of system dynamics, [Miller et al. 04] show how the nonlinear
transformation from joint space to task space for a haptic display also
affects passivity. This result can be summarized by the following inequality:

Om > JL6, (7.31)

where §,, represents the joint space dissipation, J is the haptic interface
Jacobian, and ¢ is the task space dissipation required for passive rendering
of the desired virtual environment.

7.5 Control Methods
7.5.1 Virtual Coupling

Virtual coupling is one of the basic techniques for rendering virtual environ-
ments in haptics, introduced by [Colgate et al. 95] and amplified by [Miller
et al. 00, Adams and Hannaford 98] and others. The virtual coupling con-
nects the haptic display and the virtual environment and consists of a
virtual spring in virtual damper in mechanical parallel, as shown in Fig-
ure 7.10.

The virtual coupling is advantageous because it simplifies the problem
of ensuring stability. Using a virtual coupling to establish stability of the
haptic display, which is a sampled-data system, it is only necessary to
satisfy the following two conditions:

7.5. Control Methods 137

"Virtual Coupling"
K

operator

/

haptic display Passive
Tool Simulation

Figure 7.10. The virtual coupling [Colgate et al. 95]. ((© 1995 IEEE)

1. Select the virtual coupling parameters, such that a virtual wall with
these parameters would be passive.

2. Make the virtual environment discrete-time passive.

Condition 2 is simpler to achieve than analyzing the complete sampled-
data system to ensure passivity. Separating the discrete-time passivity of
the virtual environmentfrom the rest of the system frees the designer from
concerns regarding the interaction between the virtual environment and
the haptic display and human operator. The virtual coupling, however,
has the effect of reducing the maximum environment impedance to match
the passivity limits of the haptic display, which are generally lower than
the impedances of the virtual environment.

Virtual environments rendering mass require the use of discrete time
integrators which typically are not passive, making condition 2 difficult to
meet. [Brown and Colgate 98] analyzed various discrete time integration
techniques in the context of establishing the lower bound of virtual mass
that can be rendered while maintaining passivity. The value of minimum
mass required for passive rendering depends on the form of integrator used.

The work of [Miller et al. 00] generalized these results by explicitly
modeling the non-passivity of the human and haptic interface, as well as the
virtual environment (Figure 7.11). As shown in Equation (7.30), the virtual
coupling increases the allowed lack of passivity in the virtual environment
while still maintaining overall system passivity.

[Adams and Hannaford 98] introduced the use of a virtual coupling
network to analyze and guarantee system stability. Using this technique,
elements of the haptic display are typically modeled as a series of inter-
connected, two-port elements in a network, shown in Figure 7.12. The

138 7. Stability of Haptic Displays

G
=T
' D
" - ZOH > 1 JT
: s —l
L 14 »{_)
& {
! :

Figure 7.11. The haptic display system with a virtual coupling [Miller et al. 00].
(© 2000 IEEE)

i, Vi Va —v,

— .

O—) —0O— . wual
human + | haptic virtual |f + | Virtua
operator | 3 | display P coupling| F |environ-

s d s ment

'—O_" -I—O—.
haptic X
interface

Figure 7.12. The virtual coupling as a two-port element in a network [Adams and
Hannaford 98]. (© 1998 IEEE)

virtual coupling introduced by [Colgate et al. 95] and the coupling behav-
ior of the god-object introduced by [Zilles and Salisbury 95| are subsets
of this more general two-port coupling network approach. Coupling net-
work results are shown for both admittance and impedance architectures.
This technique was then applied to a 2-degree-of-freedom haptic display
in both impedance and admittance configurations, showing passivity re-
sults derived experimentally and theoretically for both conditions [Adams
et al. 98].

7.5.2 Passivity Observers and Controllers

[Gillespie and Cutkosky 96] introduced a technique for stabilizing virtual
walls by compensating for the energy leaks due to the zero-order hold, as
well as the asynchronous switching times associated with sampling. Asyn-
chronous switching times arise because the haptic display generally does
not enter or exit the virtual wall exactly at a sampling time; typically, the

7.5. Control Methods 139

o

0. T T T T T . . . reference ball displacement

I 7\ sampleddata ball displacement
1
0.41 [.

°
S
8

°
°
4

03f sampled data ball displacement

°
3
8

0.2k reference ball displacement

01F

°
g
8

displacement (m) and scaled wall force (N)
3
S
2

displacement (m) and scaled wall force (N)
o

S
o
3

S AN
, N ’ \
ALY
f_wall
0.08

0 005 01 015 02 025 03 035 04 045 %o 005 01 0.15

02 025 03 035 04 045
time (seconds) time (seconds)
(a) (b)
sampled data ball displacement
01 T T T T T
reference ball displacemen\
S~

&/\/ [Y

f_wall

displacement (m) and scaled wall force (N)

0 005 01 015 02 025 03 035 04 045
time (seconds)

(c)

Figure 7.13. (a) Sampled-data system simulation of a bouncing ball. (b) Half
sample prediction simulation results of a bouncing ball. (c) Bouncing ball sim-
ulation with sampling and zero-order hold correction algorithm active [Gillespie
and Cutkosky 96].

transition from “outside” to “inside” the virtual wall occurs in between
sampling intervals (Figure 7.3). These two sources of error are treated sep-
arately. The goal is to design a digital controller to cancel the effects of
these induced energy leaks, stabilizing the system. Figure 7.13(a) shows a
sampled-data system simulation of a ball bouncing on a surface, without
sampling correction.

The dominant behavior of the zero-order hold can be approximated as
a half sample delay. By designing a controller that predicts the state of
the system one half sample forward in time, the majority of the error in-
troduced by the zero-order hold can be canceled. At sample time ¢t = kT,
the controller predicts the state at t = KT+ T'/2 and then renders the vir-
tual environment using the predicted system state. Figure 7.13(b) shows
simulation results using a half sample prediction algorithm of a sampled-
data system rendering a bouncing ball. It can be seen that modeling the

140 7. Stability of Haptic Displays

X X,

N

S fedt Sy

+

Figure 7.14. One-port network with passivity controller [Ryu et al. 04]. ((© 2004
IEEE)

zero-order hold as a half sample delay improves the rendering during the
majority of the time the ball is in contact with the virtual wall. However,
during the last sample, and while in contact with the wall, the algorithm
introduces an error, computing a force pulling back toward the wall. This
error occurs because the ball exits the virtual wall between sampling in-
tervals due to the secondary effect of sampling, asynchronous switching
times.

To address this second concern, a model of the system to predict thresh-
old crossing times using state information is also incorporated. Conceptu-
ally, this is estimating ¢, and t; in Figure 7.3, given a model of the known
properties of the system and virtual environment being rendered. Dead-
beat control is then used to compensate for the energy leaks caused by these
asynchronous switching times. Figure 7.13(c) shows the final improvement
after correcting the half sample delay and using deadbeat control to correct
for asynchronous switching times. Note that correcting for the effects of
sampling is independent of the added problem of sensor quantization.

Expanding on this work and the work on virtual coupling networks,
[Hannaford et al. 01] introduced passivity observers (POs) and passivity
controllers (PCs) for stabilizing haptic interaction with virtual environ-
ments. Passivity observers analyze system behavior and track the energy
flow between elements to estimate errors introduced into the sampled-data
system. Passivity controllers act to dissipate this excess energy by adjust-
ing the impedance between elements in the system (Figure 7.14). They
effectively inject additional damping to dissipate energy.

One of the main advantages of POs is that the PC does not modify the
desired system impedance unless an energy correction is necessary. Unlike
the virtual coupling, which constantly moderates the feel of the virtual
environment, the passivity controller adds damping only when necessary
to counteract energy leaks. This can potentially lead to better feeling
virtual environments.

The earliest POs assumed that velocity and force were constant between
samples, but more recent passivity observers presented in [Ryu et al. 05],
based on [Ryu et al. 04] and [Stramigioli et al. 02], show that this assump-
tion can be relaxed. The resulting passivity observer for an impedance

7.5. Control Methods 141

------ without PC
5| with current PC
1.5x10°r | PC with model info.
1.0x10°
izE, 5.0x10*
=
5 0.0
C
L
-5.0x10%
-1.0x10°F
0 1 2 3 4 °
Time (sec)

Figure 7.15. Effect of passivity controller and modeled reference energy [Ryu
et al. 05]. ((© 2005 IEEE)

causality device takes the following form:

k
Eovs (k) = | Y f(ti-a)(@(ty) = 2(tj-1)) | + () (@(t;) —a(tj-1). (7.32)
j=0

The bracketed term of Equation (7.32) represents the exact energy input
to the discrete-time virtual environment from time 0 to time ¢, and the
second term is an estimate of the energy input one time step ahead, and is
based on the assumption that the velocity does not change during that time
step. If the dynamics of the controller are much faster than the dynamics of
the mechanical system, then the predictive second term in Equation (7.32)
is typically not necessary. If at any time the observed energy, Eopbsy, is
negative, then the sampled-data system may be contributing to instability.
It is then the job of the PC to modify the impedance of the network to
dissipate the excess energy.

To further improve the performance of PO/PC systems and main-
tain the perception of a good feeling virtual environment, the excess en-
ergy should be dissipated smoothly. [Ryu et al. 05] introduced a PO that
smoothly corrects for energy leaks by modeling the behavior of a reference
system and comparing that to the observed behavior, shown in Figure 7.15.
For simple virtual environments, a model of the energy flow into the vir-
tual environment can be explicitly calculated to act as the reference energy.
However, most interesting virtual environments are nonlinear, making an
exact calculation of the energy flow into the virtual environment very diffi-

142 7. Stability of Haptic Displays

cult. In this case, and in the case of designing a general passivity observer,
a simple energy model can be used to reference the behavior. One imple-
mentation of such an energy tracking reference is the numerical integration
of the power flow into the virtual environment, where the force is computed,
given the observed position information.

In the case of a continuous and lossless one-port network system, the
energy input to the system should be equal to the energy stored, S, plus
the energy dissipated, D:

/ ' H(P)i(r)dr = S(t) + D(B), ¥t >0 (7.33)
0

This leads to the following PC algorithm for the one-port network with
impedance causality shown in Figure 7.14 [Ryu et al. 05]. In this case, the
PO (Eobsy in step 4, Equation (7.34)) uses the modeled energy, instead of
the one-step-ahead predicted energy in Equation (7.32).

1. z1(k) = x2(k) is the input.
2. Ax(k) =xz1(k) —z1(k —1).
3. fa(k) is the output of the one-port network.

4. The actual energy input at step k is

=

Eopsv (k) =Y f1(j — D) Az(j). (7.34)

=0

5. S(k) and D(k) are the amount of stored energy and dissipated energy
of the virtual environment at step k, respectively.

6. The PC control force to make the actual input energy follow the
reference energy is calculated:

—(Bobsv (k) =S(k)—=D(k)) -
0 it W(k) >0,

where W (k) = Egpsy (k) — S(k) — D(k).
7. fi(k) = fa(k) + fpc(k) is the output.

Another improvement to the passivity observer gained by following the
energy of a reference system is the problem of resetting. Consider the case
of a virtual environment that is both highly dissipative in certain regions
and active in other regions. The active region requires the passivity con-
troller to add damping to maintain stability. If the user spends a long time

7.6. Extending Z-Width 143

in the dissipative region before contacting the active region, a large accu-
mulation of positive energy in the passivity observer can be built up during
interaction with the dissipative region. This is very similar to the problem
of integrator windup. Upon switching to the active region, the passivity
observer may not act until the net energy becomes negative, causing a delay
while the accumulated excess of passivity is reduced. During that delay,
the system can exhibit unstable behavior. If the passivity observer tracks
a reference energy system, this problem of resetting can be avoided.

Another method of tracking and dissipating energy leaks is presented
by [Stramigioli et al. 02]. This work uses a port-Hamiltonian method for
estimating these sampled-data system errors. The key aspect of all of
these energy leak and passivity controllers is determining the inaccuracy
introduced by the discrete-time approximation of the continuous system,
so that the controller can dissipate this excess energy.

7.6 Extending Z-Width

This section first extends the passivity criterion in Equation (7.2) and gives
insight into passivity design with frequency-dependent damping. Then,
mechanical and electrical methods of implementing high frequency damping
are reviewed.

7.6.1 Frequency-Dependent Passivity Criterion

A system in feedback with an uncertainty set consisting of all possible
passive behaviors must itself be strictly passive, to guarantee closed loop
stability [Colgate and Hogan 88]. We use this fact to establish the strict
passivity of the haptic display model in Figure 7.16. Specifically, we replace
the block representing the human operator with a block containing the
uncertainty set ¥. The set ¥ is the set of all linear, time-invariant (LTI),
passive operators that map vy to Fj. It is well known that such an operator
must be positive real; i.e., in the Nyquist plane, the real part (representing
energy dissipation) must be non-negative. Thus, ¥ can be represented by
the half-plane shown in Figure 7.17.

The task, therefore, is to prove the stability of the system illustrated in
Figure 7.16. Doing so establishes the strict passivity of the haptic display.
In this section, we only outline the proof, which uses Nyquist theory. The
basic strategy is to write the closed loop characteristic equation as 1 +
A(s)A(s) = 0, where A(s) is the uncertainty set consisting of the unit disk.
If the open loop (uncoupled) system is stable, then a sufficient condition
for closed loop (coupled) stability is

1+ A(jw)A(jw) #0 Yw, VA, (7.36)

144 7. Stability of Haptic Displays
N
F,
Haptic Display
Fm - ’ v,
=O—> Z, (s)
\ J

(= .
- HE) '
s T

Virtual Environment (digital)

@ | =

Figure 7.16. Model of a haptic system. Here, Z, is the impedance of the haptic
display hardware; H(z) is the (linear) virtual environment; ¥ is the uncertainty
set that we use to replace the human operator. Note that we assume that the
actuator force Fj,, and human force Fj, are collocated.

Im

Re

Figure 7.17. The set of all possible LTI passive impedances occupies the right
half Nyquist plane.

or, equivalently,
[A(jw)] <1 Vw. (7.37)

This is a version of the small gain theorem [Desoer and Vidyasagar 75].
Straightforward manipulation shows that the sufficient condition for the
closed loop stability of Figure 7.16 is:

—j n=00
1 — e doT 1

T S 12w + gnws) + B(jw + jnws)|(w + nws)? 70,
(7.38)

1—H (4T

7.6. Extending Z-Width 145

where wy = 27/T is the sample rate. Consider the sum Z + X. Because
Y has an arbitrary imaginary part, the imaginary part of Z contributes
nothing further. The real part of Z, however, shifts ¥ to either the right
or left, depending on sign. In the cases of interest, R{Z(jw)} > 0, which
shifts ¥ to the right. Moreover, 1/(Z + X) is easily found to be a circular
disk centered on the real axis and tangent to the origin, as well as the point
(1/R{Z(jw)},0). If this disk were frequency independent, we could factor
it out of the infinite sum, but in general this is not the case. Here, we
will make the assumption that {7 (jw)} is non-decreasing with frequency,
meaning that the amount of damping in the haptic display remains fixed
or grows with increasing frequency. With this assumption, it is apparent
that

1 1
Z(w + jnws) + 50w + jnws) © RMZGe)} + S(w)

Vn#£0 (7.39)

and Equation (7.38) is satisfied whenever Equation (7.40) holds true:

n=oo

Z(! = # 0. (7.40)

w + nws)

1— efij

[R{Z(jw)} + 2(w)]

1+ H(eT) T

n=—oo

The infinite sum can be solved analytically, yielding:

1+ H(e™T) T —e 7 £ 0 (7.41)
2(1 = cos(wT))[R{Z(jw)} + E(jw)] ’ '
or, in terms of the unit disk, A:
: T 7T —-1) 1+A
JwT
LHHE)0 —eoser) 72Gw) 7 (7.42)
For compactness, we define
—jwT _
r(jw) = T(e o) (7.43)

4(1 — cos(wT))"

The assumption of uncoupled stability enables us to rewrite Equation (7.42)
as
r(jw)H(eT)

N RZ00)) + G H ()

£ 0, (7.44)

146 7. Stability of Haptic Displays

which is the form of Equation (7.36). Thus, stability requires that

r(jw)H (')
. < L 7.45
R(ZG)] + rGo)HeT))
This can be manipulated into the following form:
T . ,
7Z(i - - =T _ VH(eI*T 7.4

R(Z9) + oy e~ DT} >0 (140)

for 0<w<wy= %

Equation (7.46) may be compared to the result of Colgate and Schenkel,
also presented here as Equation (7.2) [Colgate and Schenkel 97]. In the
event that R{Z(jw)} has a fixed value of b, the results are the same. Equa-
tion (7.46) is therefore a more general result than previously reported, but
subject to the non-decreasing assumption.

7.6.2 Insights into Passivity and Damping

The passivity criterion in Equation (7.46) is slightly more general than
Equation (7.2) in that it allows for frequency-dependent physical damp-
ing, but only under the assumption that the physical damping is a non-
decreasing function of frequency.

The criterion in Equation (7.46) lets us, in effect, sum together the
physical damping (first term) and virtual damping (second term). At each
frequency from zero to the Nyquist frequency, the sum (total damping)
must be positive to ensure passivity.

Figure 7.18 shows, as an example, the physical, virtual, and total damp-
ing for the haptic display pictured in Figure 7.19(a), and implements the
virtual wall of Equation (7.3). It is evident that, in order to ensure passiv-
ity at the Nyquist frequency, a considerable excess of damping is required
at low frequencies.

The negative virtual damping at high frequency is caused principally by
the phase delay of the backwards difference differentiator used to compute
velocity. This effect can be minimized by filtering. For instance, if we com-
bine a first order low-pass digital filter with the differentiator and set the
cutoff frequency at one-fifth the Nyquist frequency, we obtain Figure 7.20.
The high frequency negative damping has been reduced but at a cost. The
extra phase lag introduced by the filter causes negative virtual damping to
occur at lower frequencies. This is a good illustration of why high order
velocity filters are rarely used in haptics: the cost of added phase delay
often out weighs the benefits of magnitude roll-off. To the best of the au-
thor’s knowledge, no theory of optimal filter design for haptics (other than

7.6. Extending Z-Width 147

1

----- Physical Damping
=== \/irtual Damping
Total Damping

Damping Levels
o

N\\
~
~
RN
-0.5¢ So
~
~
~
NS
S
-1 L L L N~ —
0 0.2 0.4 0.6 0.8 1

Frequency (w/vK‘)

Figure 7.18. Physical, virtual, and total damping levels for the system of Fig-
ure 7.19(a) and the virtual wall of Equation (7.3) with m/b = 0.1, KT/b = 1,
B/b = 0.5. Note the excess of total damping at low frequency required to achieve
positive damping at the Nyquist frequency.

F, F,,v, F, F,.v,
— | m|—> — | m | —
[
m
—H .
(a) (b)

Figure 7.19. (a) Model of a haptic display having inertia m and viscous damping
b. (b) Addition of the mass ma gives rise to “high pass” damping.

the work of [Janabi-Sharifi et al. 00], reviewed previously, which is aimed
at handling quantization), has been developed.

A second approach to improving Z-width is to replace the simple, fixed
damper of Figure 7.19(a) with a high frequency damper, such as the one
in Figure 7.19(b). By connecting the distal end of the damper to a floating
inertia rather than to ground, the effective physical damping, (R{Z(jw)})
approaches zero at low frequency. Figure 7.21 shows that the combination
of “high pass” damping and velocity filtering enables a significantly higher
impedance virtual wall to be implemented passively than for the naive
design of Figures 7.18 and 7.19(a).

7. Stability of Haptic Displays

148
T T T T -
----- Physical Damping
. === \/irtual Damping
S = Total Damping
----- Total Damping w/o Filter |
@ T
% -\,~.~.
4 Sesao
o il TR -
g_ 0 \
\
& \
o \\
-0.5F \N-———__ ____________ [——
1 . . .
0 0.2 0.4 0.6 0.8 1

Frequency (w/wN)

Figure 7.20. Physical, virtual, and total damping for the system of Figure 7.19(a),
with the same parameters as Figure 7.18 and the addition of a first order low
pass velocity filter having a cutoff frequency one-fifth of the Nyquist frequency.
Note that the improved total damping at high frequencies is offset by reduced
total damping at low frequencies. Nonetheless, it is evident that the physical
damping could be reduced or the virtual wall impedance increased without loss

of passivity.

1F P T L E T IR T TR sEE R
R R Physical Damping

; === \/irtual Damping

= Total Damping

0.5

Damping Levels
o

N~-
) T — ———

0 0.2 0.4 0.6 0.8 1
Frequency (w/wN)

Figure 7.21. Physical, virtual, and total damping for the system of Figure 7.19(b),
with the same low pass velocity filter as Figure 7.20, and a higher impedance
virtual wall. Parameters are m/b = 0.1, m2/b = 0.01, KT'/b = 1.8, B/b = 0.9.
Positive total damping is maintained at all frequencies without significant excess

at any frequency.

7.6. Extending Z-Width 149

7.6.3 Mechanical Methods

The direct approach of adding a mechanical viscous damper to the haptic
interface to increase the maximum passive impedance of the system works
well, as demonstrated by [Colgate and Brown 94], and illustrated in Fig-
ure 7.22. The maximum passive virtual stiffness and damping are limited
by the physical dissipation in the mechanism by Equation (7.4). The addi-
tional physical damping is counteracted using digital control; the damper
torque is measured and a low-passed version of this torque is added to the
motor command. This masks the user’s perception of damping at the low
frequencies of human voluntary motion but improves system stability and
passivity at high frequencies, where discrete-time control is ineffectual and
energy leaks are most problematic.

There are some practical problems with typical physical dampers, such
as temperature dependence, fluid leakage, and Coulomb friction generated
in fluid seals. Figure 7.4 shows the increased impedance range when phys-
ical damping is added to the haptic display and when the sampling rate
is increased. Magnetic dampers using eddy currents also work with the
added benefit of being able to turn off the damping, when rendering low
impedances [Gosline et al. 06]. It is also possible to use mechanical brakes
to dissipate energy and mimic the behavior of a damper in order to provide

W AR I

Figure 7.22. Design of a 1-DOF haptic display with motor (on the left) and
fluid-filled viscous damper (on the right) connected via a removable steel tape
[Brown 95].

150 7. Stability of Haptic Displays

the necessary dissipation in the mechanism [An and Kwon 06], although
the slow dynamic response of magnetic brakes may limit their performance.

7.6.4 Electrical Methods

More recently, a variety of techniques emerged that take advantage of
analog components for rendering continuous time behavior. This method
strives to avoid the difficulties presented by mechanical dampers, but still
incorporates the dramatic performance improvements afforded.

One such method of electrically increasing the Z-width of a haptic dis-
play is to design an analog motor controller that locally monitors each joint
and controls the coupling stiffness and damping [Kawai and Yoshikawa 02]
in order to maintain passivity. A schematic of this is shown in Figure 7.23.
In this way, the joint stiffness and damping are continuously controlled,
while the virtual environment is updated and commands the joint coupling
parameters at the sampling intervals, as shown in Figure 7.24. The increase
in passivity and system Z-width using these analog impedance controllers
is shown in [Kawai and Yoshikawa 04].

Another class of controllers takes advantage of the motor’s natural dy-
namics. Since electric motors are gyrators, a damper on the mechanical side
of the motor acts as a resistor on the electrical side of the motor [Karnopp
et al. 00]. [Mehling et al. 05] used a resistor and capacitor in parallel with
the motor to add frequency-dependent electrical damping to a haptic dis-
play, as illustrated in Figure 7.25.

Potentiometer
.

Uj

[Potentiometer,

ith Joint

Y

Computer

Summing Circuit

Y

Differentiation Circuit

h(

VCAIC

Figure 7.23. Outline of analog feedback control corresponding to two joints [Kawai
and Yoshikawa 04]. ((© 2004 IEEE)

7.6. Extending Z-Width 151

-{ Computer

Conventional haptic device.

-{ Computer

/
/

/ Parameters
of Impedance

Proposed haptic device.

Figure 7.24. Conventional and electrically coupled hybrid haptic device [Kawai
and Yoshikawa 04]. (© 2004 IEEE)

2, 0]

Damper
B
Z) 7| Motor Motor
Kt’ Rm Kt’ Rm
Motor + _ + _
I p A
[! o R Co

(a) (b) ©

Figure 7.25. (a) A mechanically damped system and (b) two electrically damped
systems; (b) one without and (c) one with frequency dependence [Mehling
et al. 05]. (© 2005 IEEE)

152 7. Stability of Haptic Displays

Average Stability Boundaries for Tested Levels of Electrical Damping
300 T T T T T T T T
— (1) No Electrical Damping
—— (2) Electrical Damping = 0.00755 Nms/rad
—— (3) Electrical Damping = 0.0151 Nms/rad

250 b

n

o

o
T

Virtual Stiffness (Nm/rad)
@
o

o
o
T

50,

0 05 1 15 2 25 3 35 4 45
Virtual Damping (Nms/rad)
Figure 7.26. Z-width plot of the average stability boundary for each level of

electrical damping. Dashed lines indicate plus or minus one standard deviation
[Mehling et al. 05]. (© 2005 IEEE)

The amount of electrical damping added is a function of the motor
torque constant K, the motor winding resistance R,,, and the external
resistor Rq:

K}

Rl + Rm .

This technique can be quite effective, as illustrated in Figure 7.26. [Mehling
et al. 05] used an R-C cutoff frequency of 2.6 Hz, providing significant
damping at higher frequencies, where the haptic display is likely to be
unstable or exhibit limit cycle oscillations and above the frequencies of
human voluntary motion. It is important to note that the capacitor acts
as apparent inertia on the mechanical side of the motor. For this reason,
the R-C time constant of the electrical damper must be selected carefully.
The resistance must be small enough to provide useful damping at the
frequencies of interest, while keeping the capacitance small enough to cause
only a modest impact on apparent inertia at low frequency.

Clearly, maximum physical damping, b, is provided when R; goes to
zero, i.e., the motor is “crowbarred.” However, this creates problems with
driving the motor; any voltage applied bypasses the motor. The winding
resistance, R,,, also sets an upper bound on the electrical damping that
can be achieved in this configuration. There is also a practical limit to how
large the capacitance can be in addition to the added apparent inertia at
low impedance.

bcq = (747)

7.6. Extending Z-Width 153

Analog

Clircuit

Wave Transform

Figure 7.27. The wave transform connecting the virtual environment to the elec-
trical domain is implemented with an analog circuit [Diolaiti and Niemeyer 06].
(©2006 IEEE)

To increase electrical damping beyond the limit of Equation (7.47), it
is possible to design a circuit to cancel the effect of the motor winding
resistance, R,, [Diolaiti and Niemeyer 06]. Such a circuit in the motor
amplifier allows the motor winding resistance to be reduced dramatically;
however, due to noise and thermal effects, R,, cannot be canceled com-
pletely. Due to gyration, the motor winding inductance acts like a spring
on the mechanical side. [Diolaiti and Niemeyer 06] take advantage of this
by combining wave variable control with a circuit to cancel R,,, leaving
the springlike inductance to couple the physical world with the virtual en-
vironment. The benefit is that for common DC motors, such as those in
the Phantom haptic display, the resulting effective spring constant of the
inductance is much higher than the maximum passive stiffness that can be
attained using feedback and digital control. This technique also requires
recasting the digital controller in the form of wave variables, as shown in
Figure 7.27.

Extending Diolaiti and Niemeyer’s work, it is possible to use analog
circuitry to estimate the back EMF (electromotive force or voltage) of the
winding, by canceling both the resistance and the inductance of the motor
windings. The back EMF of the motor is proportional to velocity, so feeding
this signal back to the motor inside the current control amplifier provides
electrical damping. One caveat is that prior knowledge of the parameters
and dynamics of the motor is required in order to design such circuitry, and
dynamic tuning of the parameters is necessary to compensate for heating
in the windings.

7.6.5 Psychophysical Methods

In addition to analytical and quantitative methods for increasing the max-
imum passive stiffness that can be rendered by a haptic display, there are a

154 7. Stability of Haptic Displays

variety of psychophysical techniques available to improve human perception
of stiff virtual surfaces.

[Salcudean and Vlaar 97] developed a rendering method for virtual
walls using a “braking pulse” that occurs upon contact with the wall bound-
ary. The force of the pulse is designed to bring the haptic display to rest
as quickly as possible, ideally in one sampling period. This corresponds to
a very high level of damping when crossing the wall boundary, but since
the high level of damping is not sustained, it does not lead to instabil-
ity that would occur with a similar level of virtual damping in a constant
parameter virtual wall. After the braking pulse, as the user remains in
contact with the virtual wall, the rendering method consists of the stan-
dard spring-damper virtual wall with virtual stiffness and damping gains
set, such that they are stable. This results in behavior that is similar
to an object colliding with a real wall and increases the perceived wall
stiffness.

[Lawrence et al. 00b] introduced the concept of rate-hardness as a way of
quantifying human perception of our virtual surfaces. Rate-hardness is the
ratio of initial rate of change of force versus initial velocity upon penetrating
the surface. Human perception studies indicate that rate-hardness is a
more relevant perceptual hardness metric then absolute mechanical stiffness
when rendering virtual surfaces. This is likely due to the relatively poor
performance of the human kinesthetic sense when in contact with stiff walls.
When a human is already in contact with a stiff virtual wall, the change in
position relative to the change in force when haptically querying the wall
is very small.

If the user is allowed to dynamically test the wall through tapping, for
example, human perception is much better at distinguishing varying surface
hardness. It seems that tapping elicits high frequency force differences,
which can be perceived by the pressure and vibration sensory receptors in
the fingers. Artificially increasing the rate hardness can act as a haptic
illusion, making the surface seem harder than the stiffness alone would
predict [Lawrence et al. 00b].

[Okamura 98] introduced a technique to improve the perception of
contact with virtual objects. High frequency open-loop force transients
corresponding to interaction events in the virtual environment are super-
imposed on a standard virtual wall controller, as indicated in Figure 7.28.
To determine the open loop vibrations to display, high resolution vibration
and position information was gathered while tapping on a variety of ma-
terials. The data was fit to the amplitude A(v), decay constant B, and
frequency w of a decaying sinusoidal signal Q(¢), resulting in each material
having a different vibration signature:

Q(t) = A(v)e Blsin(wt). (7.48)

7.7. Summary 155

Position

Proportional
Transient
[0} _A/f\
<
(s}
w
Time

Figure 7.28. Schematic of position and force in event-based haptic display
[Kuchenbecker et al. 06]. ((© 2006 IEEE)

Typical haptic displays generally do not accurately reproduce high fre-
quency vibration signals. To compensate for these device dynamics, [Oka-
mura et al. 01] improved the vibration models by performing a set of human
perceptual experiments to tune the parameters of the vibration signatures.
Based on the results of the experiments, the adjusted parameters result
in more realistic perception of tapping on the three test materials: rub-
ber, wood, and aluminum. One drawback to these techniques is that each
material type, geometry, and haptic display needs to be individually char-
acterized prior to use to determine appropriate vibration signatures.

Extending the work on reality-based vibration feedback, [Kuchenbecker
et al. 06] utilized an acceleration matching technique based on the experi-
ence of contacting the real object being rendered in the virtual environment.
To improve the accuracy of the force transients displayed upon contact with
a virtual object, the open-loop acceleration signal is pre-warped by an in-
verted system model to correct for the distortion and dynamics induced by
the haptic display. Chapter 21 treats in more detail measurement-based
haptic rendering.

7.7 Summary

In summary, haptic instability frequently arises from a lack of passivity
when rendering virtual environments. In order to maintain passivity, vir-

156 7. Stability of Haptic Displays

tual environment impedance can be reduced to acceptable levels for passiv-
ity, but this depends upon the specific hardware used, and highly complex
virtual environments make this undesirable. To preserve the universal-
ity and accuracy of virtual environments, virtual couplings can be used
to modulate the impedance transmitted between the haptic display and
the virtual environment to ensure passivity. Passivity controllers can in-
crease the nominal impedance of haptic display by counteracting energy
leaks introduced by the sampled-data system. Direct methods of design-
ing for passivity work to increase the maximum passive impedance of the
haptic interface, improving performance. Lastly, perceptual methods of
improving performance take advantage of the limits of human perception
to create the illusion of higher performance rendering on existing haptic
display hardware.

Acknowledgments

This work was supported in part by Northwestern University, National
Science Foundation IGERT Fellowships through grant DGE-9987577, and
National Science Foundation Grant No. 0413204.

Part |l

Rendering Techniques

3

Introduction to Haptic
Rendering Algorithms

M. A. Otaduy and M. C. Lin

The second part of this book focuses on the rendering algorithm of a haptic
interface system. It presents several techniques commonly used for com-
puting interactions between virtual objects and for displaying the contact
forces to a user. The collection of chapters covers different aspects of the
rendering algorithm, such as collision detection and contact force compu-
tation, with the specific challenges and solutions associated with different
configuration spaces (such as 3D point, 3D object, etc.), material proper-
ties (rigid vs. solid), or model descriptions (polygonal surface, parametric
surface, etc.).

In this chapter we first give an overview on the key elements in a typical
rendering algorithm. We start by formulating a general definition of the
haptic rendering problem. Then, we list different algorithmic components
and describe two of the traditional approaches in detail: direct rendering
vs. rendering through a virtual coupling. We continue with an exposition
of basic concepts for modeling dynamics and contact, both with rigid and
deformable bodies, and we conclude with an introduction to multirate ren-
dering algorithms for enhancing the quality of haptic rendering.

8.1 Definition of the Rendering Problem

In the real world, we perceive contact forces when we touch objects in the
environment. These forces depend on the surface and material properties
of the objects, as well as the location, orientation, and velocity with which
we touch them. Using an analogy with the real world, haptic rendering can
be defined as the process of generating contact forces to create the illusion
of touching virtual objects.

159

160 8. Introduction to Haptic Rendering Algorithms

8.1.1 Kinesthetic Display of Tool Contact

Haptic perception can be divided into two main categories, based on the
nature of the mechanoreceptors that are activated: cutaneous perception
is related to mechanoreceptors in the skin, while kinesthetic perception is
related to mechanoreceptors in joints, tendons, and muscles. And the type
of contact forces that can be perceived can be classified into two types:
forces that appear in direct contact between the skin and the environment,
and forces that appear due to contact between an object manipulated by
the user (i.e., the tool) and other objects in the environment.

In this part of the book, we focus mostly on the kinesthetic perception
of contact forces through a tool, i.e., the perception of contact between a
manipulated tool and other objects, on our joints, tendons, and muscles.
As mentioned in Chapter 1, even when using an intermediate tool, subjects
can infer medium- and large-scale properties of the objects in the environ-
ment as if touching them directly. Moreover, the use of a tool becomes
a convenient computational model in the design of haptic rendering algo-
rithms, and even the computation of direct skin interaction could make use
of a tool model for representing e.g., fingers (as described in Chapter 4).

8.1.2 Teleoperation of a Virtual Tool

Figure 8.1 shows an example of haptic rendering of the interaction between
two virtual jaws. The user manipulates a haptic device, and can perceive
through the rendering algorithm the contact between the jaws as if he or
she were actually holding and moving the upper jaw. In this example, the
upper jaw can be regarded as a virtual tool, and the lower jaw constitutes
the rest of the virtual environment.

Haptic rendering of the interaction between a virtual tool and a virtual
environment consists of two tasks:

1. Compute and display the forces resulting from contact between the
virtual tool and the virtual environment.

2. Compute the configuration of the virtual tool.

A haptic rendering system is composed of two sub-systems: one real
system (i.e., the user and the haptic device), and one virtual system (i.e.,
the tool and the environment). The tool acts as a virtual counterpart
of the haptic device. From this perspective, haptic rendering presents a
remarkable similarity to master-slave teleoperation, a topic well studied in
the field of robotics. The main difference is that in teleoperation both the
master and the slave are real physical systems, while in haptic rendering
the tool is a virtual system. Similarly, haptic rendering shares some of
the challenges of teleoperation, namely, the computation of transparent

8.1. Definition of the Rendering Problem 161

Figure 8.1. Manipulation of a virtual jaw. The user manipulates a haptic device,
and though the rendering algorithm can perceive forces as if manipulating the
upper jaw in the virtual environment.

teleoperation: i.e., the virtual tool should follow the configuration of the
device, and the device should produce forces that match those computed
on the tool, without filtering or instability artifacts.

8.1.3 A Possible Definition

It becomes clear from the discussion above that a haptic rendering problem
should address two major computational issues, i.e., finding the tool config-
uration and computing contact forces, and it should use information about
device configuration. Moreover, it requires knowledge about the environ-
ment, and in some cases it modifies the environment as well. With these
aspects in mind, one possible general definition of the rendering problem
could be as follows:

Given a configuration of the haptic device H, find a configuration of the
tool T that minimizes an objective function f(H — T), subject to environ-
ment constraints. Display to the user a force F(H,T) dependent on the
configurations of the device and the tool.

This definition assumes a causality precedence where the input variable
is the configuration of the haptic device H, and the output variable is the
force F. This precedence is known as impedance rendering, because the
haptic rendering algorithm can be regarded as a programmable mechanical
impedance [Hogan 85, Adams and Hannaford 98], as depicted in Figure 8.2.

162 8. Introduction to Haptic Rendering Algorithms

Device
——>
Configuration H Programmable

Impedance
Device
«—
Force F Z HAPTIC RENDERING
Device Optimization Environment .
Configuration H Problem Constraints {gZ}
Tool
Configuration T
Device F Force
Force Computation

HAPTIC RENDERING

Figure 8.2. Overview of haptic rendering. The top block diagram shows haptic
rendering as an impedance control problem, with the device configuration as
input, and the device forces as output. A more detailed look in the bottom
breaks the haptic rendering problem into two subproblems: (1) computation of
the tool configuration, and (2) computation of device forces.

In impedance rendering, the device control system should provide position
information and implement a force control loop.

A different possibility is admittance rendering, where the haptic ren-
dering system can be regarded as a programmable mechanical admittance
that computes the desired device configuration, as the result of input de-
vice forces. In that case, the device control should provide device forces
and implement a position control loop. As discussed by [Adams and Han-
naford 98], the two types of rendering systems present dual properties,
and their design can be addressed in a unified manner; therefore, here we
restrict the exposition to impedance rendering.

In the definition of the haptic rendering problem presented above, we
have not specified the objective function that must be optimized for com-
puting the tool’s configuration, nor the function for computing output
forces. The differences among various haptic rendering algorithms lie pre-
cisely in the design of these functions and are briefly outlined next and
covered in the following chapters.

8.2. Components of a Rendering Algorithm 163

HAPTIC RENDERING

Device Configuration Tool Configuration
Device Tool Solver isi i
Controller Collision Detection
Device Force Environment Constraints

Figure 8.3. Main components of a general impedance-type rendering algorithm.

8.2 Components of a Rendering Algorithm

On a high level, for an impedance-rendering system, the rendering algo-
rithm must be composed of (i) a solver module that determines the con-
figuration of the tool, and (ii) a collision detection module that defines
environment constraints on the tool. Figure 8.3 depicts such a high-level
description of the algorithm. More specifically, we distinguish the follow-
ing components of the rendering algorithm, which may vary among specific
implementations.

8.2.1 The Tool Model

The number of degrees of freedom (DOFs) of the tool is a variable that
to a large extent depends on the application, and should be minimized as
much as possible to reduce the complexity of the rendering. Hence, in many
modeling applications (see Chapter 26), it suffices to describe the tool as
a point with three DOFs (translation in 3D), in medical applications (see
Chapter 24), it is often possible to describe it as a ray segment with five
DOFs, and in virtual prototyping (see Chapter 22), it is often required
to describe the tool as a solid with six DOFs (translation and rotation in
3D). When the tool is represented as a point, the haptic rendering problem
is known as three-degree-of-freedom (3-DOF) haptic rendering, and when
the tool is represented as a rigid body, it is known as siz-degree-of-freedom
(6-DOF) haptic rendering.

In case of modeling the tool and/or the environment with solid objects,
the haptic rendering algorithm also depends on the material properties of
these objects. Rigid solids (see Section 8.4.1 and Chapter 16) are limited
to six DOF's, while deformable solids (see Section 8.4.2 and Chapters 19
and 20) may present a large number of DOFs. At present, the dynamic
simulation of a rigid tool is efficiently handled in commodity processors,
and the challenge may lie on the complexity of the environment and the

164 8. Introduction to Haptic Rendering Algorithms

contact configuration between tool and environment. Efficient dynamic
simulation of complex deformable objects at haptic rates is, however, an
issue that deserves further research.

8.2.2 The Optimization Problem

The simplest possible option for the objective function is the distance be-
tween tool and haptic device, i.e., f = ||H — 7. Given this objective func-
tion, one can incorporate information about the environment in multiple
ways. In the most simplest way, known as direct rendering and described in
more detail in the next section, the environment is not accounted for in the
optimization leading to the solution 7 = H. Another possibility is to intro-
duce hard inequality constraints g;(7) > 0 that model non-penetration of
the tool in the environment. The highly popular god-object 3-DOF haptic
rendering algorithm [Zilles and Salisbury 95] formulates such an optimiza-
tion problem. Non-penetration may also be modeled following the penalty
method, with soft constraints that are added to the objective function:
= [H~T| + %, kig?(T).

As in general optimization problems, there are multiple ways of solving
the tool’s configuration. The optimization may be solved until convergence
on every rendering frame, but it is also possible to perform a finite number
of solver iterations (e.g., simply one), leading to a quasi-static solution for
every frame.

Moreover, one could add inertial behavior to the tool, leading to a prob-
lem of dynamic simulation. Then, the problem of solving the configuration
of the tool can be formulated as a dynamic simulation of a virtual physically
based replica of a real object. This approach has been, in fact, followed by
several authors (e.g., [McNeely et al. 99, Otaduy and Lin 06]). Modeling
the virtual tool as a dynamic object has shown advantages for the analysis
of stability of the complete rendering algorithm, as described in Chapter 7.
If the dynamic simulation can be regarded as a solution to an optimiza-
tion problem, where forces represent the gradient of the objective function,
then the selected type of numerical integration method can be viewed as
a different method for solving the optimization problem. For example, a
simple explicit Euler corresponds to gradient descent, while implicit Euler
corresponds to a Newton solver.

8.2.3 Collision Detection

Asnoted in Figure 8.3, in the context of haptic rendering, collision detection
is the process that, given a configuration of the tool, detects potentially
violated environment constraints. Collision detection can easily become the
computational bottleneck of a haptic rendering system with geometrically
complex objects, and its cost often depends on the configuration space

8.3. Direct Rendering vs. Virtual Coupling 165

of the contacts. Therefore, we devote much attention to the detection of
collisions with a point tool for 3-DOF rendering (see Chapter 10) and the
detection of collisions with a solid tool for 6-DOF rendering (see Chapters 9,
11, 12, and 13).

There are also many variations of collision detection, depending on the
geometric representation of the objects. In this book, we focus mostly on
objects using surface representations, with most of the chapters discussing
approaches for polygonal representations, and one chapter on techniques
for handling parametric surfaces (see Chapter 17). Similarly, we separately
handle collision detection for objects with high-resolution texture informa-
tion in Chapter 18.

8.2.4 Collision Response

In algorithms where the tool’s configuration is computed through a dynamic
simulation, collision response takes the environment constraints given by
the collision detection module as input and computes forces acting on the
tool. Therefore, collision response is tightly related to the formulation of
environment constraints g;(7") discussed above.

The two commonly used approaches for collision response are penalty
methods and Lagrange multipliers, which we introduce later in Section 8.4.3.
Other chapters in this book describe collision response in more detail.
Chapter 11 presents a penalty-based approach for collision response on
a rigid body in the context of 6-DOF rendering, while Chapters 16 and 20
describe constraint-based approaches on rigid and deformable bodies, re-
spectively. In case of dynamic environments, collision response must be
computed on the environment objects as well.

8.3 Direct Rendering vs. Virtual Coupling

We now focus on two specific approaches to the rendering algorithm, to
illustrate with examples the different components of the algorithm.

8.3.1 Direct Rendering Algorithm

The overall architecture of direct rendering methods is shown in Figure 8.4.
Direct rendering relies on an impedance-type control strategy. First, the
configuration of the haptic device is received from the controller, and it is
assigned directly to the virtual tool. Collision detection is then performed
between the virtual tool and the environment. Collision response is typ-
ically computed as a function of object separation or penetration depth
(see Section 9.4) using penalty-based methods. Finally, the resulting con-
tact force (and possibly torque) is directly fed back to the device controller.

166 8. Introduction to Haptic Rendering Algorithms

: R
Device —_ Tool

= — -
Configuration Configuration Collision
Detection

N——r—

Device
Controller
——
Collision
Device Foce ———1 Response
N

Figure 8.4. Main components of a direct rendering algorithm.

More formally, and following the discussion from Section 8.2.2, direct
rendering corresponds to an optimization problem that trivially assigns
7T =H (up to some scale or rigid transformation). This solution answers
the second problem in haptic rendering, i.e., the computation of the con-
figuration of the tool. Then, the first problem, the computation of forces,
is formulated as a function of the location of the tool in the virtual envi-
ronment, F(g,7).

The popularity of direct rendering stems obviously from the simplicity of
the calculation of the tool’s configuration, as there is no need to formulate a
complex optimization problem (for example, rigid body dynamics in 6-DOF
rendering). However, the use of penalty methods for force computation
has its drawbacks, as penetration values may be quite large and visually
perceptible, and system instability can arise if the force update rate drops
below the range of stable values (see the discussion in Chapter 7).

Throughout the years, direct rendering architectures have often been
used as a first practical approach to haptic rendering. Thus, the first 3-
DOF haptic rendering algorithms computed forces based on potential fields
defined inside the environment. However, as pointed out early by [Zilles
and Salisbury 95], this approach may lead to force discontinuities and
pop-through problems. Direct rendering algorithms are perhaps more pop-
ular for 6-DOF rendering, and a number of authors have used them, in
combination with convex decomposition and hierarchical collision detec-
tion [Gregory et al. 00b, Ehmann and Lin 01] (see Section 9.3 for more de-
tails); with parametric surface representations [Nelson et al. 99] (see Chap-
ter 17); with collision detection hierarchies based on normal cones [Johnson
and Cohen 01,Johnson and Willemsen 03,Johnson and Willemsen 04, John-
son et al. 05] (see also Section 17.7); or together with fast penetration
depth computation algorithms and contact clustering [Kim et al. 02¢, Kim
et al. 03] (see Section 9.4). In most of these approaches, the emphasis was
on fast collision detection or proximity queries, and the work can also be
combined with the virtual coupling algorithms described next.

8.3. Direct Rendering vs. Virtual Coupling 167

8.3.2 Rendering through Virtual Coupling

Despite the apparent simplicity of direct rendering, the computation of
contact and display forces may become a complex task from the stabil-
ity point-of-view. As discussed in more detail in Chapter 7, stability of
haptic rendering can be answered by studying the range of programmable
impedances. With direct rendering and penalty-based contact forces, ren-
dering impedance is hardly controllable, leading often to unstable haptic
display.

As also described in Chapter 7, stability enforcement can largely be
simplified by separating the device and tool configurations, and insert-
ing in-between a viscoelastic link referred to as wvirtual coupling [Colgate
et al. 95]. The connection of passive subsystems through virtual coupling
leads to an overall stable system. Figure 8.5 depicts the configurations
of the device and the tool in a 6-DOF virtual contact scenario using vir-
tual coupling. Contact force and torque are transmitted to the user as a
function of the translational and rotational misalignment between tool and
device configurations.

Figure 8.6 depicts the general structure of a rendering algorithm based
on virtual coupling (for an impedance-type display). The input to the ren-
dering algorithm is the device configuration, but the tool configuration is
solved in general through an optimization problem, which also accounts for
environment constraints. The difference between device and tool configu-

Figure 8.5. Manipulation through virtual coupling. As the spoon is constrained
inside the handle of the cup, the contact force and torque are transmitted through
a virtual coupling. A wireframe image of the spoon represents the actual config-
uration of the haptic device [Otaduy and Lin 06]. (© 2006 IEEE)

168 8. Introduction to Haptic Rendering Algorithms

Device

Tool Configuration
I/ Configuration —l v

Collision Detection
Device Virtual Tool
Controller Coupling Solver l
| Collision Response

Contact Forcre — |

Device Force

Figure 8.6. Main components of a rendering algorithm using virtual coupling.

ration is used both for the optimization problem and for computing output
device forces.

The most common form of virtual coupling is a viscoelastic spring-
damper link. Such a virtual coupling was used by [Zilles and Salisbury 95,
Ruspini et al. 97] in the god-object and virtual proxy algorithms for 3-DOF
rendering. The concept was later extended to 6-DOF rendering [McNeely
et al. 99], by considering translational and rotational springs. For simplic-
ity, here we also group under the name of virtual coupling other approaches
that separate tool and device configurations, such as the four-channel archi-
tecture based on teleoperation control designed by [Sirouspour et al. 00], or
constraint-aware projections of virtual coupling for 6-DOF rendering [Or-
tega et al. 06].

The use of a virtual coupling allows a separate design of the impedance
displayed to the user (subject to stability criteria), from the impedance
(i.e., stiffness) of environment constraints acting on the tool. Environment
constraints can be of high stiffness, which reduces (or even completely
eliminates) visible interpenetration problems.

On the other hand, virtual coupling algorithms may suffer from no-
ticeable and undesirable filtering effects, in case the update rate of the
haptic rendering algorithm becomes too low, which highly limits the value
of the rendering impedance. Multirate algorithms [Adachi et al. 95, Mark
et al. 96,0taduy and Lin 06] (discussed in more detail in Section 8.5 in this
chapter) can largely increase the transparency of the rendering by allowing
stiffer impedances.

8.4 Modeling the Tool and the Environment

In this section we pay special attention to the optimization problem for
computing the tool configuration, by briefly introducing some examples: a
6-DOF tool solved with rigid body dynamic simulation, deformable objects,
and formulation of contact constraints.

8.4. Modeling the Tool and the Environment 169

8.4.1 Rigid Body Dynamics

We first consider a tool modeled as a rigid body in 3D, which yields 6 DOF's:
3D translation and rotation. One possibility for solving the configuration
of the tool is to consider a dynamic model where the tool is influenced by
the environment through contact constraint forces, and by the user through
virtual coupling force and torque.

We define the generalized coordinates of the tool as q, composed of the
position of the center of mass x and a quaternion describing the orienta-
tion #. We define the velocity vector v by the velocity of the center of mass
vx and the angular velocity w expressed in the world frame. We denote
by F the generalized forces acting on the tool (i.e., force Fx and torque T,
including gravity, centripetal and Coriolis torque, the action of the virtual
coupling, and contact forces).

Given the mass m and the inertia tensor M of the tool, the dynamics
are defined by the Newton-Euler equations:

mvx - an
Mw =T+ (Mw) X w. (8.1)
and the relationship between the generalized coordinates and the velocity
vector is
X = Vy,
0 = Gu. (8.2)
The matrix G relates the derivative of the quaternion to the angular ve-
locity, and its definition is out of the scope of this book, but may be found
in e.g., [Shabana 89]. The same reference will serve for an introduction to
rigid body dynamics and the derivation of the Newton-Euler equations.
For compactness, it is useful to write the equations of motion in general
form:
Mv =F,
q=Gv. (8.3)
Time discretization with implicit integration. Here, we consider time dis-
cretization schemes that yield a linear update of velocities and positions of
the form
Mv(i + 1) = AtF,
q(i +1) = AtGv(i + 1) + q(i). (8.4)

Note that the updated coordinates q(i+ 1) need to be projected afterwards
onto the space of valid rotations (i.e., unit quaternions).

170 8. Introduction to Haptic Rendering Algorithms

One example of linear update is obtained by using Backward Euler dis-
cretization with first-order approximation of derivatives. As pointed out
by [Colgate et al. 95], implicit integration of the differential equations de-
scribing the virtual environment can ease the design of a stable haptic
display. This observation has lead to the design of 6-DOF haptic render-
ing algorithms with implicit integration of the rigid body dynamics of the
tool [Otaduy and Lin 05, Otaduy and Gross 07]. Implicit integration also
enhances display transparency by enabling stable simulation of the tool
with small mass values.

Linearized Backward Euler discretization takes a general ODE of the
form y = f(y,t) and applies a discretization y(i + 1) = y(i) + Atf(y(i +
1),t(i+ 1)), with a linear approximation of the derivatives f(y (i + 1),¢(i +
1) = f(y(i),t)+ %(y(i +1)—y@@)+ %At. For time-independent deriva-
tives, which is our case, this yields an update rule: y(i+1) = y(i) + At(I—
Atg—;)*lf (7).

Applying the linearized Backward Euler discretization to (8.3), and
discarding the derivative of the inertia tensor, the terms of the update rule
given in Equation (8.4) correspond to

M- arE Atza—beG,
ov dq
. , 1 oF\ .

As can be inferred from the equations, implementation of implicit inte-

gration requires the formulation of Jacobians of force equations g—z and

g—f. These Jacobians include the term for inertial forces (Mw) X w, con-

tact forces (see Section 8.4.3), or virtual coupling (see next). [Otaduy and
Lin 06, Otaduy 04] formulate in detail these Jacobians.

Six-DOF virtual coupling. We pay special attention here to modeling vis-
coelastic virtual coupling for 6-DOF haptic rendering. The tool 7 will
undergo a force and torque that move it toward the configuration H of
the haptic device, expressed in coordinates of the virtual environment. We
assume that the tool undergoes no force when the device’s configuration in
the reference system of the tool corresponds to a position x. and orienta-
tion .. We refer to this configuration as coupling configuration. Coupling
is often engaged at the center of mass of the tool (i.e., x. = 0), but this
is not necessarily true. Coupling at the center of mass has the advantage
that coupling force and torque are fully decoupled from each other.

Given configurations (x7,07) and (x¢, 07) for the tool and the device,
linear coupling stiffness k, and damping b,, the coupling force F on the

8.4. Modeling the Tool and the Environment 171

tool can be defined as
F = kr(XH — X7 — RTXC) + b, (VH — V7 — w7 X (RTXC)). (8.6)

The definition of the coupling torque requires the use of an equivalent
axis of rotation u [McNeely et al. 99]. This axis of rotation can be de-
fined using the scalar and vector parts (Afs and Af, respectively) of the
quaternion Af = 0y - 071 9}1 describing the relative coupling orientation
between tool and device. Then,

1

u =2 acos(Ad,) - (m : Aau) .

(8.7)
The coupling torque can then be defined using rotational stiffness ky and
damping by as

T = (Rx.) X F + kgu + by (wy — wr). (8.8)

Multibody simulation. Dynamic simulation of the rigid tool itself is not a
computationally expensive problem, but the problem becomes considerably
more complex if the tool interacts with multiple rigid bodies. In fact,
the fast and robust computation of multibody contact is still a subject
of research, paying special attention to stacking or friction [Stewart and
Trinkle 00, Mirtich 00, Milenkovic and Schmidl 01, Guendelman et al. 03,
Kaufman et al. 05].

Moreover, with multibody contact and implicit integration it is not
possible to write a decoupled update rule, given in Equation (8.4) for each
body. The coupling between bodies may appear (a) in the Jacobians of
contact forces when using penalty methods, or (b) through additional con-
straint equations when using Lagrange multipliers (see Section 8.4.3).

8.4.2 Dynamics of Deformable Objects

There are multiple options for modeling deformable objects, and researchers
in haptic rendering have often opted for approximate approaches that trade
accuracy for computational cost. Here we do not aim at covering in depth
the modeling of deformable objects, but rather highlight through an exam-
ple the inclusion in the complete rendering algorithm. Chapters 19 and 20
discuss in more detail practical examples of deformable object modeling
for haptic rendering, focusing respectively on fast approximate models and
the handling of contact.

The variational formulation of continuum elasticity equations leads to
elastic forces defined as the negative gradient of elastic energy fQ o-ed,
where o and e represent stress and strain tensors. The various elastic-
ity models differ in the definition of elastic strain or the definition of the

172 8. Introduction to Haptic Rendering Algorithms

relationship between stress and strain. Given the definition of elastic en-
ergy, one can reach a discrete set of equations following the finite element
method [Zienkiewicz and Taylor 89]. Typically, the dynamic motion equa-
tions of a deformable body may be written as

M-v=F-K(q) (q—q)-D-v, (8.9)
q="v. (8.10)

where M, D, and K represent, respectively, mass, damping, and stiffness
matrices. The stiffness matrix captures elastic forces and is, in general,
dependent on the current configuration q.

At present times, haptic rendering calls for fast methods for modeling
elasticity, and a reasonable approach is to use the linear Cauchy strain ten-
sor, as well as the linear Hookean relationship between stress and strain.
Linear strain leads, however, to considerable artifacts under large deforma-
tions, which can be eliminated by using corotational methods that mea-
sure deformations in the unrotated setting of each mesh element [Miiller
et al. 02, Miller and Gross 04].

The use of corotational strain allows for stable and robust implicit inte-
gration methods, while producing a linear update rule for each time step.
With linearized Backward Euler (described before for rigid bodies), the
update rule becomes

Mv(i + 1) = AtF, (8.11)
q(i+1) = Atv(i+ 1) 4+ q(i). (8.12)

The discrete mass matrix M and force vector F become

M:M+At(D—g—F>+At2 <K(q)—a—F>,
A%

FoF(i)+ <é1v1 +D- Z—S) v(i). (8.13)

Chapter 20 offers a more detailed discussion on the efficient simulation of
linear elastic models with corotational methods, as well as the implemen-
tation of virtual coupling with a deformable tool.

8.4.3 Contact Constraints

Contact constraints model the environment as algebraic equations in the
configuration space of the tool, g;(7) > 0. A configuration of the tool
7o such that g;(7p) = 0 indicates that the tool is exactly in contact with
the environment. Collision response exerts forces on the tool such that
environment constraints are not violated. We will look at two specific ways

8.4. Modeling the Tool and the Environment 173

of modeling environment contact constraints, penalty-based methods and
Lagrange multipliers, and we will focus as an example on their application
to a rigid tool.

Penalty method. In general terms, the penalty method models contact con-
straints as springs whose elastic energy increases with object interpenetra-
tion. Penalty forces are computed as the negative gradient of the elastic
energy, which produces collision response that moves objects toward a non-
penetrating configuration.

For simplicity, we will consider here linearized point-on-plane contacts.
Given a colliding point p of the tool, a general contact constraint has the
form g;(p) > 0, and after linearization n” (p — pg) > 0, where n = Vg; is
the normal of the constraint (i.e., the normal of the contact plane), and pg
is the contact point on the environment. With such a linearized constraint,
penetration depth can easily be defined as § = —nT (p — py).

Penalty energies can be defined in multiple ways, but the simplest is
to consider a Hookean spring, which yields an energy F = %kéz, where
k is the contact stiffness. Then, the contact penalty force becomes F =
—VE = —kdVJ. It is also common to apply penalty forces when objects
become closer than a certain tolerance d, which can be easily handled by
redefining the penetration depth as 6 = d — n”(p — pg). The addition
of a tolerance has two major advantages: the possibility of using penalty
methods in applications that do not allow object interpenetration, and a
reduction of the cost of collision detection. With the addition of a tolerance,
object interpenetration occurs less frequently, and, as noted in Section 9.4,
computation of penetration depth is notably more costly than computation
of separation distance.

With a rigid tool, the contact point p can be expressed in terms of
the rigid body state as p = x + Rr, where x and R are, respectively, the
position and orientation of the tool, and r is the position of the contact
point in the tool’s reference frame. Then, for the case of a rigid tool, and
adding a damping term b, the penalty force and torque are

F = —kN(x+ Rr — pg) — bN(v +w x (Rr)),
T = (Rr) x F, (8.14)

T is a matrix that projects a vector onto the normal of the

where N = nn
constraint plane.

Penalty-based methods offer several attractive properties: the force
model is local to each contact and computationally simple, object inter-
penetration is inherently allowed, and the cost of the numerical integra-
tion is almost insensitive to the complexity of the contact configuration.
This last property makes penalty-based methods well suited for interac-

tive applications with fixed time steps, such as haptic rendering. In fact,

174 8. Introduction to Haptic Rendering Algorithms

T, Tiq

C D

Pi+1
(a) (b)

Figure 8.7. Torque discontinuity: (a) Penetration depth and torque at time t;,
with contact point ps; (b) Penetration depth and torque at time ¢;41, after the
contact moves to contact point p;41.

penalty-based methods have been applied in many 6-DOF haptic rendering
approaches [McNeely et al. 99,Kim et al. 03,Johnson and Willemsen 03,Mc-
Neely et al. 06, Otaduy and Lin 06, Barbi¢ and James 07].

However, penalty-based methods also have some disadvantages. For
example, there is no direct control over physical parameters, such as the
coeflicient of restitution, and friction forces are difficult to model, as they
require tracking contact points and using local methods [Karnopp 85, Hay-
ward and Armstrong 00]. But, most importantly, geometric discontinuities
in the location of contact points and/or normals lead to torque discon-
tinuities, as depicted schematically in Figure 8.7. Different authors have
proposed various definitions for contact points and normals, with various
advantages and drawbacks. [McNeely et al. 99,McNeely et al. 06, Barbi¢ and
James 07] sample the objects with a discrete set of points, and define con-
tact points as the penetrating subset. [Johnson and Willemsen 03, Otaduy
and Lin 06], on the other hand, employ continuous surface definitions, and
define contact points as local extrema of the distance function between
colliding surfaces. Using a fixed discrete set of points allows for increased
force continuity, while using continuous surface definitions allows for the
detection of all interpenetrations. With the strict definition of penalty
energy given above, penalty force normals are defined as the gradient of
penetration depth, which is discontinuous on the medial axis of the ob-
jects. [McNeely et al. 99, McNeely et al. 06, Barbi¢ and James 07] avoid this
problem by defining as contact normal the surface normal at each pene-
trating point. This alternative definition is continuous in time, but does
not guarantee that contact forces reduce interpenetration.

With penalty-based methods, non-penetration constraints are enforced
by means of very high contact stiffness, which could yield instability prob-
lems if numerical integration is executed using fast explicit methods. The
use of implicit integration of the tool, as described in Section 8.4.1, enhances
stability in the presence of high contact stiffness [Wu 00,Larsen 01, Otaduy

8.4. Modeling the Tool and the Environment 175

and Lin 06, Barbi¢ and James 07]. However, the dynamic equations of
the different dynamic bodies (see Equation (8.4) for rigid bodies or Equa-
tion (8.12) for deformable bodies) then become coupled, and a linear system
must be solved for each contact group. We refer to [Otaduy and Lin 06]
for further details on the Jacobians of penalty force and torque for 6-DOF
haptic rendering.

Lagrange multipliers. The method of Lagrange multipliers allows for an
exact enforcement of contact constraints g(7) > 0 by modeling workless
constraint forces F. = JTX normal to the constraints. Here we consider
multiple constraints grouped in a vector g, and their generalized normals
are gathered in a matrix J7 = Vg. Constraint forces are added to regular
forces of the dynamic equations of a colliding object (e.g., the tool). Then,
constraints and dynamics are formulated in a joint differential algebraic
system of equations. The “amount” of constraint force A is the unknown
of the system, and it is solved such that constraints are enforced.

Typically, contact constraints are nonlinear, but the solution of con-
strained dynamics systems can be accelerated by linearizing the constraints.
Given the state q(i) of the tool at a certain time, constraint linearization
yields g(i+1) ~ g(i) + AtJ - v(i + 1). This linearization, together with the
discretized state update equation, yields the following system to be solved
per simulation frame:

M-v(i+1)=AtF +JT)\

Tov(i+1) > o) (8.15)

The addition of constraints for non-sticking forces A > 0, AT'g(q) =0

yields a linear complementarity problem (LCP) [Cottle et al. 92], which

combines linear equalities and inequalities. The problem in Equation (8.15)

is a mixed LCP and can be transformed into a strict LCP through algebraic
manipulation:

~ 1 ~ ~
IM1JT) > ~7;80) - AtIM™'F. (8.16)

The LCP can be solved through various techniques [Cottle et al. 92], and
once the Lagrange multipliers A\ are known, it is possible to update the
state of the tool.

There are other variants of the problem, for example by allowing sticking
forces through equality constraints, or differentiating the constraints and
expressing them on velocities or accelerations. Several of these variants
of contact constraints with Lagrange multipliers have been employed in
practical solutions to haptic rendering, some of them covered in detail in
this book. Section 15.2.1 discusses the god-object method of [Zilles and

176 8. Introduction to Haptic Rendering Algorithms

Salisbury 95|, the first application of Lagrange multipliers for contact in
3-DOF haptic rendering. Chapter 7?7 describes an extension of the god-
object method to 6-DOF rendering, and Chapter 20 formulates in detail
frictional contact for haptic rendering of deformable objects.

Constraint-based methods with Lagrange multipliers handle all con-
current contacts in a single computational problem and attempt to find
contact forces that produce physically and geometrically valid motions. As
opposed to penalty-based methods, they solve one global problem, which
allows, for example, for relatively easy inclusion of accurate friction mod-
els. However, constraint-based methods are computationally expensive,
even for the linearized system in Equation (8.15), and the solution of con-
strained dynamics and the definition of constraints (i.e., collision detection)
are highly intertwined. The full problem of constrained dynamics is highly
nonlinear, but there are various time-stepping approaches that separate a
collision-free dynamics update, collision detection, and collision response,
for solving locally linear problems [Bridson et al. 02, Cirak and West 05].
Fast enforcement of constrained motion is, however, still a topic of research
in haptic rendering, in particular for rendering deformable objects.

8.5 Multirate Algorithm

As discussed in Section 8.3.2; rendering algorithms based on virtual cou-
pling [Colgate et al. 95] can serve to easily design stable rendering. How-
ever, the complexity of tool and environment simulation may require low
update rates, which turn into low admissible coupling stiffness, and hence
low-quality rendering.

Independently of the simulation and collision detection methods em-
ployed, and the mechanical characteristics of the tool or the environment,
a common solution for enhancing the quality and transparency of hap-
tic rendering is to devise a multirate algorithm (see [Barbagli et al. 03]
for stability analysis of multirate algorithms). A slow process computes
accurate interaction between the tool and the environment and updates
an approximate but simple intermediate representation [Adachi et al. 95].
Then, a fast process synthesizes the forces to be sent to the device, using
the intermediate representation. There have been two main approaches for
designing intermediate representations, which we discuss next.

8.5.1 Geometric vs. Algebraic Intermediate Representations

One approach is to design a local and/or coarse geometric representation
of the tool and/or the environment. A slow thread performs a computa-
tion of the interaction between the full representations of the tool and the

8.5. Multirate Algorithm 177

environment, and updates the local coarse representation. In parallel, a
fast thread computes the interaction between tool and environment using
the simplified representations. The fast computation involves identifying
simplified contact constraints, through collision detection, and computing
the rendering forces. Note that this approach can be used in the context
of both virtual coupling algorithms or direct rendering.

The earliest example of multirate rendering by [Adachi et al. 95] com-
putes collision detection between a point tool and the environment in the
slow thread, approximates the environment as a plane, and then uses the
plane representation in the fast thread. A similar approach was followed
by [Mark et al. 96], with addition of plane filtering between local model
updates. Others used meshes of different resolutions coupled through Nor-
ton equivalents [Astley and Hayward 98], or local linearized submeshes for
approximating high-frequency behavior [Cavugoglu and Tendick 00]. Re-
cently, [Johnson et al. 05] have suggested the use of local collision detection
algorithms for updating the contact constraints in the fast loop.

The second approach is to design a simplified representation of the col-
lision response model between the tool and the environment. The slow
thread performs full computation of collision detection and response be-
tween tool and environment, and updates a simplified version of the colli-
sion response model. This model is then used in the fast thread for comput-
ing collision response for rendering forces to the user. The main difference
with the geometric approach is that the fast thread does not recompute
collision detection for defining contact constraints.

Early approaches to multirate simulation of deformable models consid-
ered force extrapolation for defining the local algebraic model [Picinbono
et al. 00]. This book also describes in further detail two recent approaches
that identify contact constraints in the slow thread, and then use those
constraints for force computation in the fast thread, for rigid bodies [Or-
tega et al. 06] (in Chapter 16), or for deformable bodies [Duriez et al. 04]
(in Chapter 20). Apart from those, we should mention the use of contact
constraints for computing a least-squares solution to Poisson’s restitution
hypothesis for rigid bodies [Constantinescu et al. 05]. Last, the rest of this
section describes two examples that compute in the slow thread a linear
model of the contact response between the tool and the environment, and
then simply evaluate this linear model in the fast thread, for penalty-based
methods [Otaduy and Lin 05, Otaduy and Lin 06] or for constraint-based
methods with Lagrange multipliers [Otaduy and Gross 07].

8.5.2 Example 1: Multirate Rendering with Penalty Methods

Figure 8.8 shows the structure of the rendering algorithm suggested by
[Otaduy and Lin 05, Otaduy and Lin 06]. The visual thread computes

178 8. Introduction to Haptic Rendering Algorithms

...
K O

Device Configuration Tool Configuation

f

Device || viual | [mPHC Inegraton
Controller | : | Coupling 9 Y

Linearized

Contact
Dynamic Simulation

T
Coupling

Force

HAPTIC THREAD VISUAL THREAD

Figure 8.8. Multirate rendering architecture with a linearized contact model. A
haptic thread runs at force update rates simulating the dynamics of the tool and
computing force feedback, while a visual thread runs asynchronously and updates
the linearized contact model [Otaduy and Lin 05, Otaduy and Lin 06].

collision detection between the tool and the environment, as well as collision
response using the penalty-based method (see Section 8.4.3). Moreover, the
equations of collision response are linearized, and the linear model is fed
to the haptic thread. The haptic thread runs at fast haptic update rates,
solving for the configuration of the tool, subject to forces computed using
the linearized contact model. Figure 8.9 shows one application scenario of
the multirate rendering algorithm.

[Otaduy and Lin 05, Otaduy and Lin 06] applied the linearization of
penalty-based forces to 6-DOF haptic rendering with a rigid tool. Recall
Equation (8.14), which describes penalty forces for a rigid tool. Assum-
ing that the visual thread computes collision detection for a configuration
(qo, vo) of the tool, a penalty-based contact model can be linearized in

Figure 8.9. Virtual interaction using a linearized contact model. Dexterous inter-
action of an upper jaw (47,339 triangles) being moved over a lower jaw (40,180
triangles), using the method by [Otaduy and Lin 05,0taduy and Lin 06]. ((© 2005
IEEE)

8.5. Multirate Algorithm 179

general as

OF. OF
F.(q,v) = F.(qo,vo) + =—(q —qo) + (v — o). (8.17)

_—c

aq ov

For more details on the linear approximation for a rigid tool, we refer
to [Otaduy and Lin 05, Otaduy and Lin 06].

An interesting observation of the linearized penalty-based method is

that it imposes no additional cost if the rendering algorithm computes

dynamics of the tool with implicit integration. As shown in Equation (8.5),

the definition of discrete-time inertia requires the same Jacobians g—g and

g—f as the linearized contact model. We would like to point out that these

Jacobians are also used in quasi-static methods for solving the configuration
of the tool [Wan and McNeely 03,Barbi¢ and James 07].

8.5.3 Example 2: Multirate Rendering with Constraints

Figure 8.10 shows the overall structure of the multirate rendering algorithm
presented by [Otaduy and Gross 07] for 6-DOF haptic rendering between
a rigid tool and a deformable environment. This algorithm creates two
instances of the rigid tool manipulated by the user. The visual thread,
typically running at a low update rate (as low as tens of Hz), performs a
full simulation of the wvisual tool coupled to the haptic device and interact-
ing with a deformable environment. The haptic thread, running at a fast
update rate of typically 1 kHz, performs the simulation of the haptic tool
and computes force values to be rendered by the haptic device. Collision
detection and full constraint-based collision response are only computed in
the visual thread. At the same time, the parameters of a linear contact
model are updated, and fed to the haptic thread. This linear model can be
evaluated with a fixed, low number of operations, and ensures extremely
fast update of contact forces in the haptic thread.

For penalty-based collision response, [Otaduy and Lin 05] proposed
a linearized contact model in the state space of the tool. However, for
constraint-based collision response, [Otaduy and Gross 07] proposed a model
of contact Jacobian, linearly relating contact forces F. and the rest of the
forces F acting on the tool. The linearized model takes the form

F.(F) ~ F.(Fo) + %FFC (F — Fy). (8.18)

All that needs to be done in the visual thread is to compute the contact

. OF,
Jacobian TR

The LCP formulation in Equation (8.16) for collision response can be
compactly rewritten as A\ > by. The resolution of the LCP yields a

180 8. Introduction to Haptic Rendering Algorithms

Collision Detection
and Response
VISUAL

Contact THREAD
Device Controller Update

[Virtual Coupling H Visual Tool

i HAPTIC
[Virtual Coupling]H[Haptic Tool Llne:ﬂro((:jz?tact THREAD

Figure 8.10. Multirate rendering using a discrete-time contact Jacobian [Otaduy
and Gross 07].

set of inactive contacts, for which the contact force is zero, and a set of
active contacts for which the constraints hold exactly Ay ,\q = b, =
Aa = A;ilba. The contact force can then be written in terms only of

active contacts as F, = JgA;\jlba. Then, the contact Jacobian can be
easily formulated as
OF. OF. 0b,
OF 0b, OF

= —AtJTA L I.M (8.19)

This formulation involves several approximations, such as ignoring the
change of active constraints between time steps or changes of inertia. Note
also that Equation (8.19) should be slightly modified to account for a mov-
ing or deforming environment, as the state of the tool and the environment
are not explicitly separated. Multirate algorithms enable programming
very high rendering stiffness, under the assumption that the contact space
changes slowly. This is in fact the case in many situations, especially during
sliding contact between tool and environment.

9

Overview on Collision and
Proximity Queries
M. C. Lin and D. Manocha

In a geometric context, a collision or proximity query reports information
about the relative configuration or placement of two objects. Some of the
common examples of such queries include checking whether two objects
overlap in space or their boundaries intersect, or computing the minimum
Euclidean separation distance between their boundaries, etc.

Many publications have been written on different aspects of these queries
in computer graphics, computational geometry, robotics, computer-aided
design, virtual environments, and haptics. These queries arise in diverse
applications including robot motion planning, virtual prototyping, dynamic
simulation, computer gaming, interactive walkthroughs, molecular model-
ing, etc.

For haptic rendering, in order to create a sense of touch between the
user’s hand and a virtual object, contact or restoring forces are generated
to prevent penetration into the virtual model. This step requires collision
detection, penetration depth computation, and determining the contact
forces. Often, separation distances between pairs of objects are also com-
puted to estimate time of collision as well.

This chapter! gives an overview of different queries and various classes
of algorithms for performing queries for different types of geometric mod-
els. These techniques include algorithms for collision detection, distance
queries, and penetration depth query among convex polytopes, non-convex
polygonal models, and curved objects, as well dynamic queries and han-
dling of large environments consisting of multiple objects.

LA preliminary version appeared in [Lin and Manocha 03].

181

182 9. Overview on Collision and Proximity Queries

9.1 Problem Definitions

First, we will define some of the commonly used queries in haptic rendering.

e (ollision detection determines if two objects overlap in space or their
boundaries share at least one common point.

e Separation distance computes the length of the shortest line joining
two objects. Given two sets of points A and B desribing the two
objects, the distance between them can be defined as:

dist(A, B) = minmin |a — b|.
acA beB

e Penetration depth typically refers to the minimum distance needed
to translate one object to make the two overlapping objects disjoint
from each other. Given a set of points A and B describing the two
objects, the penetration depth between them can be defined as:

pd(A, B) = magnitude of shortest ¥ such that miﬂ %nig la — b+v] > 0.
ac €

e (Contact manifolds computation enumerates the set of contact points
or yields some representation of the intersection set.

Distance queries can take on three variant forms: exact, approximate,
and Boolean. The exact form asks for the exact distance between the
objects. The approximate form yields an estimation (either lower or upper
bound), which is within some given error tolerance of the true measure,
and the tolerance could be specified as a relative or absolute error. The
Boolean form reports whether the exact measure is greater or less than a
given tolerance value (either predefined by the users or computed based
on variables in the simulations). Furthermore, the norm by which distance
is defined can also vary. For example, the Euclidean norm is the most
commonly used in haptic rendering. However, in principle other norms are
possible, such as the L; and L, norms.

Each of these queries can be further augmented by introducing the
element of time. If the trajectories of two objects are known, then the next
time when the status of a particular Boolean query (whether collision,
separation distance, or penetration) will change can be determined. In
fact, this “time-to-next-event” query can have exact, approximate, and
Boolean forms as well. These queries are called dynamic queries, whereas
the ones that do not use motion information are called static queries. In the
case where the motion of an object cannot be represented as a closed form
function of time, the underlying application often performs static queries at

9.2. Convex Polytopes 183

specific time steps in the application. For collision queries performed over
a period of time, such queries are often referred to as continuous collision
detection or CCD (see Chapter 12).

These measures, as defined above, apply only to pairs of objects. How-
ever, there may exist many objects in the work space, and we need to
compute the proximity information among all or a subset of them. There-
fore, most of the queries listed above also have associated N-body variants.

Finally, the geometric primitives can be represented in different forms.
They may be convex polytopes, general polygonal models, curved models
represented using parametric or implicit surfaces, set theoretic combina-
tion of objects, etc. Different sets of algorithms have been known to pro-
cess each representation. In this chapter, we highlight several key classes
of techniques and algorithms for collision detection, separation distance,
and penetration depth computation used in haptic rendering. These are
followed by the details of algorithms for more commonly used geometric
representations and more advanced query methods in the next few chapters.

9.2 Convex Polytopes

In this section, we give a brief survey of algorithms for collision detection
and separation distance computation between a pair of convex polytopes.
A number of algorithms with good asymptotic performance have been pro-
posed. The best known runtime bound in computational geometry for
Boolean collision queries takes O(log2 n) time, where n is the number of fea-
tures [Dobkin and Kirkpatrick 90]. It precomputes the Dobkin-Kirkpatrick
hierarchy for each polytope and uses it to perform the runtime query. In
practice, three classes of algorithms are commonly used for convex poly-
topes. These are linear programming, Minkowski sums, and tracking closest
features based on Voronoi diagrams.

9.2.1 Linear Programming

The problem of checking whether two convex polytopes intersect or not can
be posed as a linear programming (LP) problem. More specifically, two
convex polytopes do not overlap, if and only if there exists a separation
plane between them. The coefficients of the separation plane equation are
treated as unknowns. The linear constraints are formulated by imposing
that all the vertices of the first polytope lie on one half-space of this plane
and those of the other polytope lie on the other half-space. The linear
programming algorithms are used to check whether there is any feasible
solution to the given set of constraints. Given the fixed dimension of the
problem, some of the well-known linear programming algorithms [Seidel 90]

184 9. Overview on Collision and Proximity Queries

can be used to perform the Boolean collision query in expected linear time.
By caching the last pair of witness points to compute the new separating
planes, [Chung and Wang 96] proposed an iterative method that can quickly
update the separating axis or the separating vector in nearly “constant
time” in dynamic applications with high motion coherence.

9.2.2 Minkowski Sums and Convex Optimization

The collision and distance queries can be performed based on the Minkowski
sum of two objects. It has been shown in [Cameron and Culley 86], that
the minimum separation distance between two objects is the same as the
minimum distance from the origin of the Minkowski sums of A and —B
to the surface of the sums. The Minkowski sum is also referred to as the
translational C-space obstacle (TCSO). While the Minkowski sum of two
convex polytopes can have O(n?) features [Dobkin et al. 93], a fast algo-
rithm for separation distance computation based on convex optimization
that exhibits linear-time performance in practice has been proposed by
Gilbert et al. [Gilbert et al. 88]. It is also known as the GJK algorithm.
It uses pairs of vertices from each object that define simplices within each
polytope and a corresponding simplex in the TCSO. Initially the simplex
is set randomly and the algorithm refines it using local optimization, till it
computes the closest point on the TCSO from the origin of the Minkowski
sums. The algorithm assumes that the origin is not inside the TCSO.

9.2.3 Tracking Closest Features Using Geometric Locality
and Motion Coherence

[Lin and Canny 91] proposed a distance computation algorithm between
non-overlapping convex polytopes. It is often referred to as the LC algo-
rithm and it keeps track of the closest features between the polytopes. This
is the first approach that explicitly takes advantage of motion coherence
and geometric locality. The features may correspond to a vertex, face, or
an edge on each polytope. It precomputes the external Voronoi region for
each polytope. At each time step, it starts with a pair of features and
checks whether they are the closest features, based on the test whether
they lie within each other’s Voronoi region. If not, it performs a local walk
on the boundary of each polytope until it finds the closest features. It is
highlighted in Figure 9.1. In applications with high motion coherence, the
local walk typically takes nearly “constant time” in practice. Typically
the number of neighbors for each feature of a polytope is constant and the
extent of “local walk” is proportional to the amount of the relative motion
undergone by the polytopes.

9.2. Convex Polytopes 185

Object B
Vb
R,
cp
R,
F, >
. a
Object A

Figure 9.1. A walk across external Voronoi region of Object A. A vertex of
Object B, Vy, lies in the Voronoi region of E,.

[Mirtich 98] further optimized this algorithm by proposing a more ro-
bust variation that avoids some geometric degeneracies during the local
walk, without sacrificing the accuracy or correctness of the original algo-
rithm.

[Guibas et al. 99] proposed an approach that exploits both coherence of
motion using LC [Lin and Canny 91] and hierarchical representations by
Dobkin and Kirkpatrick [Dobkin and Kirkpatrick 90] to reduce the runtime
dependency on the amount of the local walks.

[Ehmann and Lin 00] modified the LC algorithm and used an error-
bounded level-of-detail (LOD) hierarchy to perform different types of prox-
imity queries, using a progressive refinement framework. The implemen-
tation of this technique, “multi-level Voronoi marching,” outperforms the
existing libraries for collision detection between convex polytopes. It also
uses an initialization technique based on directional lookup using hashing,
resembling that of [Dworkin and Zeltzer 93].

By taking the similar philosophy as LC [Lin and Canny 91], [Cameron 97]
presented an extension to the basic GJK algorithm by exploiting motion
coherence and geometric locality in terms of connectivity between neighbor-
ing features. It keeps track of the witness points, a pair of points from the
two objects that realize the minimum separation distance between them.
As opposed to starting from a random simplex in the TCSO, the algorithm

186 9. Overview on Collision and Proximity Queries

starts with the witness points from the previous iteration and performs hill
climbing to compute a new set of witness points for the current configu-
ration. The running time of this algorithm is a function of the number of
refinement steps that the algorithm has to perform.

9.2.4 Kinetic Data Structures

Recently, a new class of algorithms using kinetic data structures (or KDS
for short) have been proposed for collision detection between moving con-
vex polygons and polyhedra [Basch et al. 99, Erickson et al. 99, Kirkpatrick
et al. 02]. These algorithms are designed based on the formal framework of
KDS to keep track of critical events and exploits motion coherence and ge-
ometric locality. The performance of a KDS-based algorithm is separation
sensitive and may depend on the amount of the minimum distance between
the objects during their motion, relative to their size. The type of motion
includes straight-line linear motion, translation along an algebraic trajec-
tory, or algebraic rigid motion (including both rotation and translation).

9.3 General Polygonal Models

Algorithms for collision and separation distance queries between general
polygons model can be classified based on whether they are closed poly-
hedral models or represented as a collection of polygons. The latter, also
referred to as polygon soups, make no assumption related to the connectiv-
ity among different faces or whether they represent a closed set.

Some of the commonly known algorithms for collision detection and sep-
aration distance computation use spatial partitioning or bounding volume
hierarchies (BVHs). The spatial subdivisions are a recursive partitioning
of the embedding space, whereas bounding volume hierarchies are based
on a recursive partitioning of the primitives of an object. These algorithms
are based on the divide-and-conquer paradigm. Examples of spatial par-
titioning hierarchies include k-D trees and octrees [Samet 89], R-trees and
their variants [Held et al. 95], cone trees, BSPs [Naylor et al. 90] and their
extensions to multi-space partitions [Bouma and Vanecek 91]. The BVHs
use bounding volumes (BVs) to bound or contain sets of geometric prim-
itives, such as triangles, polygons, curved surfaces, etc. In a BVH, BVs
are stored at the internal nodes of a tree structure. The root BV contains
all the primitives of a model, and child BVs each contain separate parti-
tions of the primitives enclosed by the parent. Leaf node BVs typically
contain one primitive. In some variations, one may place several primi-
tives at a leaf node, or use several volumes to contain a single primitive.
The BVHs are used to perform collision and separation distance queries.

9.3. General Polygonal Models 187

These include sphere-trees [Hubbard 93, Quinlan 94], AABB-trees [Beck-
mann et al. 90, Held et al. 95, Ponamgi et al. 97], OBB-trees [Gottschalk
et al. 96, Barequet et al. 96, Gottschalk 99], spherical shell-trees [Krish-
nan et al. 98b, Krishnan et al. 98a], k--DOP-trees [Held et al. 96, Klosowski
et al. 98], SSV-trees [Larsen et al. 99], and convex hull-trees [Ehmann and
Lin 01].

9.3.1 Collision Detection

The collision queries are performed by traversing the BVHs. Two models
are compared by recursively traversing their BVHs in tandem. Each re-
cursive step tests whether BVs A and B, one from each hierarchy, overlap.
If A and B do not overlap, the recursion branch is terminated. But if A
and B overlap, the enclosed primitives may overlap and the algorithm is
applied recursively to their children. If A and B are both leaf nodes, the
primitives within them are compared directly.

9.3.2 Separation Distance Computation

The structure of the separation distance query is very similar to the collision
query. As the query proceeds, the smallest distance found from comparing
primitives is maintained in a variable §. At the start of the query, ¢ is initial-
ized to infinity, or to the distance between an arbitrary pair of primitives.
Each recursive call with BVs A and B must determine if some primitive
within A and some primitive within B are closer than, and therefore will
modify, §. The call returns trivially if BVs A and B are farther than the
current d, since this precludes any primitive pairs within them being closer
than §. Otherwise the algorithm is applied recursively to its children. For
leaf nodes, it computes the exact distance between the primitives, and if
the new computed distance is less than 9, it updates §.

To perform approximate distance query, the distance between BVs A
and B is used as a lower limit to the exact distances between their prim-
itives. If this bound prevents d from being reduced by more than the
acceptable tolerance, that recursion branch is terminated.

9.3.3 Queries on Bounding Volumes

Algorithms for collision detection and distance computation need to per-
form the underlying queries on the BVHs. These include computing whether
two BVs overlap or computing the separation distance between them. In
many ways, the performance of the overall proximity query algorithm is
governed by the performance of the sub-algorithms used for proximity
queries on a pair of BVs.

188 9. Overview on Collision and Proximity Queries

Figure 9.2. L is a separating axis for OBBs A and B, because A and B become
disjoint intervals under projection onto L.

A number of specialized and highly optimized algorithms have been
proposed to perform these queries on different BVs. It is relatively simple
to check whether two spheres overlap. Two AABBs can be checked for
overlap by comparing their dimensions along the three axes. The separation
distance between them can be computed based on the separation along
each axis. The overlap test can be easily extended to k-DOPs, where their
projections are checked along the k fixed axis [Klosowski et al. 98].

An efficient algorithm to test two OBBs for overlap based on the sep-
arating axis theorem (SAT) has been presented in [Gottschalk et al. 96,
Gottschalk 99]. It computes the projection of each OBB along 15 axes in
3D. The 15 axes are computed from the face normals of the OBBs (6 face
normals) and by taking the cross-products of the edges of the OBBs (9
cross-products). It is shown that two OBBs overlap if and only if their
projections along each of these axes overlap. Furthermore, an efficient al-
gorithm that performs overlap tests along each axis has been described.
In practice, it can take anywhere from 80 (best case) to 240 (worst case)
arithmetic operations to check whether two OBBs overlap. It is robust and
works well in practice [Gottschalk et al. 96]. Figure 9.2 shows one of the
separating axis test for two rectangles in 2D.

Algorithms based on different swept sphere volumes (SSVs) have been
presented in [Larsen et al. 99]. Three types of SSVs are suggested: point

9.3. General Polygonal Models 189

swept-sphere (PSS), line swept-sphere (LSS), and a rectangular swept-sphere
(RSS). Each BV is formulated by taking the Minkowski sum of the underly-
ing primitive, a point, line or a rectangle in 3D, respectively, with a sphere.
Algorithms to perform collision or distance queries between these BVs can
be formulated as computing the distance between the underlying primi-
tives, i.e., a point, line, or a rectangle in 3D. Larsen et al. [Larsen et al. 99]
have presented an efficient and robust algorithm to compute distance be-
tween two rectangles in 3D, as well as the lines and points. Moreover, they
used priority-directed search and primitive caching to lower the number of
bounding volume tests for separation distance computations.

In terms of higher order bounding volumes, fast overlap tests based
on spherical shells have been presented in [Krishnan et al. 98b, Krishnan
et al. 98a]. Each spherical shell corresponds to a portion of the volume
between two concentric spheres. The overlap test between two spherical
shells takes into account their structure and reduces to checking whether
there is a point contained in a circle that lies in the positive half-plane
defined by two lines. The two lines and the circles belong to the same
plane.

9.3.4 Performance of Bounding Volume Hierarchies

The performance of BVHs on proximity queries is governed by a number
of design parameters. These include techniques to build the trees, number
of children each node can have, and the choice of BV type. An additional
design choice is the descent rule. This is the policy for generating recursive
calls when a comparison of two BVs does not prune the recursion branch.
For instance, if BVs A and B failed to prune, one may recursively compare
A with each of the children of B, B with each of the children of A, or each of
the children of A with each of the children of B. This choice does not affect
the correctness of the algorithm, but may impact the performance. Some
of the commonly used algorithms assume that the BVHs are binary trees
and each primitive is a single triangle or a polygon. The cost of performing
the proximity query is given by [Gottschalk et al. 96, Larsen et al. 99]:

T = Npy X Cpyy + Np x Cp,

where T is the total cost function for proximity queries, Ny, is the number
of bounding volume pair operations, and Cp, is the total cost of a BV
pair operation, including the cost of transforming each BV for use in a
given configuration of the models, and other per BV-operation overhead.
N, is the number of primitive pairs tested for proximity, and C), is the
cost of testing a pair of primitives for proximity (e.g., overlaps or distance
computation).

190 9. Overview on Collision and Proximity Queries

Typically for tight-fitting bounding volumes, e.g., oriented bounding
boxes (OBBs), Ny, and N, are relatively low, whereas Cj, is relatively
high. In contrast, C, is low, while Ny, and N, may be higher for simple
BV types like spheres and axis-aligned bounding boxes (AABBs). Due
to these opposing trends, no single BV yields optimum performance for
proximity queries in all situations.

9.4 Penetration Depth Computation

In this section, we give a brief overview of penetration depth (PD) computa-
tion algorithms between convex polytopes and general polyhedral models.
The PD of two interpenetrating objects A and B is defined as the minimum
translation distance that one object undergoes to make the interiors of A
and B disjoint. It can be also defined in terms of the TCSO. When two
objects are overlapping, the origin of the Minkowski sum of A and —B is
contained inside the TCSO. The penetration depth corresponds to the min-
imum distance from the origin to the surface of TCSO [Cameron 97]. PD
computation is often used in penalty-based force computation for haptic
rendering [Kim et al. 03], as well as motion planning [Hsu et al. 98] and con-
tact resolution for dynamic simulation [McKenna and Zeltzer 90, Stewart
and Trinkle 96].

Figure 9.3 shows an application of penetration depth computation,
along with separation distance computation to haptic rendering. For ex-
ample, computation of dynamic response in penalty-based methods often
needs to perform PD queries for imposing the non-penetration constraint
for rigid body simulation. In addition, many applications, such as motion
planning and dynamic simulation, require a continuous distance measure
when two (non-convex) objects collide, in order to have a well-posed com-
putation.

Some of the algorithms for PD computation involve computing the
Minkowski sums and computing the closest point on surface from the ori-
gin. The worst case complexity of the overall PD algorithm is governed
by the complexity of computing Minkowski sums, which can be O(n?) for
convex polytopes and O(n%) for general (or non-convex) polyhedral mod-
els [Dobkin et al. 93]. Given the complexity of Minkowski sums, many
approximation algorithms have been proposed in the literature for fast PD
estimation.

9.4.1 Convex Polytopes

[Dobkin et al. 93] proposed a hierarchical algorithm to compute the di-
rectional PD using Dobkin and Kirkpatrick polyhedral hierarchy. For any

9.4. Penetration Depth Computation 191

i) e
AN~
SRRy
Ry \‘\y\‘mws*’(}vpﬂﬂ 4
Ve N
YA
OIS

&y
s |
B,i;?’!gﬂ“ N
Wvecallgras

A7
. AN
oL
g <N

b

i

2
i

NN
SSSY

Figure 9.3. Penetration depth is applied to virtual exploration of a digestive
system using haptic interaction to feel and examine differt parts of the model.
The distance computation and penetration depth computation algorithms are
used for disjoint (D) and penetrating (P) situations, respectively, to compute the
forces at the contact areas. ((© 2003 Presence.)

direction d, it computes the directional penetration depth in O(log nlogm)
time for polytopes with m and n vertices. [Agarwal et al. 00] presented
a randomized approach to compute the PD values [Agarwal et al. 00].
It runs in O(mi+teni+e 4 mi+e 4 pl+€) times for any positive constant
€. [Cameron 97] presented an extension to the GJK algorithm [Gilbert
et al. 88] to compute upper and lower bounds on the PD between convex
polytopes. Van den Bergen has further elaborated this idea in an expand-
ing polytope algorithm [van den Bergen 01]. The algorithm iteratively
improves the result of the PD computation by expanding a polyhedral
approximation of the Minkowski sums of two polytopes. [Kim et al. 02c]

192 9. Overview on Collision and Proximity Queries

presented an incremental algorithm that marches towards a “locally opti-
mal” solution by walking on the surface of the Minkowski sum. The surface
of the TCSO is implicitly computed by constructing a local Gauss map and
performing a local walk on the polytopes.

9.4.2 Polyhedral Models

Algorithms for penetration depth estimation between general polygonal
models are based on discretization of the object space containing the objects
or use of digital geometric algorithms that perform computations on a finite
resolution grid. [Fisher and Lin 01] presented a PD-estimation algorithm
based on the distance field computation using the fast marching level-set
method. It is applicable to all polyhedral objects as well as deformable
models, and it can also check for self-penetration. [Hoff et al. 01, Hoff
et al. 02] proposed an approach based on performing discretized computa-
tions on the graphics rasterization hardware. It uses multi-pass rendering
techniques for different proximity queries between general rigid and de-
formable models, including penetration depth estimation.

However, most of these methods compute a “local measure of penetra-
tion.” [Kim et al. 02¢] presented a fast, global approximation algorithm
for general polyhedral models using a combination of object-space as well
discretized computations. Given the global nature of the PD problem, it
decomposes the boundary of each polyhedron into convex pieces, computes
the pairwise Minkowski sums of the resulting convex polytopes, and uses
graphics rasterization hardware to perform the closest point query up to
a given discretized resolution. The results obtained are refined using a lo-
cal walking algorithm. To further speed up this computation and improve
the estimate, the algorithm uses a hierarchical refinement technique that
takes advantage of geometry culling, model simplification, accelerated ray-
shooting, and local refinement with greedy walking. The overall approach
combines discretized closest point queries with geometry culling and refine-
ment at each level of the hierarchy. Its accuracy can vary as a function of
the discretization error.

9.4.3 Other Metrics

Other metrics to characterize the intersection between two objects include
the growth distance defined by [Gilbert and Ong 94]. It unifies the distance
measure regardless of whether the objects are disjoint or overlapping and
is different from the PD between two inter-penetrating convex objects.

In 6-DOF haptic rendering, the rotational component in penalty forces,
such as torque, should be considered in order to compute the response
force. In order to take also into account the rotational motion, a new PD
measure—generalized penetration depth (P DY) has been proposed [?,Zhang

9.5. Volumetric Representations 193

et al. 07b, Zhang et al. 07a], where PDY is defined as the minimal trans-
lational and rotational motion that separates the two overlapping models.
In general, to compute PDY for non-convex polyhedra is difficult, mainly
due to its high computational complexity, the non-linear rotational term
embedded in the definition, and the inherent non-convexity from the un-
derlying geometric models. As a result, most current PDY algorithms for
non-convex models only compute an approximate or a local solution [Zhang
et al. 07b, Zhang et al. 07a]. [Zhang et al. 07a] present an efficient local
PD?9 algorithm, where PDY computation is formulated as a constrained
optimization problem and efficient local search techniques are employed
for iterative optimization of PD9Y.

9.5 Volumetric Representations

In many applications, such as surgical simulation and computational steer-
ing of scientific data, volumetric data are commonly used. To test for
collision between two volumetric objects, one commonly used technique is
to sample one object and test the inclusion of each sampled point of one
object against the voxels of the other.

Extending this technique for six-degree-of-freedom haptic rendering, a
simple and efficient method has been proposed using the wvozel-pointshell
method [McNeely et al. 99]. More detail about this technique will be pre-
sented in Chapter 11.

9.5.1 Distance Field Methods

By generalizing the idea of voxels to 3D for intersection tests, distance field
methods can be used efficiently for proximity queries. Many algorithms
are known to compute the distance fields of geometric models. These al-
gorithms use either a uniform grid or an adaptive grid. A key issue in
generating discrete distance samples is the underlying sampling rate used
for adaptive subdivision. Many adaptive refinement strategies use trilinear
interpolation or curvature information to generate an octree spatial decom-
position [Shekhar et al. 96, Frisken et al. 00, Perry and Frisken 01, Vleugels
and Overmars 97].

Given voxel data, many exact and approximate algorithms for distance
field computation have been proposed [Mullikin 92, Breen et al. 00, Gib-
son 98al. A good overview of these algorithms has been given in [Cuise-
naire 99]. The approximate methods compute the distance field in a local
neighborhood of each voxel. Danielsson [Danielsson 80] uses a scanning
approach in 2D based on the assumption that the nearest object pixels
are similar. The fast marching method (FMM) [Sethian 99] propagates a

194 9. Overview on Collision and Proximity Queries

contour to compute the distance transformation from the neighbors. This
provides an approximate finite difference solution to the Eikonal Equation
[Vu|=1/f.

A class of exact distance transform algorithms is based on computing
partial Voronoi diagrams [Lin 93]. A scan-conversion method to compute
the 3-D Euclidean distance field in a narrow band around manifold triangle
meshes is the characteristics/scan-conversion (CSC) algorithm [Mauch 03].
The CSC algorithm uses the connectivity of the mesh to compute polyhe-
dral bounding volumes for the Voronoi cells. The distance function for each
site is evaluated only for the voxels lying inside this polyhedral bounding
volume.

Distance field computation can be accelerated using graphics hardware.
The graphics-hardware-based algorithms compute a 2D slice of the distance
field at a time. [Hoff et al. 99] rende a polygonal approximation of the dis-
tance function on the depth-buffer hardware and compute the generalized
Voronoi Diagrams in two and three dimensions. This approach works on
any geometric model that can be polygonized and is applicable to any dis-
tance function that can be rasterized. An efficient extension of the 2D
algorithm for point sites is proposed in [Denny 03]. It uses precomputed
depth textures, and a quadtree to estimate Voronoi region bounds. How-
ever, the extension of this approach to higher dimensions or higher-order
primitives is not presented. An efficient GPU-based implementation of the
CSC algorithm is presented in [Sigg et al. 03]. The number of polygons sent
to the graphics pipeline is reduced, and the non-linear distance functions
are evaluated using fragment programs.

One of the problems for computing distance fields using GPUs is the
resulting sample errors. Extending the earlier work [Hoff et al. 99], [Sud
et al. 04] compute bounds on the spatial extent of the Voronoi region of
each primitive. These bounds are then used to cull and clamp the distance
functions rendered for each slice to accelerate the overall computation.
They have demonstrated this algorithm on large models composed of tens
of thousands of primitives on high resolution grids and its application to
medial axis evaluation and proximity computations.

9.6 Spline and Algebraic Objects

Most of the algorithms highlighted above are limited to polygonal objects.
Many applications of geometric and solid modeling use curved objects,
whose boundaries are described using rational splines or algebraic equa-
tions. Algorithms to perform different proximity queries on these objects
can be classified based on the following methods: subdivision methods,
tracing methods, and analytic methods. A survey on these techniques is

9.6. Spline and Algebraic Objects 195

given in [Pratt 86, Hoffmann 89, Manocha 92]. Next, we briefly enumerate
these methods.

9.6.1 Subdivision Methods

All subdivision methods for parametric surfaces work by recursively sub-
dividing the domain of the two surface patches in tandem and examining
the spatial relationship between patches [Lane and Riesenfeld 80]. In all
cases, depending on various criteria, the domains are further subdivided
and recursively examined, or the given recursion branch is terminated. In
all cases, whether it is the intersection curve or the distance function, the
solution is computed only to some finite precision.

9.6.2 Tracing Methods

The tracing method begins with a given point known to be on the in-
tersection curve [Barnhill et al. 87, Manocha and Canny 91, Krishnan and
Manocha 97]. Then the intersection curve is traced in sufficiently small
steps until the edge of the patch is found, or until the curve returns to
itself to close a loop. In practice, it is easy to check for intersections with
a patch boundary, but difficult to know when the tracing point has re-
turned to its starting position. Frequently, this is posed as an initial-value
differential equations problem [Kriezis et al. 90a] or solving a system of al-
gebraic equations [Manocha and Canny 91, Krishnan and Manocha 97, Lin
and Manocha 97]. At the intersection point on the surfaces, the intersec-
tion curve must be mutually orthogonal to the normals of the surfaces.
Consequently, the vector field which the tracing point must follow is given
by the cross product of the normals.

9.6.3 Analytic Methods

Analytic methods usually involve implicitizing one of the parametric
surfaces—obtaining an implicit representation of the model
[Sederberg et al. 84, Manocha and Canny 92]. The parametric surface is
a mapping from (u,v)-space to (z,y, z)-space, and the implicit surface is
a mapping from (z,y, z)-space to the real numbers. By substituting the
parametric functions fy(u,v), fy(u,v), f-(u,v) for the z,y, z of the implicit
function, we obtain a scalar function in u and v. The locus of roots of this
scalar function map out curves in the (u,v) plane which are the preimages
of the intersection curve [Kriezis et al. 90b, Manocha and Canny 91, Kr-
ishnan and Manocha 97, Sarraga 83]. Based on its representation as an
algebraic plane curve, efficient algorithms have been proposed by a number
of researchers [Abhyankar and Bajaj 88, Krishnan and Manocha 97, Keyser
et al. 99].

196 9. Overview on Collision and Proximity Queries

9.7 Deformable Models

Due to the dynamically changing geometry, collision detection and proxim-
ity queries between deformable models pose many interesting challenges.

9.7.1 BVH-based Methods

Many of the commonly used collision detection algorithms utilize spatial
partitioning or bounding volumes hierarchies. Typical spatial partioning
methods used for queries between flexible bodies include uniform parti-
tioning and adaptive grids (e.g., quadtrees or octrees). Most proximity
computation algorithms for deformable models use hierarchies of spheres
or use AABBs [Agarwal et al. 04,van den Bergen 97, Larsson and Akenine-
Moller 01, James and Pai 04]. However, these hierarchies may not be able
to perform significant culling in close proximity configurations or for self-
proximity queries. Thus, they can result in a high number of false positives
and wasted tests.

9.7.2 Specialized Tests

Many specialized algorithms have been proposed to perform collision queries
on deformable models. These include GPU-based algorithms [Knott and
Pai 03, Govindaraju et al. 05] for inter-object or intra-object collisions.
Other methods for self-collisions are based on the curvature test [Volino and
Thalmann 00] and these can be combined with BV hierarchies. [Teschner
et al. 03] use spatial hashing techniques to check for inter-object collisions
and self-collisions. All of these algorithms perform only collision queries.

9.7.3 Distance and Penetration Depth Computation

All 3D scalar or discrete distance fields can be efficiently computed using
graphics hardware [Fischer and Gotsman 05, Sigg et al. 03, Sud et al. 05],
thus making them suitable for dynamically changing geometry such as de-
formable models. The discrete distance fields can be used to perform inter-
object proximity queries between rigid and deformable models at image-
space resolution [Hoff et al. 02,Sud et al. 05]. However, these algorithms
may not provide sufficient accuracy for robust contact handling.

Efficient penetration depth (PD) computation algorithms have been pro-
posed for rigid polyhedral models [Kim et al. 02¢], but they involve consid-
erable preprocessing. Many approximate PD computation algorithms for
deformable models are based on GPU-based computations [Hoff et al. 02,
Redon and Lin 06], precomputed distance fields [Fisher and Lin 01] or
spatial hashing [Heidelberger et al. 04].

9.8. Dynamic Queries 197

9.7.4 Self-Collision Detection

Self-collision detection is perhaps one of the most costly queries for de-
formable models. Given the complexity of self-collision detection, many
interactive algorithms either do not check for self-collisions [Cordier and
Magnenat-Thalmann 02, Fuhrmann et al. 03] or perform approximate colli-
sion detection using multiple layers [Cordier and Magnenat-Thalmann 02,
Kang and Cho 02] or voxelized grids [Meyer et al. 00]. It may be difficult
to give bounds on the accuracy of a simulation with approximate collision
detection.

[Volino and Thalmann 94] presented a sufficient condition for detecting
self-collisions in highly tessellated surfaces using curvature and convexity
properties [Mezger et al. 03, Provot 97, Volino and Thalmann 00]. This test
can be applied in a hierarchical manner on large models, though it can be
expensive for interactive applications [Volino and Thalmann 00].

Many algorithms treat each polygonal primitive as a separate object
and apply N-body collision detection algorithms based on uniform grids or
AABB-based sorting [Ericson 04]. In particular, efficient algorithms that
incrementally update the AABB for each triangle and check for overlaps by
projecting them to the coordinate axes are widely used [Baraff 92, Cohen
et al. 95]. However, prior N-body approaches have two major limitations
in terms of using them for self-collision detection. First, the level of culling
based on AABBs or rectangular cells of a grid may be low. Second, the
storage requirements of coherence-based sorting algorithms can grow as
a quadratic function of the number of primitives. Sud et al. introduce
novel algorithms to perform collision and distance queries among multiple
deformable models in dynamic environments, based on the properties of
the second-order discrete Voronoi diagram to perform N-body culling [Sud
et al. 06].

9.8 Dynamic Queries

In this section we give a brief overview of algorithms used to perform dy-
namic queries. Unlike static queries, which check for collisions or perform
separation distance queries at discrete instances, these algorithms use con-
tinuous techniques based on the object motion to compute the time of first
collision.

Many algorithms assume that the motion of the objects can be ex-
pressed as a closed form function of time. [Cameron 90] presented algo-
rithms that pose the problem as interference computation in a 4-dimensional
space. Given a parametric representation of each object’s boundary as well
as its motion, Herzen et al. [Herzen et al. 90] presented a collision detec-

198 9. Overview on Collision and Proximity Queries

tion algorithm that subdivides the domain of the surface, including the
time dimension. They use Lipschitz Conditions, based on bounds on the
various derivatives of the mapping, to compute bounds on the extent of
the resulting function. The bounds are used to check two objects for over-
lap. [Snyder et al. 93] improved the runtime performance of this algorithm
by introducing more conditions that prune the search space for collisions
and combined it with interval arithmetic [Moore 79].

Other continuous techniques use the object motion to estimate the time
of first contact. For prespecified trajectories consisting of a sequence of
individual translations and rotations about an arbitrary axis, [Boyse 79]
presented an algorithm for detecting and analyzing collisions between a
moving and a stationary objects. [Canny 86] described an algorithm for
computing the exact points of collision for objects that are simultaneously
translating and rotating. It can deal with any path in the space that can
be expressed as a polynomial function of time.

[Redon et al. 02b,Kim and Rossignac 03] proposed an algorithm that re-
places the unknown motion between two discrete instances by an arbitrary
rigid motion. It reduces the problem of computing the time of collision to
computing a root of a univariate cubic polynomial.

More recent methods have been proposed to perform dynamic queries
for rigid, articulated models or avatars in virtual environments [Redon
et al. 04a,Redon et al. 04b,Kim et al. 07] and for deformable models at
interactive rates [Govindaraju et al. 06, Govindaraju et al. 07]. Please
refer to Chapter 12 for a tutorial on the basic steps to perform continuous
collision detection.

9.9 Multiresolution Techniques

The algorithm by [Guibas et al. 99] based on the hierarchical representa-
tions of [Dobkin and Kirkpatrick 90] to reduce the runtime dependency on
the amount of the local walks can be considered as a first-step toward the
design of multiresolution technique for collision detection.

Among one of the first multiresolution proximity query algorithms is the
multi-level Voronoi marching by [Ehmann and Lin 00], based on an error-
bounded level-of-detail (LOD) hierarchy to accelerate proximity queries for
convex polyhedra.

More recently, multiresolution algorithms for collision detection have
been proposed for general non-convex polyhedral models based on contact
levels of detail [Otaduy and Lin 03a] for haptic rendering [Otaduy and
Lin 03b], and dynamic simplifications [Yoon et al. 04] for visual simulation.
We refer the readers to Chapter 13 for more detail.

9.10. Large Environments 199

9.10 Large Environments

Large environments are composed of multiple moving objects. Different
methods have been proposed to overcome the bottleneck of O(n?) pairwise
tests in an environment composed of n objects. The problem of performing
proximity queries in large environments is typically divided into two parts
[Hubbard 93, Cohen et al. 95]: the broad phase, in which we identify the
pair of objects on which we need to perform different proximity queries,
and the narrow phase, in which we perform the exact pairwise queries. An
architecture for the multi-body collision detection algorithm is shown in
Figure 9.4. In this section, we present a brief overview of algorithms used
in the broad phase.

9.10.1 Domain Partitioning

The simplest algorithms for large environments are based on spatial subdi-
visions. The space is divided into cells of equal volume, and at each instance
the objects are assigned to one or more cells. Collisions are checked among
all object pairs belonging to each cell. In fact, Overmars has presented
an efficient algorithm based on hash table to efficiently perform point loca-
tion queries in fat subdivisions [Overmars 92]. This approach works well for
sparse environments in which the objects are uniformly distributed through
the space. Another approach operates directly on four-dimensional volumes
swept out by object motion over time [Cameron 90].

Architecture for Multi-body
Collision Detection

object transformations overlapping pairs

Pruning
|:> [> Multi-body Pairs | =————

0
A U

Q Pairwise Exact
Simulation <] <:| <:| - Collision Detection
response colliding
P pairs
Analysis/
—_— Response _

Figure 9.4. Typically, the object’s motion is constrained by collisions with other
objects in the simulated environment. Depending on the outcome of the proxim-
ity queries, the resulting simulation computes an appropriate response.

200 9. Overview on Collision and Proximity Queries

Some of the commonly used algorithms compute an axis-aligned bound-
ing box (AABB) for each object, based on their extremal points along each
direction. Given n bounding boxes, it checks which boxes overlap in space.
A number of efficient algorithms are known for the static version of this
problem. In 2D, the problem reduces to checking 2D intervals for overlap
using interval trees and can be performed in O(nlogn+s), where s is the to-
tal number of intersecting rectangles [Edelsbrunner 83]. In 3D, algorithms
of O(n log®n+ s) complexity are known, where s is the number of pairwise
bounding boxes that are overlapping [Hopcroft et al. 83, Six and Wood 82].
Algorithms for N-body proximity queries in dynamic environments are
based on the sweep and prune approach [Cohen et al. 95]. It incremen-
tally computes the AABBs for each object and checks them for overlap by
computing the projection of the bounding boxes along each dimension and
sorting the interval endpoints using an insertion sort or bubble sort [Shamos
and Hoey 76, Baraff 92, Cohen et al. 95]. In environments where the ob-
jects make relatively small movements between successive frames, the lists
can be sorted in expected linear time and the expected complexity of the
algorithm is O(n + m), where m is the number of overlapping intervals
along any dimension. Based on similar ideas, extended algorithms for col-
lision detection between the links of kinematic chains are given in [Lotan
et al. 02].

9.10.2 Scheduling Schemes

Given that bounds on the maximum velocity and acceleration of the objects
are known, [Lin 93] presented a scheduling scheme that maintains a priority
queue and sorts the objects, based on approximate time to collision. The
approximation is computed based on the separation distance, as well as
the bounds on the velocity and acceleration. A similar approach along
with a spatial partitioning scheme has been used to reduce the frequency
of collision queries among many rigid objects [Mirtich and Canny 95].

9.10.3 Out-of-Core Algorithms

In many applications, it may not be possible to load a massive geometric
model composed of millions of primitives in the main memory for interactive
proximity queries. In addition, algorithms based on spatial partitioning or
bounding volume hierarchies also add additional memory overhead. Thus,
it is important to develop proximity query algorithms that use a relatively
small or bounded memory footprint.

[Wilson et al. 99] presented an out-of-core algorithm to perform collision
and separation distance queries on large environments. It is based on the
concept of overlap graphs to exploit locality of computation. For a large

9.11. Proximity Query Packages 201

model, the algorithm automatically encodes the proximity information be-
tween objects and represents it using an overlap graph. The overlap graph
is computed offline and preprocessed using graph partitioning, object de-
composition and refinement algorithms. At run time it traverses localized
sub-graphs and orders the computations to check the corresponding geom-
etry for proximity tests, as well as to pre-fetch geometry and associated
hierarchical data structures. To perform interactive proximity queries in
dynamic environments, the runtime algorithm uses the BVHs, modifies the
localized sub-graph(s) on the fly, and takes advantage of spatial and tempo-
ral coherence. A survey on memory management issues related to handling
of and interacting with massive datasets can also be found in [Kasik 07].

9.11 Proximity Query Packages

Many systems and libraries have been developed for performing different
proximity queries. These include:

e [-COLLIDE is an interactive and exact collision-detection system
for environments composed of convex polyhedra or unions of convex
pieces. The system is based on the LC incremental distance com-
putation algorithm [Lin and Canny 91] and an algorithm to check
for collision between multiple moving objects [Cohen et al. 95]. It
takes advantage of temporal coherence. (http://gamma.cs.unc.edu/
I_.COLLIDE)

e RAPID is a robust and accurate interference detection library for a
pair of unstructured polygonal models. It is applicable to polygon
soups—models which contain no adjacency information and obey no
topological constraints. It is based on OBBTrees and uses a fast
overlap test based on the separating axis theorem to check whether
two OBBs overlap [Gottschalk et al. 96]. (http://gamma.cs.unc.edu/
OBB/OBBT.html)

e V-COLLIDE is a collision detection library for large dynamic envi-
ronments [Hudson et al. 97] and unites the N-body processing algo-
rithm of I-COLLIDE with the pair processing algorithm of RAPID.
Consequently, it is designed to operate on large numbers of static
or moving polygonal objects, and the models may be unstructured.
(http://gamma.cs.unc.edu/V_COLLIDE)

e FEnhanced GJK Algorithm is a library for distance computation based
on the enhanced GJK algorithm [Gilbert et al. 88] developed by

202

9. Overview on Collision and Proximity Queries

Cameron [Cameron 97]. It takes advantage of temporal coherence be-
tween successive frames. (http://www.comlab.ox.ac.uk/oucl/users/
stephen.cameron/distances.html)

SOLID is a library for interference detection of multiple three-
dimensional polygonal objects undergoing rigid motion. The shapes
used by SOLID are sets of non-convex polygons without topological
constraints or polygon soups. The library exploits frame coherence
by maintaining a set of pairs of proximate objects using incremen-
tal sweep and prune on hierarchies of axis-aligned bounding boxes.
Though slower for close proximity scenarios, its performance is com-
parable to that of V-COLLIDE in other cases. (http://www.win.tue.
nl/cs/tt/gino/solid/)

PQP, a Proximity Query Package, supports collision detection, sepa-
ration distance computation, or tolerance verification. It uses OBB-
Tree for collision queries and a hierarchy of swept sphere volumes to
perform distance queries [Larsen et al. 99]. It assumes that each ob-
ject is a collection of triangles and can handle polygon soup models.
(http://gamma.cs.unc.edu/SSV/)

SWIFT, a library for collision detection, distance computation, and
contact determination between three-dimensional polygonal objects
undergoing rigid motion. It assumes that the input primitives are
convex polytopes or union of convex pieces. The underlying algorithm
is based on a variation of Lin-Canny algorithm [Ehmann and Lin 00].
The resulting system is faster, more robust, and memory efficient as
compared to I-COLLIDE. (http://gamma.cs.unc.edu/SWIFT/)

SWIFT++ is a library for collision detection, approximate and exact
distance computation, and contact determination between polyhedral
models. It assumes that the models are closed and bounded. It
decomposes the boundary of each polyhedron into convex patches and
precomputes a hierarchy of convex polytopes [Ehmann and Lin 01].
It uses the SWIFT library to perform the underlying computations
between the bounding volumes. (http://gamma.cs.unc.edu/SWIFT+

+/)

QuickCD is a general-purpose collision detection library, capable of
performing exact collision detection on complex models. The input
model is a collection of triangles, and it makes assumptions related to
the structure or topologies of the model. It precomputes a hierarchy
of k-DOPs for each object and uses them to perform fast collision
queries [Klosowski et al. 98]. (http://www.ams.sunysb.edu/~jklosow/
quicked/QuickCD.html)

9.11. Proximity Query Packages 203

e OPCODE is a collision detection library between general polygonal
models. It uses a hierarchy of AABBs. As compared to RAPID,
SOLID, or QuickCD, it consumes much less memory. (http://www.
codercorner.com/Opcode.htm)

e DFEEP estimates the penetration depth and the associated penetra-
tion direction between two overlapping convex polytopes. It uses an
incremental algorithm the computes a “locally optimal solution” by
walking on the surface of the Minkowski sum of two polytopes [Kim
et al. 02¢]. (http://gamma.cs.unc.edu/DEEP/)

e PIVOT computes generalized proximity information between arbi-
trary objects using graphics hardware. It uses multi-pass render-
ing techniques and accelerated distance computation and provides an
approximate solution for different proximity queries. These include
collision detection, distance computation, local penetration depth,
contact region and normals, etc. [Hoff et al. 01, Hoff et al. 02]. It
involves no preprocessing and can also handle deformable models.
(http://gamma.cs.unc.edu/PIVOT/)

10

Collision Detection for
Three-DOF Rendering

M. C. Lin

As mentioned in Chapter 9, an important component of haptic interaction
is to efficiently find all the contacts between the haptic probe and the mod-
els in the virtual environment for force display. The virtual environments
may be composed of tens or hundreds of thousands of polygons, possibly
much more for rapid prototyping of complex machinery.

Since detection of a collision or penetration is the required first step for
most haptic rendering systems, in this chapter we will present techniques for
fast and scalable collision detection used in three-degree-of-freedom haptic
display. The targeted environments are polygonal models consisting of tens
of thousands of primitives, such as CAD models of high complexity. Some of
these algorithms are also easily extensible to support a wide range of force-
feedback devices (including six degree-of-freedom arms) and deformable
surfaces.

10.1 Related Work

In the ray-tracing literature, the problem of computing fast intersections
between a ray and a three-dimensional geometric model has also been ex-
tensively studied [Arvo and Kirk 89]. While a number of algorithms have
been proposed that make use of bounding volume hierarchies, spatial par-
titioning, or frame-to-frame coherence, there is relatively little available on
hybrid approaches combining two or more such techniques.

To perform proximity queries for 3-DOF haptic rendering, the basic
intersection test is to check if the line segment swept out by the tip of the
haptic probe has collided with any object in the scene. Several possible
hiearchical approaches can be used to perform such a query.

e Bounding volume hierarchies. As mentioned in Chapter 9, a number
of algorithms based on hierarchical representations have been pro-
posed. The set of bounding volumes include spheres [Hubbard 93,

205

206

10. Collision Detection for Three-DOF Rendering

Quinlan 94], axis-aligned bounding boxes [Beckmann et al. 90, Held
et al. 95|, oriented bounding boxes [Gottschalk et al. 96, Barequet
et al. 96], approximation hierarchies based on S-bounds [Cameron 91],
spherical shells [Krishnan et al. 98b] and k-dop’s [Klosowski et al. 96].
[Ruspini et al. 97] presented a haptic interface library, HL, that uses
a multi-level control system to effectively simulate contacts with vir-
tual environments. It uses a bounding volume hierarchy based on
sphere-trees [Quinlan 94].

In the close proximity scenarios, hierarchies of oriented bounding
boxes (OBBTrees) appear superior to many other bounding volumes
[Gottschalk et al. 96]. The original algorithm [Gottschalk et al. 96] is
applicable to collision detection between two 3D objects. A special-
ized test based on the separating axis theorem [Gottschalk et al. 96]
can be used to perform collision detection between a line segment and
a 3D object, which we will describe in the next section.

Spatial partitioning approaches. Some of the simplest algorithms for
collision detection are based on spatial decomposition techniques and
can be used to perform collision detection for 3-DOF haptic display as
well. These algorithms partition the space into uniform or adaptive
grids (i.e. volumetric approaches), octrees [Samet 89], k-D trees, or
binary spatial partitioning (BSP) [Naylor et al. 90]. To overcome the
problem of large memory requirements for volumetric approaches,
some authors [Overmars 92] have proposed the use of hash tables.
Such techniques are also applicable, though their performance may
vary significantly, depending on the complexity of the objects and
contact configurations.

Utilizing frame-to-frame coherence. In many simulations, the objects
move only a little between successive frames. Many efficient algo-
rithms that utilize frame-to-frame coherence have been proposed for
convex polytopes [Lin and Canny 91, Cameron 96, Baraff 90]. Cohen
et al. [Cohen et al. 95] have used coherence-based incremental sorting
to detect possible pairs of overlapping objects in large environments.

10.2 A Fast Proximity Query Algorithm for 3-DOF

Haptic Interaction

In this section, we describe one of the recent algorithms that have demon-
strated efficiency, scalability, and flexibility for 3-DOF haptic interaction,
H-COLLIDE!. In this section, we will give an overview of the haptic system

LA preliminary version appeared in [Gregory et al. 99b].

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 207

setup and algorithmic techniques that are an integral part of this collision
detection framework.

10.2.1 Haptic System Architecture

Due to the stringent update requirements for real-time haptic display, the
haptic system using H-COLLIDE runs a special standalone haptic server
written with VRPN (http://www.cs.unc.edu/Research/nano/manual/vrpn)
on a PC connected to the PHANTOM. The client application runs on an-
other machine, which is typically the host for graphical display. Through
VRPN, the client application sends the server the description of the scene
to be haptically displayed, and the server sends back information such as
the position and orientation of the PHANTOM probe. The client applica-
tion can also modify and transform the scene being displayed by the haptic
server.

10.2.2 Algorithm Overview

Given the last and current positions of the PHANTOM probe, the algo-
rithm needs to determine if the tip of the probe has in fact passed through
the object’s surface, in order to display the appropriate force. The probe
movement is usually small, due to the high haptic update rates. This obser-
vation implies that only a relatively small volume of the workspace needs
to be checked for collision.

Approaches using spatial partitioning seem to be natural candidates
for such situations. For large and complex models, techniques based on
uniform or adaptive grids can be implemented more efficiently using hash
tables. However, to achieve the desired speed, these approaches still have
extremely high storage requirements, even when implemented using a hash-
ing scheme.

Despite its better fit to the underlying geometry, the hierarchical bound-
ing volume method based on OBBTrees may end up traversing trees to
great depths to locate the exact contact points for large, complex mod-
els. To take advantage of each approach and to avoid some deficiency of
each, a hybrid technique called H-COLLIDE has been proposed [Gregory
et al. 99a].

e Hybrid hierarchical representation. Given a virtual environment con-
taining several objects, each composed of tens of thousands of poly-
gons, the algorithm computes a hybrid hierarchical representation of
the objects as part of the off-line pre-computation. It first parti-
tions the entire virtual workspace into coarse-grain uniform grid cells.
Then, for each grid cell containing some primitives of the objects in

208

10. Collision Detection for Three-DOF Rendering

the virtual world, it computes the OBBTrees for that grid cell and
stores the pointer to the associated OBBTrees using a hash table for
constant-time proximity queries.

Specialized intersection tests. The online computation of our colli-
sion detection system consists of three phases. In the first phase, it
identifies the region of potential contacts by determining which cells
were touched by the probe path, using the precomputed look-up ta-
ble. In the second phase, it traverses the OBBTree(s) in that cell
to determine if collisions have occurred, using the specialized fast
overlap test to be described later. In the third phase, if the line seg-
ment intersects with an OBB in the leaf node, then it computes the
(projected) surface contact point(s) (SCP) using techniques similar
to those in [Sensable Technologies, Inc. 08, Thompson et al. 97].

Frame-to-frame coherence. If in the previous frame the probe of the
feedback device was in contact with the surface of the model, we ex-
ploit frame-to-frame coherence by first checking if the last intersected
triangle is still in contact with the probe. If so, we cache this contact
witness. Otherwise, we check for collision using hybrid hierarchical
representation of the objects.

‘ Input last position and current position / SCP ‘

‘ Check contact witness }7

false true

‘ Find segment’s bounding grid cell(s) ‘

‘ Query cell’s OBBTree(s) ‘

‘ Check potential triangles for intersection ‘

‘ Return FALSE or intersection point / SCP }e

Figure 10.1. The system architecture of H-COLLIDE. (© 1999 IEEE.)

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 209

10.2.3 Overlap Test based on a Line Segment against an OBB-
Tree

H-COLLIDE, a framework for fast and accurate collision detection for hap-
tic interaction, is designed based on the hybrid hierarchical representation
and the algorithmic techniques described above. Figure 10.1 shows the
system architecture of H-COLLIDE.

For haptic display using a point probe, we can specialize the algorithm
based on OBBTrees by only testing a line segment (representing the path
swept out by the probe device between two successive steps) and an OBB-
Tree. (The original algorithm [Gottschalk et al. 96] uses an overlap test
between a pair of OBBs and can take more than 200 operations per test.)
At run time, most of the computation is spent in finding collisions between
a line segment and an OBB. To optimize this query, we have developed a
very fast overlap test between a line segment and an OBB, which takes as
few as 6 operations and only 36 arithmetic operations in the worst case,
not including the cost of transformation.

At the first glance, it is tempting to use sophisticated and optimized
line clipping algorithms. However, the line-OBB intersection problem for
haptic interaction is a simpler one than line clipping, and the environment
is dynamic and consists of many OBBs. Next, we’ll describe this specialized
overlap test between a line segment and an oriented bounding box for haptic
rendering. Without loss of generality, we will choose the coordinate system
centered on and aligned with the box—so the problem is transformed to an
overlap test between a segment and a centered axis-aligned bounding box.
Our overlap test uses the separating axis theorem described in [Gottschalk
et al. 96], but specialized for a line segment against an OBB.

Specifically, the candidate axes are the three box face normals (which
are aligned with the coordinate axes) and their cross-products with the seg-
ment’s direction vector. With each of these six candidate axes, we project
both the box and the segment onto it and test whether the projection in-
tervals overlap. If the projections are disjoint for any of the six candidate
axes, then the segment and the box are disjoint. Otherwise, the segment
and the box overlap.

How are the projection intervals computed? Given a direction vector
v of a line through the origin, and a point p, let the point p’ be the axial
projection of p onto the line. The value d, = v-p/|v| is the signed distance
of p’ from the origin along the line. Now consider the line segment with
midpoint m and endpoints m + w and m — w. The half-length of the line
segment is |w|. The image of the segment under axial projection is the
interval centered at

ds =v-m/v],

210 10. Collision Detection for Three-DOF Rendering

=

Figure 10.2. Overlap test between a line segment and an OBB. (© 1999 IEEE.)

and with half-length
Ls = |w-vl|/]v].

Given a box centered at the origin, the image of the box under axial
projection is an interval with midpoint at the origin.

Furthermore, if the box has thicknesses 2t*, 2t¥, and 2t* along the
orthogonal unit directions u”,uY, and u?, the half-length of the interval is
given by

Ly = [t*v - u®/[o][+ [tYv - w? /o] + [t70 - u®/[v]].

With the intervals so expressed, the axis v is a separating axis if and only
if (see Figure 10.2)
|ds| > Ly + Ls

Let us assume that the box is axis-aligned; then u® = [1,0,0]7,u¥ =
[0,1,0]T, and u* = [0,0,1]%, and the dot products with these vectors be-
come simple component selections. This simplifies the box interval length
computation to

Ly = [t%0,| + [tYvy| + |t7v,].

Now, recall that the candidate axis v is either a box face normal, or a cross
product of a face normal with the line segment direction vector. Consider
the former case, when v is a box face normal, for example [1,0,0]%. In this
case, the components v, and v, are zero, and the component v, is one, and
we are left with

Ly =t".

The projection of the line segment onto the x—axis is also simple:

Ls = |wy].

10.2. A Fast Proximity Query Algorithm for 3-DOF Haptic Interaction 211

So, the test for the v = [1,0,0]7 axis is
|| > % + |wy|.

The tests for the candidate axes v = [0,1,0]” and v = [0,0, 1]7 have similar
structure.

The three cases where v is a cross product of w with one of the box
faces are a little more complex. Recall that in general,

Ly = |t°v - u®| + [tYv - u¥] + [tPv - u®).

For the sake of concreteness, we will choose v = w X u,. Then this expres-
sion becomes

Ly = |[t*(w x uY) - u®| + |tY(w x u¥) - u¥| + [t*(w x uY) - u?|.
Application of the triple product identity
(axb)-c=(cxa)b
yields
Ly = [t%(u¥ x u®) - w| + [tY(wY x uY) - w|+ [t7(u¥ x u®) - w].

All of these cross products simplify, because the u vectors are mutually
orthogonal, u” x u¥ = v*, u¥ X u* = u”, and u* X u” = u¥Y, so

Ly = [t°(—u?®) - w| + [Y(0) - w| + [t*(u™) - w].
And again, using the fact that u® = [1,0,0]”, and so forth,
Ly = t*|w,| 4 t*|w,].
The half-length of the segment interval is
Ly=|w- (wxu’)|=u? - (wxw)| =¥ 0]=0,

which is what we would expect, since we are projecting the segment onto
a line orthogonal to it.
Finally, the projection of the segments midpoint falls at

ds = (wxu) - m=(mxw) v =mw, — mgpw,,
which is just the y—component of m x w. The final test is
[mawy, — maw,| > t%|w,| + 7wy

Similar derivations are possible for the cases v = w x u® and v = w X u?.

212 10. Collision Detection for Three-DOF Rendering

Writing out the entire procedure, and precomputing a few common
subexpressions, we have the following pseudocode:

let X = |w,]
let Y = |w,|
let Z = |w,|

if |my| > X + t, return disjoint

if |my| >Y +t, return disjoint

if |m.| > Z +t, return disjoint

if |myw, —m,wy| > t,Z +t.Y return disjoint
if |myw, — mowy| > t,Z + t,X return disjoint
if |mywy —mywg| > t,Y 4+ t, X return disjoint
otherwise return overlap

When a segment and an OBB are disjoint, the routine often encounters
an early exit and only one (or two) out of the six expressions is executed.
Total operation count for the worst case is: 9 absolute values, 6 compar-
isons, 9 add and subtracts, 12 multiplies. This does not include the cost of
transforming, (i.e., 36 operations), the problem into a coordinate system
centered and aligned with the box.

10.3 Implementation Issues

H-COLLIDE has been successfully implemented in C4++ and interfaced
with GHOST, a commercial software developer’s toolkit for haptic ren-
dering, and used it to find surface contact points between the probe of a
PHANTOM arm and large geometric models (composed of tens of thou-
sands of polygons). Next, we describe some of the implementation issues.

10.3.1 Hashing Scheme

Clearly, it is extremely inefficient to allocate storage for all these cells,
since a polygonal surface is most likely to occupy a very small fraction of
them. We use a hash table to alleviate the storage problem. From each
cell location at (z,y,2) and a grid that has len cells in each dimension, we
can compute a unique key using

key = x +y* len + z * len®.

In order to avoid hashing too many cells with the same pattern into the
same table location, we compute the actual location for a grid cell in the
hash table with

Table Loc = random(key)%T able Length.

10.4. System Performance 213

Should the table have too many cells in one table location, we can
simply grow the table. Hence, it is possible to determine which triangles
we need to check in constant time, and the amount of storage required is a
constant factor (based on the grid grain) of the surface area of the object
we want to “feel.”

Determining the optimal grid grain is a nontrivial problem. Please refer
to [Gregory et al. 98] for a detailed retreatment and a possible analytical
solution to this problem. We simply set the grain of the grids to be the
average length of all edges. If the model has a very irregular triangulation,
it is very possible that there could be a large number of small triangles in
a single grid cell.

Querying an OBBTree takes O(logn) time, where n is the number of
triangles in the tree. During the off-line computation, we can ensure that n
is a small number compared to the total number of triangles in the model;
thus, the overall running time of our hybrid approach should be constant.

10.3.2 User Options

Since the hybrid approach used in H-COLLIDE has a higher storage re-
quirement than either individual technique alone, the system also allows
the user to select a subset of the techniques, such as the algorithm purely
based on OBBTrees, to opt for better performance on a machine with less
memory.

10.4 System Performance

For comparison, adaptive grids, H-COLLIDE, an algorithm using only
OBBTrees with the specialized overlap test described in Section 10.2.3,
has been implemented to compare their performance. These implementa-
tions have been applied and tested on a wide range of models of varying
sizes. (See the models at http://www.cs.unc.edu/~geom/HCollide/model.
pdf.) Their performance varies based on the models, the configuration of the
probe relative to the model, machine configuration (e.g., cache and memory
size) and the combination of techniques used by our system. H-COLLIDE
results in a factor of 2-20 times speed improvement as compared to a na-
tive GHOST method. For a number of models composed of 5,000-80, 000
polygons, H-COLLIDE is able to compute all the contacts and responses
at rates higher than 1000 Hz on a 400 MHz PC.

10.4.1 Obtaining Test Data

The test data is obtained by deriving a class from the triangle mesh prim-
itive that comes with SensAble Technologies” GHOST library, version 2.0

214 10. Collision Detection for Three-DOF Rendering

| Method || Hash Grid | Hybrid | OBBTree | GHOST |
Ave Col. Hit 0.0122 0.00883 | 0.0120 0.0917
Worst Col. Hit 0.157 0.171 0.0800 0.711
Ave Col. Miss 0.00964 0.00789 | 0.00856 0.0217
Worst Col. Miss || 0.0753 0.0583 0.0683 0.663
Ave Int. Hit 0.0434 0.0467 0.0459 0.0668
Worst Int. Hit 0.108 0.102 0.0793 0.100
Ave Int. Miss 0.0330 0.0226 0.0261 0.0245
Worst Int. Miss 0.105 0.141 0.0890 0.364
Ave. Query 0.019 0.014 0.017 0.048

Table 10.1. Timings in msecs for Man Symbol, 5K tris.

beta. This data records the startpoint and the endpoint of each segment
used for collision detection during a real force-feedback session with a 3-
DOF PHANTOM arm. The three techniques mentioned above are inter-
faced with GHOST for comparison with a native GHOST method, and
timed the collision detection routines for the different libraries, using the
data from the test set. The test set for each of these models contains 30,000
readings.

The distinction between a collision and an intersection shown in the
tables is particular to GHOST’s haptic rendering. Each haptic update cycle
contains a “collision” test to see if the line segment from the last position
of the PHANTOM probe to its current position has intersected any of
the geometry in the haptic scene. If there has been a collision, then the
intersected primitive suggests a surface contact point for the PHANTOM
probe to move towards. In this case it is now necessary to perform an
“intersection” test to determine if the line segment from the last position
of the PHANTOM probe to the suggested surface contact point intersects
any of the geometry in the scene (including the primitive with which there
was a “collision”).

The timings (in milliseconds) shown in Tables 10.1-10.5 were obtained
by replaying the test data set on a four processor 400 MHz PC, with 1 GB of
physical memory. Each timing was obtained using only one processor. For
comparison, we ran the same suite of tests on a single processor 300 MHz
Pentium Pro with 128 MB memory. The hybrid approach appeared to be
the most favorable, as well.

10.4.2 Comparison between Algorithms

Since the algorithms run on a real-time system, we are not only interested
in the average performance, but also the worst case performance. Tables
10.1-10.5 show the timings in milliseconds obtained for both cases on each
model and each contact configuration.

10.4. System Performance 215

| Method || Hash Grid | Hybrid | OBBTree | GHOST |
Ave Col. Hit 0.0115 0.0185 0.0109 0.131
Worst Col. Hit 0.142 0.213 0.138 0.622
Ave Col. Miss 0.0104 0.00846 | 0.0101 0.0176
Worst Col. Miss || 0.0800 0.0603 0.0813 0.396
Ave Int. Hit 0.0583 0.0568 0.0652 0.0653
Worst Int. Hit 0.278 0.200 0.125 0.233
Ave Int. Miss 0.0446 0.0237 0.0349 0.0322
Worst Int. Miss 0.152 0.173 0.111 0.287
Ave. Query 0.030 0.025 0.028 0.070

Table 10.2. Timings in msecs for Man with Hat, 7K tris.

[Method || Hash Grid | Hybrid | OBBTree | GHOST |
Ave Col. Hit 0.0138 0.0101 0.0134 0.332
Worst Col. Hit 0.125 0.168 0.0663 0.724
Ave Col. Miss 0.00739 0.00508 | 0.00422 0.0109
Worst Col. Miss 0.0347 0.0377 0.0613 0.210
Ave Int. Hit 0.0428 0.0386 0.0447 0.0851
Worst Int. Hit 0.0877 0.102 0.0690 0.175
Ave Int. Miss 0.0268 0.0197 0.0213 0.0545
Worst Int. Miss 0.0757 0.0697 0.0587 0.284
Ave. Query 0.022 0.016 0.039 0.18

Table 10.3. Timings in msecs for Nano Surface, 12K tris.

All our algorithms are able to perform collision queries at rates faster
than the required 1000 Hz force update rate for all models in the worst
case. Although the hybrid approach often outperforms the algorithm based
on OBBTrees, it is sometimes slightly slower than the alogrithm based
on OBBTrees. We conjecture that this behavior is due to the cache size
of the CPU (independent of the memory size) and the memory paging
algorithm of the operating system. Among techniques that use hierarchical
representations, cache access patterns can often have a dramatic impact on
run time performance.

H-COLLIDE requires more memory and is likely to have a less cache-
friendly memory access pattern than the algorithm purely based on OBB-
Trees, despite the fact that both were well within the realm of physical
memory available to the machine. Furthermore, by partitioning polygons
into groups using grids, H-COLLIDE can enable real-time local surface
modification.

The adaptive grids-hashing scheme, a commonly used technique in ray-
tracing, did not perform equally well in all cases. Once again, our hy-
pothesis is that its inferior worst-case behavior is due to its cache access

216 10. Collision Detection for Three-DOF Rendering

| Method || Hash Grid | Hybrid | OBBTree | GHOST |
Ave Col. Hit 0.0113 0.00995 | 0.0125 0.104
Worst Col. Hit 0.136 0.132 0.177 0.495
Ave Col. Miss 0.0133 0.00731 | 0.0189 0.0280
Worst Col. Miss 0.128 0.0730 0.137 0.641
Ave Int. Hit 0.0566 0.0374 0.609 0.0671
Worst Int. Hit 0.145 0.105 0.170 0.293
Ave Int. Miss 0.0523 0.0225 0.0452 0.0423
‘Worst Int. Miss 0.132 0.133 0.167 0.556
Ave. Query 0.027 0.014 0.028 0.048

Table 10.4. Timings in msecs for Bronco, 18K tris.

| Method || Hash Grid | Hybrid | OBBTree | GHOST |
Ave Col. Hit 0.0232 0.0204 0.0163 1.33
Worst Col. Hit 0.545 0.198 0.100 5.37
Ave Col. Miss 0.00896 0.00405 | 0.00683 0.160
Worst Col. Miss 0.237 0.139 0.121 3.15
Ave Int. Hit 0.228 0.0659 0.0704 0.509
Worst Int. Hit 0.104 0.138 0.103 1.952
Ave Int. Miss 0.258 0.0279 0.0256 0.229
Worst Int. Miss 0.0544 0.131 0.0977 3.28
Ave. Query 0.030 0.016 0.016 0.320

Table 10.5. Timings in msecs for Butterfly, 79K tris.

patterns, in addition to its storage requirements. We believe the native
GHOST method at the time of benchmarking uses an algorithm based on
BSP trees. While it is competitive for the smaller model sizes, its perfor-
mance fails to scale up for larger models. H-COLLIDE, and the specialized
algorithm purely based on OBBTrees and the specialized overlap test, ap-
pear to be relatively unaffected by the model complexity. This result is
due to the fact that the OBBTrees-based algorithm has a growth rate of
O(logn), where n is the total number of polygons per tree [Gottschalk
et al. 96] and that H-COLLIDE has a constant growth rate.

10.5 Conclusion

We have presented several collision detection methods for 3-DOF haptic in-
teraction and described one of the most efficient algorithms, H-COLLIDE,
in detail. H-COLLIDE is capable of performing collision detection for hap-
tic interaction with complex polygonal models at rates higher than 1000 Hz
on a desktop PC. This framework has shown to be extensible for support-

10.6. Acknowledgments 217

ing 3-DOF haptic display of deformable models as well, as described in
Chapter 26. In addition, it can possibly be combined with the tracing al-
gorithm [Thompson et al. 97] to handle complex sculptured models more
efficiently, by using their control points.

10.6 Acknowledgments

H-COLLIDE is developed by Arthur Gregory and Stefan Gottschalk under
the advice of Ming Lin and Russell Taylor in the Department of Computer
Science, University of North Carolina at Chapel Hill [Gregory et al. 99a],
and supported in part by the Army Research Office, National Science
Foundation, National Institute of Health, National Center for Research
Resources, and Intel Corporation.

11

Voxel-Based Collision
Detection for Six-DOF
Rendering

W. A. McNeely, K. D. Puterbaugh, and J. J. Troy

This chapter describes a voxel-based collision detection approach for 6-DOF
haptic rendering. The approximate nature of the collision detection ap-
proach enables a reliable 1000 Hz haptic refresh rate in the manipulation of
modestly complex rigid objects within an arbitrarily complex rigid environ-
ment. The approach effectively renders a short-range force field surround-
ing the environment, which repels the manipulated object(s) and strives
to maintain a voxel-scale minimum separation distance that is known to
preclude exact surface interpenetration. The algorithm was designed for
haptically-aided virtual assembly/disassembly and maintenance analysis in
aircraft engineering, and implemented as the Voxmap PointShell ™ (VPS)
software by Boeing. The present chapter describes the basic design pre-
sented in [McNeely et al. 99], as well as further improvements to the algo-
rithm presented in [McNeely et al. 06].

The chapter begins in Section 11.1 with an overview of the algorithm,
describing the basic object representations and a per-contact force model.
Then, Section 11.2 describes the basic voxel data structures from [McNeely
et al. 99], with enhancements from [McNeely et al. 06], and the associated
proximity queries. Section 11.3 and Section 11.4 describe, respectively, op-
timizations for exploiting geometrical awareness and temporal coherence.
Section 11.5 describes the complete rendering algorithm based on virtual
coupling, Section 11.6 presents application examples, and Section 11.7 dis-
cusses related approaches.

11.1 Algorithm Overview

The voxel-based rendering algorithm is geared toward applications in which
exact surface representation is not required. These applications permit an

219

220 11. Voxel-Based Collision Detection for Six-DOF Rendering

approximate collision detection algorithm with the limitation of voxel scale
accuracy. An inherent advantage of a voxel approach is that it is applica-
ble to arbitrarily complex geometry. Notably, it is not limited to convex
geometry, and thus it is free from any requirement for convex decomposi-
tion. Convexity constraints are commonly imposed in polygon-based ap-
proaches, for performance reasons. Another inherent advantage of voxels is
their volumetric nature, which conveys a performance advantage in collision
detection and also facilitates the implementation of distance fields.

The approach supports the manipulation of several rigid objects within
an arbitrarily rich rigid environment by rendering a half-voxel-deep force
field that surrounds the environment and serves to block potential inter-
penetration of the exact surface representations. For the initial discussion
of the method we will assume the existence of only one dynamic object,
but the method can be scaled to multiple dynamic objects, which will be
discussed in Section 11.5.3. Given a predetermined spatial accuracy (i.e.,
voxel size), rendering performance depends linearly on the total exposed
surface area of the manipulated object(s). There is also a relatively mi-
nor dependence on the instantaneous amount of contact/proximity, with a
worst-case performance (e.g., maximum contact/proximity) of about half
that of the best-case performance.

The main components of the algorithm are:

e A simple penalty force scheme called the tangent-plane force model,
explained in Section 11.1.2;

o A fized-depth vozel tree, explained in Section 11.2.4;

e A wozxel map that can be used to collectively represent all static ob-
jects, explained in Section 11.2.5;

e Optimizations for exploiting geometrical awareness (see Section 11.3)
and temporal coherence (see Section 11.4).

Although the simplicity of the force model is critically important to
performance, it can generate force magnitude discontinuities (but not force
direction discontinuities), especially under sliding motion. In 3-DOF point-
contact haptics, force discontinuities can be devastating to force quality and
stability, but under 6-DOF rendering there is a stochastic effect that lessens
their impact. However, it proved necessary to introduce various measures
to explicitly enhance force quality and stability, such as:

e A single-body dynamic model based on virtual coupling;

e Pre-contact braking forces.

11.1. Algorithm Overview 221

Original :'\3/?'.

Object

‘<’ "L t Pointshell
\ & Normals
L Voxmap
] _J

1/

Figure 11.1. Voxmap colliding with pointshell.

All such measures are explained in Section 11.5.

Data storage is often a secondary consideration in haptics work, because
it is tempting to trade memory efficiency for higher performance. However,
voxels are relatively inefficient as geometric modeling elements, and a gen-
eralized octree method improves their memory efficiency, as explained in
Section 11.2.4. Moreover, dynamic pre-fetching can be exploited, thanks
to temporal coherence, as explained in Section 11.4.3.

11.1.1 Object Representation

In the tangent-plane force model, dynamic objects are represented by a set
of surface point samples, plus associated inward-pointing surface normals,
collectively called a pointshell. During each haptic update, the dynamic
object’s motion transformation is applied to every point of the pointshell.
The environment is collectively represented by a single spatial occupancy
map called a vormap, which is illustrated in Figure 11.1.

11.1.2 Tangent-Plane Force Model

Each haptically rendered frame involves sampling the voxmap at every
point of the pointshell. When a point interpenetrates a voxel (assumed for
now to be a surface voxel) as shown in Figure 11.2; a depth of interpen-
etration is calculated as the distance d from the point to a plane within
the voxel called the tangent plane. The tangent plane is dynamically con-
structed to pass through the voxel’s center point and to have the same
normal as the point’s associated normal. If the point has not penetrated
below that plane (i.e., closer to the interior of the static object), then d is

222 11. Voxel-Based Collision Detection for Six-DOF Rendering

Force Vector Along
Point Normal

Tangent
L~ Plane

Pointshell

Static \

Surface

N
<

Figure 11.2. Tangent-plane force model.

zero. Force is simply proportional to d by Hooke’s law (F = Kysd). We
call K¢y the force field stiffness, since the voxel represents a half-voxel-deep
force field. The net force and torque acting on the dynamic object are ob-
tained as the sum of all force/torque contributions from such point-voxel
intersections.

The tangent-plane force model was inspired by the fact that the surfaces
of contacting objects are tangent at an osculation point. It is important
that the force takes its direction from a precomputed surface normal of the
dynamic object. This proves to be considerably faster than the common
practice of dynamically computing it from the static object’s surface, or
in the case of a force field, dynamically taking the gradient of a potential
field.

One can see that this simple model has discontinuities in force mag-
nitude when a point crosses a voxel boundary, for example, under sliding
motion. Section 11.5 describes how discontinuities can be mitigated for
haptic purposes.

11.2 Voxel Data Structures

This section outlines the creation and usage of voxel-based data structures.
Exact (polygonal) surface penetration and memory usage will also be dis-
cussed.

11.2.1 Voxmap and Pointshell

One begins by selecting a global voxel size, s, that meets the virtual sce-
nario’s requirements for accuracy and performance. The performance as-
pect is that the force model requires traversing a set of point samples, and
s determines the number of such points. Consider a solid object such as
the teapot in Figure 11.3(a). It partitions space into regions of free space,
object surface, and object interior. Now tile this space into a volume occu-

11.2. Voxel Data Structures 223

Figure 11.3. Teapot: (a) Polygonal model. (b) Voxel model. (c) Pointshell
model.

pancy map, or voxmap, as in Figure 11.3(b). The collection of center points
of all surface voxels constitutes the pointshell needed by the tangent-plane
force model, as in Figure 11.3(c).

This method for creating the pointshell is not optimal, but it is con-
venient. Its accuracy may be improved by choosing points that lie on the
exact geometrical representation.

A neighbor voxel is defined as sharing a vertex, edge, or face with the
subject voxel. Each voxel has 26 neighbors. It is important that each envi-
ronment object be voxelized in its final position and orientation in the world
frame, because such transformations cause its voxelized representation to
change shape slightly.

By the nature of 3D scan conversion, voxmaps are insensitive to surface
imperfections, such as gaps or cracks that are smaller than the voxel width.
However, identifying the interior of a voxmap can be difficult. We adopt the
practice of (1) scan-converting to create surface voxels, (2) identifying free-
space voxels by propagating the voxelized walls of the object’s bounding
box inward until surface voxels are encountered, and (3) declaring all other
voxels to be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

11.2.2 Distance Fields

It is useful to have advance warning of potential contact between pointshell
and voxmap objects. For example, such warning is required by the tem-
poral coherence technique described in Section 11.4. For that reason the
voxelization of an object is extended beyond its surface into free space
surrounding the object, marking such free-space voxels with integer values
that represent a conservative estimate of distance-to-surface expressed in
units of voxel size. This creates a voxel-based distance field, as illustrated
in the 2D example of Figure 11.4.

We employ a simple chess-board distance-transformation algorithm
[Borgefors 86] to calculate the distance field, which gives a conservative
estimate of Euclidean distance along non-axis-aligned directions.

224 11. Voxel-Based Collision Detection for Six-DOF Rendering

w
) Mo w
el BN
[
[
N e) N
/ —
w
'S
'S

3 1 1 3 3 3
\

3 2 1 2 2 3
N)

Figure 11.4. Voxel-based distance field (in 2D).

VPS supports 2-, 4-, or 8-bit voxels. The smallest positive value(s)
are conventionally reserved for interior voxels, which in Figure 11.4 are
marked 1. The distance field extends out to a user-specified maximum
value, constrained only by the integer range.

Unless noted otherwise, we assume the use of 4-bit voxels in this chapter,
since that is a practical choice for haptic applications in current comput-
ing environments. For 4-bit voxels the outermost positive voxels could be
marked with values up to 15, representing a distance-to-surface of 13 voxels.
However, the hierarchical extension of temporal coherence (Section 11.4.1)
works optimally when the maximum distance-to-surface is matched to the
power of the voxel hierarchy. Using a 512-tree (see Section 11.2.4), with
512 the cube power of 8, the optimum maximum distance-to-surface is 8,
corresponding to voxels marked 10 (since surface voxels are marked 2).
Consequently, values 11 through 15 of the 4-bit range are unused.

The geometrical awareness technique described in Section 11.3 requires
three different types of distance field, based on distance to selected geo-
metrical features (vertex, edge, or face). Each field is independently pre-
computed and packed into a word. For 4-bit voxels, this implies 16-bit
words, where the remaining 4 bits are unused. When discussing voxel
bitwidth, one must be careful to specify whether it refers to the bitwidth
of an individual distance field, or, less rigorously, to the size of the word
required to store all three distance fields. Whenever the expression 16-bit
vozels is used in this chapter, it refers to 16-bit words containing three
distance fields of 4 bits each (The other 4 bits are unused in the standard
implementation).

11.2. Voxel Data Structures 225

11.2.3 Collision Offsetting

In the tangent-plane force model shown in Figure 11.2, the exact surfaces
of colliding objects are allowed to interpenetrate by voxel-scale distances
during a point-voxel intersection. While this may be acceptable for some
applications, we seek instead to preclude exact-surface interpenetration.
This is done by offsetting the force field outward away from the surface,
and we refer to the voxel layer in which tangent-plane forces are generated
as the force layer. To conservatively avoid exact-surface interpenatration,
one must adopt the second layer of free-space voxels as the force layer,
as shown in Figure 11.5 (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as surface
bounding volumes). Since the distance field extends farther than two layers
into free space, one may move the force layer to even more distant free-
space layers and thereby create a collision-offsetting effect. This is useful
in task simulations where additional clearance is needed but is not formally
modeled, e.g., to allow for human grasp in a part-manipulation task. For
example, a common engineering rule is to design extra clearance into part
removal paths, whenever possible, in order to accommodate tool access
and human grasping and to serve as a cushion against assembly tolerance
buildup. In VPS one can dynamically vary the force layer and thereby
dynamically vary the amount of clearance.

Force-layer offsetting also serves to prevent any spike-like feature in the
static object from generating a linear column of voxels that the pointshell
could completely fail to penetrate for certain orientations of the dynamic
object. The force layer has no such features, because voxel values are
propagated to 26 connected neighbors during the offsetting process.

One might consider extending this scheme to the pointshell. The point-
shell is normally derived from the centerpoints of surface voxels, but a free-
space voxel layer might also be used for that purpose. However, free-space

K OK /BAD

<— Force Layer
AN
Offset Layers \/ VA VERN
1 <\):L/>
Exact Surface — 1/— B ~— Surface Layer

Figure 11.5. Criterion for exact-surface interpenetration.

226 11. Voxel-Based Collision Detection for Six-DOF Rendering

layers contain more voxels than the surface layer, and VPS performance
degrades as pointshell size increases. For that reason, VPS derives the
pointshell from the surface layer, except in the situation when the user
requests a range of collision offsetting that exceeds what is achievable by
dynamically varying the force layer inside the voxmap object. In that case,
VPS derives the pointshell from the free-space layer that is both nearest
the surface and minimally satisfies the user’s requested range of collision
offsetting.

Despite the static nature of the pointshell as described above, it is pos-
sible to dynamically vary the locations of the points in the pointshell, by
displacing them a short distance along the direction of the surface normal,
either towards free space or towards the interior of the object. This provides
the capability of fine-tuning the amount of collision offsetting. However,
this has the problem that, depending on the direction of displacement and
the local curvature of the surface, the displaced points may spread apart,
creating a looser mesh of points that runs the risk of undetected penetra-
tion. One way to counteract this effect is to select a voxel size for the
pointshell object that is smaller than that of the voxmap object, at the
price of tactically degrading VPS performance.

An interesting application of pointshell displacement is mating-surface
simulation, as illustrated in Figure 11.12(a) for a simple ball-and-socket
scenario. In general, mating-surface simulation is problematic at haptic
speeds, in the absence of kinematical constraints or similar special-case
information, because manifold surface contact is computationally expen-
sive. If mating parts are permanently constrained within a mechanism
for the entire duration of a motion scenario, then kinematical constraints
are certainly appropriate. However, it becomes problematic when kine-
matical constraints may engage or disengage during a simulation. For ex-
ample, if a wrench can be used on a certain type of fastener, then the
simulating system must know that association in advance. Any subse-
quent changes to tool or part geometry are liable to invalidate that associ-
ation. Furthermore, the simulating system must somehow decide when
to engage the constraint and when to disengage it, e.g., by detecting
that the tool is sufficiently aligned with the part to engage the kinemat-
ical constraint. This leads to artifacts such as a mysterious attractive
force that acts to seat the tool whenever it is sufficiently aligned with the
part. Another artifact is a sticky feeling when trying to disengage the
tool. VPS suggests an approach, albeit a computationally expensive one,
to avoid such problems and artifacts by avoiding kinematic constraints
altogether.’

1Developers are still free to create additional constraints on top of the basic VPS
collision detection implementation.

11.2. Voxel Data Structures 227

1401 —

70
60
50
40

(Octree)

30
20

Memory, MB

10

1 2 3 4 5
Exponent, N

Figure 11.6. Memory usage of 23N tree as a function of N.

11.2.4 Voxel Tree Storage

A natural next step is to impose an octree organization on the voxels, for
the sake of memory efficiency and scalability. However, the need for a
consistently fast haptic refresh rate is at odds with the variability in the
tree traversal time. This is addressed with a hierarchy that represents a
compromise between memory efficiency and haptic rendering performance.
It is a generalization of octree with a tree depth that is limited to three
levels, explained as follows.

At each level of the tree, the cubical volume of space is divided into 23V
sub-volumes, where N is a positive integer (IV is unity for an octree). We
discovered that the most memory-efficient value for N may be at higher
values, depending on the sparseness of the geometry. Figure 11.6 illustrates
a study of the total memory consumed by a 23VN-tree as a function of N
for geometry that is typical in aircraft engineering applications. It has a
minimum at N = 3, which might be called a 512-tree.

Tree depth is further limited by fixing both the minimum and maximum
dimensions of the bounding volumes in the tree. The minimum dimension
is the size of voxels at the leaf level, and the maximum dimension is given
implicitly by creating only three levels above the leaf level. The minimum-
size requirement means that smaller features may not be adequately rep-
resented, but we fundamentally accept a global accuracy limitation, anal-
ogous to the practice of accepting a fixed tessellation error in polygonal
surface representations. The maximum-size requirement impacts memory
efficiency and scalability, because one must cover all remaining space with
the largest-size bounding volumes. However, these effects are mitigated by
the use of a 23N-tree, since for a fixed number of levels, higher values of N
increase the dynamic range of the bounding volume dimensions.

228 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.7. Close-up features of a wiring and hydraulic installation in which
many objects are merged into a single voxmap (shown as semi-transparent cubes).
The voxel size is artificially inflated for illustration purposes.

11.2.5 Merged Scene Voxmap

If it were necessary to separately calculate the interaction force for each
of N environment objects, then the computing burden would grow linearly
with N. However, there is no inherent need to separately compute such in-
teractions on a pairwise basis for objects not moving relative to each other.
For example, there is no need to identify the type of a contacted object
in order to apply different material properties, since all static environment
objects are treated as rigid. Furthermore, under the force-field approach,
objects are never actually contacted in the sense of undergoing surface in-
tersections. Therefore, the voxel representations of all environment objects
can be merged together as if they were a single object, applying straight-
forward precedence rules to merged voxel values and recalculating a voxel
tree for the voxmap. Figure 11.7 shows a static environment in which all
non-moving objects are merged into a single voxmap.

11.3 Geometrical Awareness

Although the approach presented here is voxel-based, voxels may inherit
properties of their parent polyhedral objects at discretization time, which
has great value in culling point-voxel intersections at run time, as explained
below.

To begin, consider the interaction of a pair of rigid non-penetrating
polyhedral objects. Consider their surfaces as a pair of point manifolds
that exhibit an arbitrary (even infinite) number of point intersections (sur-

11.3. Geometrical Awareness 229

Block 1

Block 2

Figure 11.8. One 2D block rests upon another 2D block (circles represent vertex-
edge contacts).

face contacts) for a given configuration. For physically-based modeling
purposes, the only interesting contacts are those where one or both points
belong to a C' discontinuity in their respective parent surface. As a sim-
ple 2D example, the only interesting contacts between two blocks are their
vertex-edge contacts, as illustrated in Figure 11.8.

In 3D, only vertex-surface and edge-edge contacts are interesting (“Sur-
face” is understood to include its edge boundaries and “edge” its vertex
boundaries, hence edge-vertex and vertex-vertex contacts are both triv-
ial subsets of edge-edge). We refer to this powerful insight as geometrical
awareness, to adopt the terminology of [Choi and Cremer 00]. This result
is entirely general for non-penetrating polyhedral objects: in particular, it
does not require convexity. One may ignore all surface-surface and surface-
edge contacts, which effectively reduces the problem’s dimensionality and
reduces computational load enormously.

Geometrical awareness can be applied to voxel sampling as follows.
Point samples are taken as the center points of surface voxels. One labels
each point as a vertex, edge, or surface, according to whether its parent
voxel inherited as a priority feature the vertex, edge, or surface attribute,
respectively, from the underlying polyhedral geometry. By “priority fea-
ture” we mean the following priority ordering of feature inheritance. If a
point’s parent voxel intersects (i.e., contains) one or more vertices in the
polyhedral geometry, then the point is labeled as a vertex, even if its voxel
also intersects edge or surface elements. Similarly, an edge point’s voxel
intersects one or more edges, but no vertex; while a surface point’s voxel
intersects one or more surfaces, but neither edge nor vertex.

To more efficiently apply geometrical awareness to point-voxel inter-
actions such as in the tangent-plane force model, three different voxel-
based distance fields are precomputed: towards the nearest surface-, edge-,
and vertex-voxel, respectively, as described below. Thus, one uses sur-
face points to sample the vertex-distance field, vertex points to sample the
surface-distance field, and edge points to sample the edge-distance field.

230 11. Voxel-Based Collision Detection for Six-DOF Rendering

4| a|a|a|a|a|ala 4| a|a|a|ala|ala
4|3 |3 |3|3[3]|3]a 4 |33 |3 |3][3]|3]a
7 74
s s |fflz2]2fz2]3]0 s s (o3 |3fz2]3]¢
3 2/2 1 é 3 (3|4 3 3/3 1 é 3 (3| a
3 2/1 1 & 3 |afalal|s 4/1 1 \ 3 [a|a|a
3 ; 1)1 2\ 3 (3|3 |4 3; 1)1 3\3 3|3 |4
3 3\2 2P |2 B 3 5\3 2P |2 B
AN > AN > 4
33|l 2Tz2Tz2]2|3|3|al||l3|3]|2]3]z]|3|3]|3]a

Figure 11.9. (a) Edge and (b) vertex distance fields.

Figure 11.9 shows edge and vertex distance fields for an arbitrarily shaped
polygonal object.

A known limitation of geometrical awareness is that it is not effective
against manifold contact of 3D edges (e.g., a sword’s edge perfectly aligned
with another sword’s edge). In that case, geometrical awareness prescribes
testing a potentially large number of point-voxel contacts along the linear
region of overlap. It is not clear how to generalize geometrical awareness
so as to address both the common form of edge-edge contact (e.g., swords
crossed at an angle) and the exotic case of edge-edge congruency. Fortu-
nately, the latter almost never occurs in practical scenarios, not even within
the accuracy of a voxel size.

11.3.1 Optimizing Voxel/Polygonal Accuracy

Feature-based distance fields are most effective when the accuracy of the
underlying polyhedral geometry matches voxel accuracy, for the following
reason. As one increases polyhedral accuracy (holding voxel size constant),
one obtains more polygons of smaller dimensions, which increases the likeli-
hood that a given voxel will contain a vertex and/or an edge. That increases
the number of vertex-surface and edge-edge interactions at the expense of
surface-surface interactions, which tends to defeat geometrical awareness
and degrade performance. To compound matters, polyhedral accuracy is
typically much better than voxel accuracy. Often it is decided casually,
e.g., in the process of exporting it from a CAD system, oblivious to voxel
size.

For best results, therefore, polyhedral accuracy must be reduced to
voxel accuracy. We accomplish this through a process similar to decima-
tion,? at voxelization time, as follows. First, tessellate the polyhedral facets

2Note that polygon decimation does not change an object’s voxelization.

11.4. Temporal Coherence 231

into triangles. Then, if any pair of adjacent triangles has the property that
its non-shared vertices deviate from coplanarity by less than 1/2 voxel size,
and also if their polyhedral angle is less than 90 degrees, then that pair of
triangles is treated as a single quasi-planar quadrilateral for voxelization
purposes. Otherwise, if those criteria are not met, then the pair of trian-
gles remains dissociated. This process is repeated by considering triangles
adjacent to a quasi-planar quadrilateral, which may lead to a quasi-planar
pentagon, etc. After all triangles have been so processed, distance fields are
constructed from the features of the resulting quasi-planar polygons. The
90-degree polyhedral-angle criterion prevents small curved objects (such
as a sphere with diameter less than a voxel size) from being reduced to a
single planar polygon.

11.4 Temporal Coherence

The voxel sampling method provides a natural opportunity for exploiting
spatial and temporal coherence, or temporal coherence in short. This is
done by tracking and predicting the status of points in the pointshell of
the dynamic object. A point that contacted a surface voxel in the previous
frame is likely to remain in contact in the current frame.

Whenever a point samples its appropriate voxel-based distance field, it
obtains a conservative estimate of its minimum distance from any contact.
If we also know the point’s maximum speed, then by dead reckoning we
can predict how many frames will elapse before contact can possibly occur,
which allows us to safely reduce the frequency of point sampling. Hence,
the pointshell may contain more points than could possibly all be tested
in a single haptic frame, and since the pointshell is derived from surface
voxels, this enables the use of smaller voxels and greater spatial accuracy.

This requires knowing a point’s maximum speed, but the latter is for-
mally unlimited. A more serious problem is that the known speed may be
so large that the available processing power cannot keep up with the bur-
den of predicting contact for all free-space points. To solve these problems,
we impose a speed limit that applies to all points. For this purpose we
denote the maximum distance that any point may travel in a haptic frame
as MaxTravel. In general, MazTravel is adjusted on a frame-by-frame basis,
because it varies inversely with the number of points that require testing
during that frame. As the amount of contact and near-contact increases,
more point tests become necessary. It is mandatory to test points that
were in contact in the previous haptic frame. However, free-space points
may be scheduled for testing at a reduced frequency.

MazTravel has an absolute upper bound of 1/2 voxel size, in order to
prevent points from skipping over the penalty-force region of surface voxels

232 11. Voxel-Based Collision Detection for Six-DOF Rendering

and penetrating into the object’s interior. Since the time duration of hap-
tic frames is constant, MazTravel is equivalent to a speed constraint. This
expresses itself at the haptic interface as a viscous-like resistance whenever
the virtual-world speed tries to exceed MaxTravel per haptic frame. For
example, consider a scenario modeled using 2 mm voxels and a 1000 Hz
haptic refresh rate. A maximum speed of 1/2 voxel per millisecond is 1 me-
ter/second. This corresponds to user motion of roughly one arm’s length
per second, which is unrealistically fast in the context of any application
that involves manipulating objects with careful intent. In this simple ex-
ample, therefore, the MaxTravel constraint has negligible impact at the
haptic interface. However, in a more complete analysis (1) the speed con-
straint applies to every point on the object’s surface, which generates a
more complicated constraint on the object’s overall translational and ro-
tational velocities, (2) any spatial scaling between the virtual world and
the haptic interface must be considered, and (3) MaxTravel may be smaller
than its absolute upper bound of 1/2 voxel, as calculated below:

MaxTravel =

nCapacity — nMandatory (11.1)

_ni

0.55-1
where nCapacity is the number of point tests that the processor can per-
form per haptic frame, nMandatory is the number of “mandatory” tests
(for points already in contact), n; is the number of points in free space at
1 voxels (i > 0) from contact, and s is voxel size. If Equation (11.1) yields
MazTravel < 0.5s, then we limit MaxzTravel to its absolute upper bound
of 0.5s. The value of 0.5s is used here because it represents the minimum
possible distance from the center of a voxel to a neighboring voxel.

The worst case is that of more mandatory tests than can be performed,
in which case MaxzTravel in Equation (11.1) becomes zero or negative and
further motion becomes impossible. Whenever this happens, VPS is un-
able to meet the user-requested time constraint, in which case it tests all
mandatory points and abandons any attempt to maintain time criticality.
However, in practice, geometrical awareness (Section 11.3) so sharply re-
duces the number of points in contact that we have rarely encountered this
worst-case situation during a series of complex real-world task simulations.

Point status is tracked and updated using a mechanism called distance-
to-contact queues. All points that currently have the same distance-to-
contact value are considered to belong to the same value-specific queue.
However, those points beyond the range of the distance fields belong to the
same queue as those lying at a distance of exactly one voxel beyond that
range. Therefore, n; in Equation (11.1) is the number of points in queue .
(With 4-bit distance fields, the number of queues is 16.) In general, there
will not be enough processing power to test the entire contents of each
queue during the current haptic frame, but it is only necessary to test the

11.4. Temporal Coherence 233

entire contents of the mandatory-point queues, plus the following number
of points m; of each free-space queue i:

1
. = MazTravel - , 11.2
m azTravel - o — (11.2)

where m; is rounded up to the nearest integer. In all m; points are tested
per frame in round-robin fashion for each queue individually. This ensures
that no point may travel into penetration undetected, i.e., before being
retested. Whenever a point is retested, its distance-to-contact value may
change, which then causes the point to migrate to a different queue. We
make the assumption, borne out by observation, that MaxTravel varies
so slowly with time that it may be considered constant while a point is
waiting for retesting. In fact, MaxTravel tends to be conservative, because
its value typically decreases with time whenever objects are approaching
contact.

The distance-to-contact queues are implemented as follows. Each queue
is a bitmapped representation of the entire pointshell. Each point is rep-
resented as a one bit in just one of the queues, and for all other queues
the bit at this same address is zero. During each haptic frame, a fraction
of each queue’s contents is traversed in order to satisfy the minimum sam-
pling frequency. Whenever a one bit is encountered, its associated point is
sampled.

Under this implementation, distance-to-contact queues become quite
sparse. To accelerate their traversal, each queue is ordered into a two-
level hierarchy. The leaf level contains individual bits of the queue, while
the upper level contains bits that are one whenever any of its 32 leaf-
level children are one. This enables the skipping of entire 32-bit runs
of zero bits. When n; is zero, the entire queue is empty and may be
skipped. While it may not be obvious that this implementation is prefer-
able to more sophisticated point-scheduling schemes that can be imagined,
in fact it yielded higher performance than several alternatives that were
explored.

Temporal coherence conveys an important, if unexpected, benefit for
haptic stability. Under virtual coupling rendering (see Section 11.5), the
most likely source of instability is large transient movements of the dy-
namic object. However, MazTravel inherently prevents large transient
movements. Stability is a very complex topic, and there are many other
possible sources of instability (e.g., limit-cycle oscillations, overly stiff vir-
tual systems, unpredictable user-applied forces, device limitations, etc.).
See Chapter 7 for a thorough treatment. However, empirically, the stabil-
ity benefit from MazTravel has enabled perfectly stable haptic operation
for all scenarios that were ever tested.

234 11. Voxel-Based Collision Detection for Six-DOF Rendering

11.4.1 Hierarchical Temporal Coherence

Since the pointshell is derived from the centroids of surface voxels, it in-
herits the spatial hierarchy of its parent voxel tree. All points that came
from the same “chunk” of the voxel tree (the first level above leaf level)
are assigned to contiguous bit addresses in the distance-to-contact queues.
Then, whenever the entire chunk’s worth of points is known to lie in free
space, we may remove all such points from their queues and continue track-
ing only the chunk’s distance-to-contact, e.g., by testing the chunk’s cen-
troid against the surface distance field. (Since the chunk’s contents may be
marked with a mixture of surface, edge, and vertex attributes, we must test
against the most conservative distance field, which is the surface distance
field.) This greatly reduces the point-testing burden, since in a 512-tree, a
chunk contains about 100 points on average.

One may learn whether a chunk’s entire point contents lie in free space
as follows. Chunks are marked with a discretized distance-to-contact value
in the same manner as voxels, thereby creating a chunk-level distance field.
The pointshell-object’s chunk centroid is then used to sample the static-
object’s chunk-level distance field, in precisely the same manner as point-
voxel sampling. If such a test reveals that a chunk lies beyond the space
spanned by voxel-level distance fields, then that chunk is considered to lie
entirely in free space, and chunk-level temporal coherence is applied. On
the other hand, if a previously free-space chunk enters the space spanned by
voxel-level distance fields, then its contents are disgorged and re-inserted
into the point queues. (The cost of such transitions may be greatly reduced
by exploiting the fact that the points have contiguous bit addresses.)

Point sampling and chunk-centroid sampling behave identically in all
respects except the following. Contact is re-defined to mean that the chunk
enters the space spanned by voxel-level distance fields, as described above.
Every chunk that lies in that space is considered to occupy a mandatory
chunk queue. MaxTravel is modified straightforwardly in Equation (11.1)
by augmenting nM andatory with a chunk-specific contribution and also ex-
tending the summation over queues to include the new chunk-level queues.

11.4.2 Point Drifting

As a significant performance optimization, one may reduce the frequency of
voxmap look-up during point testing, as follows. Whenever voxmap look-up
becomes necessary (as explained below), the point’s current exact spatial
position is stored, along with its current voxel-accurate distance-to-contact
(as discovered through voxmap look-up and expressed implicitly by the
point’s distance-to-contact queue number). Subsequently, whenever that
point falls due for testing under temporal coherence, one first computes
its point drift, defined as the exact distance between its current position

11.4. Temporal Coherence 235

and its previously stored position. If so much drift has occurred that the
point may be “too near contact” (as defined below), then voxmap look-
up becomes necessary and drifting begins anew. Otherwise, if the amount
of drift is not so great, then voxmap look-up is avoided, and the point is
allowed to continue drifting. The criterion for being “too near contact”
is that the point could possibly have drifted as much as two queues away
from contact. In principle, one could more aggressively wait until it was
only one queue from contact, but we elect to have a one-queue margin of
safety.

When a point begins drifting, it stays in its initial distance-to-contact
queue until the amount of drift is more than a voxel size. Whenever
re-queueing becomes necessary, we conservatively assume that the point
moved nearer to contact, i.e., to a lower-numbered queue. That incremen-
tally increases the frequency of testing, but empirically, each test suddenly
becomes about seven times faster by avoiding voxmap look-up. This seven-
fold advantage decreases as drifting proceeds, becoming minimal when the
point drifts as near as two queues from contact, but when that happens,
the point is retested subject to voxmap look-up and properly requeued,
and drifting begins anew. The net performance benefit of point drifting
depends in a complicated way on the motion scenario, but typically it is
several-fold.

11.4.3 Dynamic Pre-Fetching of Voxel Data

It may easily happen that there is insufficient system memory to hold all
voxel data for a given scenario, especially for large-scale scenarios and/or
small voxel sizes. Under 32-bit operating systems the addressing limit is
4 GB, which is often reduced further to 3 GB or 2 GB. While virtual mem-
ory is a good solution for non-time-critical applications, it is fundamen-
tally incompatible with time-critical haptics. Just-in-time memory pag-
ing causes highly distracting force discontinuities or even haptic-controller
timeouts. To avoid such adverse effects, one needs a predictive memory-
paging scheme. This is implemented in a dual-thread scheme that supports
time-critical operation at haptic rates in one thread, coupled with dynamic
pre-fetching of voxel data in the other thread.

A convenient way to implement dynamic pre-fetching is to integrate it
with chunk-level temporal coherence, as described in Section 11.4.1. The
latter includes probing the space that lies beyond the space spanned by
voxel-bearing chunks in the static distance fields. Consequently, one can
readily detect when a given chunk of the dynamic object has reached a
distance of one chunk size away from any voxel-bearing chunk(s) in the
static distance fields. Whenever that happens, one immediately switches
level-of-detail representations in the dynamic object, from using the chunk’s

236 11. Voxel-Based Collision Detection for Six-DOF Rendering

centroid, to using its constituent points. To extend that mechanism to
dynamic pre-fetching, simply treat such representation-switching events as
requests that voxel-bearing chunk(s) of the static distance fields should be
fetched into real memory, if necessary. A separate thread can then perform
such fetching in time to satisfy access by the haptic thread.

There is no way to guarantee that a pre-fetching thread can always
act fast enough to satisfy the haptics thread, depending on the speed of
the hard drives, scenario complexity, the backlog of pre-fetching requests,
size of MaxTravel compared to chunk size, etc. To cover all such con-
tingencies, we allow the haptics thread to be temporarily suspended as
needed, to allow the pre-fetching thread to catch up. During a state
of suspension, MazTravel is set to zero, and no forces are sent to the
haptic interface. The duration of any suspension is limited to two sec-
onds, after which the simulation is terminated. Empirically, even with
the largest scenarios tested, such suspensions occur so rarely and/or have
such brief duration that they proved imperceptible. Furthermore, there
was no test scenario that was prematurely terminated by the two-second
timeout.

This mechanism was not extended to hyperchunks, nor was temporal
coherence extended to hyperchunks, on the grounds that the complexity of
such an extension seemed to outweigh its potential benefits

11.5 Rendering with Virtual Coupling

[McNeely et al. 99] integrated the voxel-based collision detection algorithm
in an impedance-type rendering algorithm, in which user motion is sensed
and a force/torque pair is produced. The algorithm adopts for stability
purposes the virtual coupling scheme, explained in Chapters 7 and 8.

The motion of the dynamic object(s) is expressed using the Newton-
Euler equation, as discussed in Section 8.4.1, and discretized with a con-
stant time step At corresponding to the time between force updates, e.g.,
At = 1 msec for 1000 Hz haptic refresh rate. The dynamic object is
assigned a mass m equal to the apparent mass one wants to feel at the
haptic handle (in addition to the haptic device’s intrinsic friction and in-
ertia, and assuming that its forces are not yet saturated). The net force
and torque on the dynamic object are the sum of contributions from the
spring-damper virtual coupling; stiffness considerations, explained in Sec-
tion 11.5.1; and precontact braking force, explained in Section 11.5.2. [Wan
and McNeely 03] also showed how to integrate the voxel-based collision de-
tection algorithm with a quasi-static approximation of the virtual object.

11.5. Rendering with Virtual Coupling 237

11.5.1 Virtual Stiffness Considerations

When the virtual object is in resting contact with the half-voxel-deep force
field described by stiffness K¢, we want to prevent the user from stretching
the spring so far as to overcome the force field and drag the dynamic object
through it. The spring force is clamped to its value at a displacement of
s/2, where s is the voxel size. In the worst case, this contact force is
entirely due to a single point-voxel interaction, which therefore determines
an upper limit on the spring force. This can be viewed as a modification of
the god-object concept [Zilles and Salisbury 95], in which the god-object
is allowed to penetrate a surface by up to a half voxel instead of being
analytically constrained to that surface.

Whenever many point-voxel intersections occur simultaneously, the net
stiffness may become so large as to provoke haptic instabilities associated
with fixed-time-step numerical integration. To cope with this problem, we
replace the vector sum of all point-voxel forces by their average, i.e., divide
the total force by the current number of point-voxel intersections, N. This
introduces force discontinuities as N varies with time, especially for small
values of N, which degrades haptic stability. We mitigate this side effect
by deferring the averaging process until N = 10 is reached:

Fret = Frrotal, if N < 10. (11.3)
FTotal .

Fro = : fN > 10. 11.4

Net = N/10 ' 0 (11.4)

And similarly for torque. Ky is adjusted to assure reasonably stable nu-
merical integration for the fixed time step and at least 10 simultaneous
point-voxel intersections. While this heuristic leads to relatively satis-
factory results, it is worth investigating a hybrid of constraint-based and
penalty-based approaches that formally addresses both the high-stiffness
problem and its dual of low stiffness but high mechanical advantage. Forc-
ing an object into a narrow wedge-shaped cavity is an example of the latter
problem.

Dynamic simulation is subject to the well studied problem of non-
passivity, which might be defined as the unintended generation of excessive
virtual energy [Adams and Hannaford 98, Colgate et al. 93a]. In a hap-
tic system, non-passivity manifests itself as distracting forces and motions
(notably, vibrations) with no apparent basis in the virtual scenario. Non-
passivity is inherent in the use of time-sampled penalty forces and in the
force discontinuity that is likely to occur whenever a point crosses a voxel
boundary. Another potential source of non-passivity is insufficient physical
damping in the haptic device [Colgate et al. 93a]. Even a relatively passive
dynamic simulation may become highly non-passive when placed in closed-
loop interaction with a haptic device, depending on various details of the

238 11. Voxel-Based Collision Detection for Six-DOF Rendering

haptic device’s design, its current kinematic posture, and even the user’s
motion behavior.

The most direct way to control non-passivity is to operate at the highest
possible force-torque update rate supported by the haptic device, which
was 1000 Hz in the experiments. Then, K¢ can be determined empirically
using the largest value with stable operation over the entire workspace of
the haptic device. In free space, we apply zero force and torque to the haptic
device (overriding any non-zero spring values). A free-space configuration
is trivially detected as every point of the dynamic object intersecting a
free-space voxel of the environment.

11.5.2 Pre-Contact Braking Force

The treatment of spring-force clamping in Section 11.5.1 ignored the fact
that the dynamic object’s momentum may induce deeper instantaneous
point-voxel penetration than is possible under resting contact, thereby
overcoming the force field. Instead of attempting to avoid this outcome
in every instance, we generate a force in the proximity voxel layer that
acts to reduce the point’s velocity, called the pre-contact braking force. In
order to avoid a surface stickiness effect, the force must only act when the
point is approaching contact, not receding from a prior contact. To deter-
mine whether the point is approaching or receding, consult its associated
inward-pointing surface normal, n;, and then calculate the force:

F, = —bv; (—fll . {’z) s if n; -v; <0. (115)
F; =0, if f1; - v; > 0. (11.6)

The coefficient b is a “breaking viscosity,” v; is the velocity of the i*" point
in the pointshell, and v; is a unit vector along v;.

As a simple heuristic, therefore, adjust b so as to dissipate the ob-
ject’s translational kinetic energy along the direction of approaching con-
tact within one haptic cycle:

B imu? /At
o in V; (—fli . {71)7

where m and v are the dynamic object’s mass and velocity component
along > F;, respectively, and the sum over 7 is understood to traverse only
points for which n; - v; < 0. Calculating a braking torque would be similar
in form to the translational braking viscosity equation above.

A weakness of the braking technique is that an individual point’s veloc-
ity may become so large that the point skips over the proximity voxel in a
single haptic cycle, or even worse, over all voxels of a thin object. We call
this the tunneling problem. This is particularly likely to happen for points

b

(11.7)

11.6. Applications and Experiments 239

of a long dynamic object that is rotated with sufficient angular velocity.
One possible solution is to constrain the dynamic object’s translational and
angular velocities such that no point’s velocity ever exceeds s/At.

11.5.3 Multiple Moving Objects

So far we have discussed voxel-based collision detection for environments
with a single collision pair—a moving object (pointshell) and combined set
of non-moving objects (voxmap). The pair-wise collision detection tech-
nique can be extended to multiple moving objects by computing the rel-
ative motion between the two moving objects and applying it to just one
of them, while holding the other object stationary. Although both objects
are moving as far as the dynamic equations of motion are concerned, for
the collision detection step only, one object will appear to be moving and
the other stationary.

As mentioned earlier, performance of voxel-based collision detection de-
pends on the number of points in the pointshell object, which means the
“moving” object should be chosen to be the smaller of the two for each col-
lision pair. After the “moving” object and “stationary” objects have been
determined, the relative positions and velocities are computed and the in-
verse of the current transformation matrix of the larger, “stationary” object
is applied to both objects to temporarily place the larger object in its ini-
tial voxelized location and the other object in the proper relative location.
This step effectively converts the problem from two moving objects into
one with a single moving object and one stationary object, at which point
the standard voxel-based collision detection process takes place. Once the
resultant reaction force and torque vectors have been calculated, they are
transformed back into the moving object coordinate system and applied to
the smaller object, while the negative of the force and torque vectors are
applied to the larger object.

11.6 Applications and Experiments

The 6-DOF haptic rendering algorithm using voxel-based collision detection
was originally designed for engineering applications based on virtual mock-
ups at Boeing. The problem of simulating real-world engineering tasks—for
example, objectives like design-for-assembly and design-for-maintenance—
has been exacerbated by the modern transition from physical mockup to
virtual mockup. Physical mockup provides natural surface constraints that
prevent tools and parts from interpenetrating, whereas virtual mockup re-
quires the user to satisfy such constraints by receiving collision cues and
making appropriate body postural adjustments, which is usually tedious

240 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.10. User with the 6-DOF haptic device.

and may yield dubious results. In order to emulate the natural surface
constraint satisfaction of physical mockup, one must introduce force feed-
back into virtual mockup. Doing so shifts the burden of physical constraint
satisfaction onto a haptic subsystem, and the user becomes free to concen-
trate on higher-level problems such as path planning and engineering rule
satisfaction. Tool and part manipulation inherently requires 6-DOF hap-
tics, since extended objects are free to move in three translational and three
rotational directions. Figure 11.10 shows an example of the rendering sys-
tem in 1999 [McNeely et al. 99] using a PHANTOM™ Premium 6-DOF
Prototype from SensAble Technologies.

This section starts with a description of the actual system used for
experiments at Boeing, then discusses results from the experiments, and
finally gives details on other applications, like collaborative virtual envi-
ronments or haptic control of human models.

11.6.1 Implementation

The initial version of VPS [McNeely et al. 99] has been used at Boeing
for several years to analyze many types of complex, real-world engineering
problems, but it was limited by the total number of points allowed in
moving objects. The enhanced version of the VPS method described in this
chapter has been implemented in applications that now allow the analysis
of even more complex systems with increased accuracy. We will begin by
describing the haptics development environment.

11.6. Applications and Experiments 241

We have used a variety of architectures for experimentation and proto-
typing, using either one or two computers. For production use, the VPS
collision detection and force generation algorithms were implemented in a
separate computer called the Haptic Controller, using a client-server model.
Our choice for this approach was driven by the mismatch between the
computing requirements of physically based modeling and the available
workstations used by typical engineering departments. Physically based
modeling has these characteristics:

e Computationally intensive—dual CPUs are best, so one can be de-
voted to haptics and the other to secondary tasks.

e Large amounts of memory (RAM) are required.

e Large amounts of available high speed disk space are needed to save
voxel data.

Production workstations generally have these characteristics:
e A single CPU;

e Modest amounts of memory;

e Computation is already taxed by graphical rendering;

e Memory fills with data representations optimized for graphical ren-
dering;

e Local disk space may be lower speed or inaccessible;

e OS and application software installation is tightly controlled by IT
department.

The mismatch between requirements and existing hardware is solved by
putting the haptic process on a PC that is devoted to haptic processing.
The haptic device (or other type of input device) is then connected to this
PC as shown in Figure 11.11. The Haptic Controller PC is connected to
the client workstation via Ethernet and TCP/IP. If the PC is given an
IP address on the same subnet as the workstation, connecting them via a
switch minimizes bandwidth contention and allows them to communicate
at 100 Mbit/second, regardless of the production network connection speed
available to the workstation (often much slower). The Haptic Controller
PC has no visual interaction with the user and need not have an associated
monitor. The Haptic Controller supports a variety of interaction devices,
including various models of the PHANTOM haptic device, 6-DOF Space-
ball (and similar) devices with no force feedback, and a 2-DOF mouse with
no force feedback.

242 11. Voxel-Based Collision Detection for Six-DOF Rendering

Ethernet connection

Ethernet
Interface Riich Controller
App App

..........
- "
.

.
- 1" Logical connection” *f

Figure 11.11. Haptic Controller configuration.

| 49indwo)
2 1aindwo)n

&l

Haptic Device

Within the Haptic Controller, one thread is devoted to collision de-
tection and force generation, and a second thread handles communication
tasks with the client and pre-processing. When the Spaceball is used, a
third thread receives updates from it.

The Haptic Controller provides these services to the client: voxeliza-
tion, transparently caching voxel data for later reuse, managing the haptic
device, and supplying updated positions of the goal and moving objects
on demand. An API is supplied for use by the host application. The
API is designed to minimize the intrusion into the host application. The
Haptic Controller has been used with two applications: FlyThru® [Abar-
banel and McNeely 96], a Boeing-proprietary visualization system used for
design reviews, and a prototype application used for investigating collab-
orative haptics. The results reported here were obtained with FlyThru.
FlyThru was designed to handle large amounts of geometry and includes
rendering optimization for the special case of a fixed eye point with a small
amount of moving geometry. This optimization is important because it al-
lows the environment to be rendered in full detail during haptic interaction
at responsive frame rates.

High-speed hard drives are desirable for the Haptic Controller for the
sake of dynamically pre-fetching voxel data (Section 11.4.3). Empirically,
hard drives with higher data transfer rates (like 10K-15K RPM SCSI
drives) are more likely to meet pre-fetching demands for large-scale scenar-
ios. If lower-speed hard drives are used, then haptic force quality acquires
a rough and viscous feeling whenever two objects make contact for the first
time, due to the fact that MaxTravel is set to zero while waiting for voxel
data to appear in memory.

11.6.2 Experiments

The high-performance haptic rendering system was implemented on Linux®),
Microsoft Windows®), and SGI IRIX®). The performance results in the
following discussion were obtained using a two-processor 2.8 GHz Xeon PC
with 2 GB of RAM running Windows XP. Haptic rendering is performed

11.6. Applications and Experiments 243

Figure 11.12. Models used for testing. (a) Ball and socket model. (b) 777 main
landing gear (with dynamic object).

on one processor to provide updated force and torque information to the
haptic device and read position and orientation of the haptic handle in a
closed-loop control system running at 1000 Hz. Force feedback is provided
by a PHANTOM@® Premium 1.5/6-DOF haptic interface made by Sens-
Able Technologies, Inc. The host graphics application for these experiments
was FlyThru, as discussed above.

VPS provides the capability to crudely simulate mating-surface scenar-
ios without using kinematic constraints. This is illustrated here for the
simple scenario of a ball that may be rotated in a cradle-like socket (Fig-
ure 11.12(a)). This example illustrates a worst-case scenario where a large
amount of object-to-object contact occurs. In this case, the ball is the
pointshell object, and its points are displaced by half a voxel toward the
interior of the ball, in order to allow the ball to seat fully with the socket.
For this scenario we measure VPS performance in terms of the time re-
quired for a full rotation of the ball. With a radius of 25 mm and a voxel
size of 0.35 mm, this takes 1.28 seconds on a 2.8 GHz processor. The
speed of rotation is limited by MaxTravel, which is determined by voxel
size and processor speed. In this scenario there are, on average, 250 points
in contact at all times.

Figure 11.12(b) shows the 777 Main Landing Gear used here as an
example of a large dataset for maintenance analysis tasks. The overall
dimensions of this dataset are approximately 4.1x1.9x4.8 m. The dynamic
object chosen for testing is a large hydraulic actuator near the bottom of
the scene that measures 0.9 x 0.2 x 0.2 m. For this test scenario, the user
interacts with the environment by removing the dynamic object from its
installed position. Simulation accuracy was adjusted over multiple tests by
varying the voxel size.

244 11. Voxel-Based Collision Detection for Six-DOF Rendering

Scenario Voxel Size | Voxelization Loading
(mm) Time (sec) | Time (sec)
Ball-Socket 0.35 5.8 1.7
Ball-Socket 0.15 21.5 7.0
Landing Gear | 1.0 / 2.5 1353 333
Landing Gear | 0.7 / 1.25 5861 1355
Scenario Dynamic Object Static Environment
Triangles | Points | Triangles | Voxels
Ball-Socket 2048 23960 2176 5.91eb
Ball-Socket 2048 130688 2176 3.11e6
Landing Gear 40476 528653 2.76e6 4.59e8
Landing Gear 40476 1.14e6 2.76e6 1.78€9

Table 11.1. Virtual scenario measurements.

Table 11.1 collects the parameters of the dynamic objects and the static
environments in each of the above two scenarios, in which our goal was able
to maintain a 1000 Hz haptic refresh rate. Each scenario was evaluated
twice, once with a relatively large voxel size and once with a small voxel
size in relation to the overall dimensions of the scene. The table includes the
sampling resolution (voxel size), numbers of triangles, number of sampling
points in each dynamic object, numbers of triangles, and number of voxels
in each static environment.

Figure 11.13 shows additional voxelization data for the landing gear
model in Table 11.1. From this data we can determine that voxelization
time is inversely proportional to the square of the voxel size.

One cannot straightforwardly assess the relative performance benefits
of geometrical awareness and temporal coherence, since they depend sensi-
tively on the motion scenario. However, one may directly compare the cur-
rently attainable accuracy (as represented by voxel size) against what was
attainable before the advent of algorithmic enhancements such as geomet-
rical awareness and temporal coherence. The maximum number of points
that VPS could process in 1999 was reported as 600 [McNeely et al. 99].
Currently there is no formal limit, but up to 1M points were readily at-
tainable and usable in 2005. We must also account for the fact that CPU
speeds increased about 8-fold from 1999 to 2005. Consequently, 1M points
was equivalent to 125,000 points in 1999, which yields a 200-fold increase
due to algorithmic improvements. Since the number of points varies in-
versely as the square of voxel size, a 200-fold increase in pointshell capacity
corresponds to a 14-fold improvement in accuracy due to VPS algorithmic
enhancements alone. Combining this with the CPU-speed increase, there
was a net 40-fold improvement in accuracy from 1999 to 2005.

11.6. Applications and Experiments 245

5 *

|
45F k

Voxel Size, mm
N ©
N o w o B
: T T T T
L
*
*
*
*

-

o
T
/

*

I

I

1
0 1000 2000 3000 4000 5000 6000
Voxelization Time, s

Figure 11.13. Voxelization time comparison.

Throughout testing, we paid particular attention to motion behavior
and quality of force and torque feedback. Artificial viscosity caused by
MazTravel (Section 11.4) was evident, especially at smaller voxel sizes,
whenever objects were in contact, or nearly so. However, both force and
torque feedback are distinctly helpful to performing task simulations.

These results are from experiments performed in a single user environ-
ment, but the performance should be nearly identical in the multi-user
environment, since each user will be running an identical simulation (with
a small amount of communications-related overhead).

11.6.3 VPS-Based Collaborative Virtual Environments

In addition to building VPS-based applications with multiple constrained
and unconstrained moving objects, VPS has also been integrated for colli-
sion detection and response in a multi-user environment for collaborative
6-DOF haptics. The types of haptically enabled collaborations under in-
vestigation include design reviews, maintenance access, and training.
Implementing a collaborative virtual environment (CVE) with multiple
simultaneous haptic users becomes more difficult when users are located at
geographically separate sites. Haptic interaction is very sensitive to syn-
chronization delays produced by communication over large distances. In or-
der to maintain haptic stability while minimizing the impact on interactive
performance, the application needs to be designed with time delay com-
pensation in mind. We address the delay issue by using peer-to-peer com-
munication and a multiuser virtual coupling configuration. Figure 11.14

246 11. Voxel-Based Collision Detection for Six-DOF Rendering

Figure 11.14. Haptic-enabled collaborative virtual environment.

shows the collaborative virtual environment application for maintenance
access analysis at Boeing.

The peer-to-peer architecture synchronizes the CVE without a central
server.> Each user is running a separate simulation of the environment,
in which models and motions are synchronized with the other users. The
implementation uses TCP packets between the front-end graphical interface
and UDP packets between haptic controllers. The system supports active
users with haptics and non-haptic devices, as well as passive (visual only)
users. A user can enter and leave the simulation environment at any time
without impacting the other users.

The two main types of collaborative tasks that we have focused on are
those involving: (1) each user controlling separate objects, and (2) multiple
users controlling the same object. We will refer to these as type-1 and type-
2, respectively. Both have the same type of infrastructure with respect to
data and model synchronization, network connections, and device control.
There are some significant differences, as well.

The first type (control of different objects) has the pair-wise collision
checking requirements discussed in Section 11.1, but with the added re-
quirement that users be aware that a voxel size mismatch between users
will produce an asymmetric force response. A user with a smaller voxel
size than other users will create an imbalance in contact forces between
objects. This allows user A’s pointshell object to contact user B’s voxmap
and generate repulsive forces before B’s pointshell object makes contact
with A’s voxmap. This gives the user with the smaller voxels an enhanced
ability to push/pull other users around without being affected equally by

3The collaborative architecture is peer-to-peer and should not be confused with the
Haptic Controller architecture, which uses a client server model.

11.6. Applications and Experiments 247

Haptic Handle .~ - ‘
User 1 " Virtual ol
" Coupling*, Dynamic Object2 .-~

Figure 11.15. Multi-user connection model using virtual coupling elements.

their interactions. Although the exact nature of this imbalance is probably
unique to voxel-based haptics, this type of condition is a common problem
in collaborative systems without centralized management—for example, in
a multi-player video game users can cheat by modifying the local front-
end interface to give themselves special powers. In general, collaborative
haptics applications will have asymmetric behavior if force calculation pa-
rameters are not the same for all users.

The second type of collaboration (users controlling the same object)
requires a new type of coupling connection. For the multiuser case, the
virtual coupling model was extended to connect the instances of the object
that all users control. Since each user is running an independent simula-
tion, there is an instance of the object independently calculated for each
simulation. Coupling effects from the other instances of the object act as
additional external forces on the local dynamic simulation of each object
instance. Figure 11.15 shows this connection for a two-user arrangement.

The multi-user virtual coupling effectively creates an environment for
bilateral teleoperation of multiple haptic (or robotic) devices, with the
addition of collision detection and response from objects and constraints in
a virtual environment. One of the interaction drawbacks of this method is
the potential for divergence of the multiple object instances. This can occur
when another object (like a thin wall) gets trapped between the instances
of the dynamic object.

Another interesting finding for both of these approaches to collabora-
tion is that the haptic devices and dynamics simulations remain stable
when force information from the other users is transmitted at rates be-
low 1000 Hz. The systems were functionally stable when external force
updates from the other users were received at 100 Hz. Note, each user’s
local simulation was still maintained at 1000 Hz to keep numerical integra-
tion and haptic loops stable. A combined environment that simultaneously

248 11. Voxel-Based Collision Detection for Six-DOF Rendering

allows both types of interaction presents some interesting response possi-
bilities. For example, what happens when two users are controlling one
object (type-2) and then a third user joins the environment and controls
another object (type-1)? In addition to feeling bilateral forces from each
other, the first two users will see and feel contact interaction with the third,
as expected with type-1 contact. From the third user’s point of view, he
or she will see and interact with what appears to be a single instance of a
moving object—unless the users controlling that object enter into a diver-
gent condition. One option for dealing with this situation is to allow user 3
to see and interact with both instances of that object. How well this works
from a usability standpoint is still unknown.

In addition to multiuser interaction issues, time delay compensation is
another major concern in collaborative virtual environments. Time delay
is especially problematic when users are located at geographically separate
sites. It is less critical for the type-1 collaboration, where the noncoupled
users may not be aware of the delay—at least not initially. They will still
see the other users’ objects moving and instantly feel forces when they make
contact with those objects. The delay becomes apparent when objects have
continuous contact. Although local contact forces are felt immediately, the
reaction of the other user’s object to the contact is delayed. A similar
delayed reaction occurs when the contact is removed. Fortunately, this
delay does not appear to destabilize the simulations. But that is not the
case for type-2 collaboration.

When multiple users simultaneously control the same object, time delay
can cause the haptic devices to become unstable. For this situation, we have
implemented a method for linking the current value of the time delay to the
stiffness gains in the cross-user virtual coupling. A linear reduction of the
stiffness for delays up to one second appears to keep both simulations stable.
Gain values have been determined experimentally, but a more theoretical
basis for gain selection is desirable.

11.6.4 Haptic Control of a Human Model

The voxel-based rendering framework has also been used for controlling a
simplified human model with multibody dynamics (see Figure 11.16). As
described in [Troy 00], an articulated human figure is defined by a multi-
body dynamics model, and its limb motions are interactively controlled by
a haptic device. This type of system allows more natural interaction modes
when manipulating the human figure in a virtual environment, for example
when trying to plan or assess part extraction paths.

Calculation of collision response for the multiple moving segments of the
human model was handled using the technique described in Section 11.5.3.
Since processing objects in a pair-wise method is an O(n?) operation, it is

11.7. Discussion 249

Figure 11.16. Human dynamics application with 6-DOF PHANTOM.

useful to cull the list of collision pairs prior to collision processing. For hu-
man modeling applications, the model configuration and other constraints
can be used to substantially reduce the number of collision pairs that need
to be tested at each update.

11.6.5 Other Proximity-Based Applications

Another application of distance fields (which is now part of the VPS API)
is a function that colors vertices of the dynamic object model based on its
proximity to other objects. The main benefit from proximity coloring is
that it aids haptic interaction by visually conveying distance to contact.

Applications that use static environment voxel data are also possible.
Highlighting surface voxels within a specific distance to the moving ob-
ject produces a shadow-like effect that can also aid in distance-to-contact
perception. Proximity-based distance measurement can be used to give
a reasonable approximation for quickly determining minimum distances.
The distance gradient information could also be useful for path planning,
similar to potential field-based path planning applications.

11.7 Discussion

The voxel-based approach to haptic rendering presented in this chapter
enables 6-DOF manipulation of complex rigid objects within an arbitrarily

250 11. Voxel-Based Collision Detection for Six-DOF Rendering

complex rigid environment. Geometric awareness, temporal coherence, and
dynamic pre-fetching techniques improve the speed and accuracy of the
original Voxmap PointShell collision detection method for 6-DOF haptic
rendering.

The voxel sampling method can be easily parallelized, using clones of the
environment and cyclic decomposition of the dynamic object’s pointshell.
One could take advantage of this by investigating parallel computing envi-
ronments, specifically low-latency cluster computing. This will allow haptic
simulation of larger and more complex dynamic objects. Some problematic
situations, like the wedge problem and tunneling (moving through a thin ob-
ject without detecting collision), or further reducing non-passivity, require
further investigation or different approaches, for example the constraint-
based methods discussed in Chapter 16. These methods do not provide as
high performance as voxel-based collision detection, but could yield higher
accuracy and/or stability.

A consequence of Moore’s Law is that, over time, one can use smaller
and smaller voxel sizes, given the same investment in computing resources
and the same level of model complexity. This situation is illustrated in
Section 11.6.2, where millimeter and even sub-millimeter voxel sizes are
shown to be practical for haptic simulation of large-scale models. In this
manner, the spatial accuracy that is attainable with voxels is increasingly
becoming competitive with the accuracy of polygons. Polygon models are
often called “exact,” although in most cases they are actually only approx-
imations of truly exact surface models such as NURBS. It is academically
interesting to reflect that voxels are conceptually closer to molecules than
any mathematical surface abstractions such as NURBS.

It is worth mentioning that the collision detection algorithm described
here is not the first voxel-based approach to the problem. Voxel-based
methods had been applied earlier to non-haptic collision detection [Garcia-
Alonso et al. 94, Kaufman et al. 93, Logan et al. 96] and to 3-DOF hap-
tics [Avila and Sobierajski 96, Massie and Salisbury 94]. Sclaroff and Pent-
land [Sclaroff and Pentland 91] applied surface point sampling to implicit
surfaces. Furthermore, voxel-based collision detection may be classified in
the context of more general distance-field-based techniques, discussed in
Section 9.5.1. There are also approaches that provide a smoother force
model than the one presented in Section 11.1.2, but with a higher compu-
tational cost [Renz et al. 01].

Recent developments [Barbi¢ and James 07] show the extension of the
pointshell and voxelization approach for handling haptic rendering of the
interaction between a deformable object and a rigid object. Key to this
novel contribution is the fast update of the pointshell of the deformable ob-
ject, under the assumption that the deformation is described by a subspace
method [Barbi¢ and James 05]. These results, together with fast methods

11.7. Discussion 251

for computing distance fields, indicate that the voxel-based collision detec-
tion approach might soon be applicable to 6-DOF haptic rendering of pairs
of deformable objects.

Acknowledgments

The authors express their thanks to colleagues Karel Zikan for the idea
of voxel sampling, Jeff A. Heisserman for the idea of normal-aligned force
direction, Robert A. Perry for creating simulated aircraft geometry, and
Elaine Chen of SensAble Technologies, Inc. for literature research and
technical information about the PHANTOM device and GHOST software
support.

12

Continuous Collision
Detection

S. Redon

One of the fundamental components of a haptic rendering algorithm is colli-
sion detection, to determine where and when virtual objects collide. Among
collision detection methods, the continuous ones enable penetration-free
simulations of contacting objects and allow for detailed haptic interaction.
In this chapter, we provide a basic introduction to interval-based continu-
ous collision detection methods for rigid and articulated bodies. We present
time-parameterized equations for continuous collision detection between
rigid primitives, as well as methods to efficiently solve these equations.
We also describe continuous overlap tests between hierarchies of bounding
volumes, which help achieve efficient collision detection for complex mod-
els. An appendix gathers some basic template data structures to allow the
reader to easily start implementing the methods described in this chapter.

12.1 Why Continuous Collision Detection?

Collision detection methods can roughly be split into two categories. Until
recently, most collision detection methods that have been proposed are
discrete: they sample the objects’ trajectories at discrete times and report
interpenetrations.

Discrete collision detection methods are generally simpler to implement
and are used frequently in dynamics simulators, but they may cause at
least three problems:

e Visual interpenetration. The simulation may lack realism due to vi-
sual interpenetration of the virtual objects. In haptic rendering, vi-
sual interpenetration has been shown to reduce the perceived stiffness
of the objects [Srinivasan et al. 96].

253

254 12. Continuous Collision Detection

e (Collision misses. Discrete methods can miss collisions when objects
are too thin or when they move too fast. Even when the objects
themselves are large and slow, details of the interactions between
contacting objects can be missed if the contacting features are too
small relative to their speed. In such a case, the objects feel smoother
than they really are.

e [nstability. Performing haptic rendering based on the amount of in-
terpenetration between virtual objects may be a cause of instability.
In the classical peg-in-a-hole benchmark (see Figure 12.1), an initial
interpenetration on one side of the hole at time ¢ (position P;) cre-
ates a force to remove the interpenetration. This force may lead to a
greater interpenetration on the opposite side of the hole at the next
instant ¢ + 1 (position P.y1), which creates a greater reaction force
than the previous one. Such an increasing, unstable oscillation is of
course highly undesirable in haptic interaction.

This chapter serves as a basic introduction to continuous collision de-
tection methods, which guarantee consistent simulations by computing the
time of first contact and the contact state for colliding objects. We focus
on rigid and articulated bodies, but some of the basic principles introduced
in this chapter have been used as part of collision detection methods for
deformable bodies as well (e.g., [Govindaraju et al. 05, Otaduy et al. 07]).

The time-parameterized equations for continuous collision detection be-
tween rigid triangle primitives are presented, and techniques to efficiently
solve these equations are described. Continuous overlap tests between hier-
archies of bounding volumes, which help achieve efficient collision detection
for complex models, are presented as well. Some basic template data struc-
tures are introduced to allow the reader to easily start implementing the
methods described in this chapter.

P, Py

Figure 12.1. Interpenetrations between objects may yield unstable simulations.

12.2. Arbitrary In-Between Motions 255

12.2 Arbitrary In-Between Motions

12.2.1 Introduction

Most of the time, the motion of the objects is actually not available. Indeed,
because the haptic interface only sends the user actions at discrete times,
only the user actions between these discrete times are lost. Moreover, the
dynamics equations governing the objects motions are integrated through
discretization (e.g., using an Euler or Runge-Kutta integration scheme),
and the positions, velocities and accelerations of the objects are computed
at discrete times only.!

In order to prevent any interpenetration of the objects, we are thus going
to arbitrarily generate a continuous motion, with which we will perform
collision detection. For our purpose, such an arbitrary in-between motion
must satisfy several requirements:

e [nterpolation. The in-between motion must at least interpolate po-
sitions. Higher order interpolations can be used depending on the
application.

e Continuity. The interpolation must be at least C°. The motions we
are going to use in this chapter will actually be C*.

e Rigidity. the in-between motion needs to preserve the rigidity of the
links. For consistency reasons, we cannot use a straight segment
interpolation for object vertices when the object rotates.

Depending on the application, some additional constraints might have
to be satisfied by the in-between motion. In robotics applications, for ex-
ample, some links might have a predefined, special type of motion (e.g., a
screw motion). The arbitrary in-between motion chosen for the application
needs to be able to parameterize these motions. Provided these require-
ments are satisfied, however, we can arbitrarily choose an in-between mo-
tion for each pair of successive configurations. The goal is to determine an
arbitrary in-between motion that makes it efficient to perform the various
steps in the continuous collision detection algorithm.

Note that replacing the objects’ motions by arbitrary ones between two
successive discrete instants has a consequence on the simulation only if a
collision occurs between these two instants. If no collision is detected during
the in-between time interval, the objects are placed at the final positions
determined by the dynamics solver and the haptic interface.

However, if a collision between two objects is detected, it is necessary
to use the arbitrary motions to compute the positions of all the objects

LRecall, moreover, that the discretization includes approximations, so that even the
positions, velocities, and accelerations computed at discrete times are approximations.

256 12. Continuous Collision Detection

@)

Figure 12.2. To avoid interpenetrations, it is necessary to compute the objects’
positions at the instant of collision from the in-between motion used for the
detection of collisions, and not from the interpolating motion computed by the
dynamics equations.

at the first time of contact, since these motions have been used for the
detection of collisions. Otherwise, some interpenetrations could occur, as
shown in Figure 12.2. In (a), a collision has been detected at time ¢, while
using the arbitrary in-between motion. In (b), the dynamics solver has
been used to compute the position of the object at time t., which results
in an interpenetration. For the same reason, when a collision is detected,
the arbitrary motion must also be used for objects that did not enter in
contact with another object. To compute their positions at time ¢, using
the dynamics solver could result in interpenetrations, since these positions
have not been tested for collisions.

As a result, the use of arbitrary in-between motions to detect collisions
perturbs the course of the simulation. It is indeed very unlikely that the
actual object motion and the arbitrary in-between motion would produce
collisions at the same locations and times. It is actually not even guaran-
teed that a collision that occurs between two objects when one of the two
motions (real or arbitrary) is used would also occur when the other motion
is used. This is the price we have to pay to perform continuous collision de-
tection when the actual object motion is not known. This makes it possible,
however, to continuously detect collisions very efficiently, while preserving

12.2. Arbitrary In-Between Motions 257

the benefits of a continuous method that would use the real object motion.
Indeed, with this method, objects are permanently in a consistent state:
no interpenetration is possible, and no collision can be missed.

In summary, since the actual object motion between any two successive
discrete instants cannot be used to detect collisions, it is replaced by an
arbitrarily fixed in-between motion, which must satisfy three constraints:
this arbitrary motion must interpolate in a continuous and rigid way the
object’s configurations between successive discrete instants. Among the ar-
bitrary motions that satisfy these constraints, we choose one that allows us
to perform the various steps of the continuous collision detection algorithm
very efficiently.

12.2.2 Formalization

Before moving on to the specifics of rigid and articulated bodies, let us
formalize the constraints imposed on the arbitrary in-between motion. Let
Pr(t) denote the 4 x 4 matrix describing the real position of the object
during the time interval [t,,t,41]. Recall that this matrix allows us to
compute the real (homogeneous) coordinates xg(¢) of a point of the object
in the global frame from its (homogeneous) coordinates x, in the local
frame of the object:

xpr(t) = Pr(t)x,. (12.1)
Vectors xp(t) and x, are homogeneous vectors in IR*, for which the last
coordinate is the real number 1. Finally, let P4(¢) denote the object’s
position when the arbitrary motion is used over the same time interval
[tn, tnt1]. The three constraints can be formalized simply:

e The interpolation constraint merely imposes that P4 (t,) = Pr(t,)
and PA(thrl) = PR(tn+1)~

e The continuity constraint imposes that the function ¢t — P(t) is
continuous on the interval [t,, t,41].

e The rigidity constraint imposes that the matrix P 4(¢) is a position
matrix at every time ¢ between ¢,, and ¢, 1. In other words, it must
not include deformation terms (scaling terms, for example), and must
be the combination of a rotation matrix and a translation vector,
according to the classic form of a homogeneous position matrix:

PaA(t) = (Rf(‘)(” Tf“l(t)) (12.2)

12.2.3 The Rigid Body Case

Let us now describe two possible arbitrary in-between motions for rigid
bodies. Again, recall that we want to choose a simple motion.

258 12. Continuous Collision Detection

Constant-velocity translation and rotation. One possibility is to assume that
the rigid motion over the time step is a constant-velocity one, composed of a
translation along a fixed direction, and a rotation along a fixed (potentially
distinct) direction.

Let the 3-dimensional vector ¢” and the 3 x 3 matrix R" denote the po-
sition and orientation of the rigid body in the world frame at the beginning
of the (normalized) time interval [0, 1]. Let s denote the total translation
during the time step, and let w and u respectively denote the total rotation
angle and the rotation axis. For a given time step, c?, R°, w, u, and s are
constants.

The position of the rigid body at a given time ¢ in [0, 1] is thus

T(t) =c +ts. (12.3)
The orientation of the rigid body is
R(t) = cos(wt).A + sin(wt).B + C, (12.4)

where A, B and C are 3 x 3 constant matrices that are computed at the
beginning of the time step:
A =R"—uul R°,
B =u".R’, (12.5)
C =uul R’

where u* denotes the 3 x 3 matrix such as u*x =u x x for every three-
dimensional vector x. If u = (u*,u¥,u*)T, then

0 —u® uY
u" = u® 0 —u* . (12.6)
—uY u” 0

Consequently, the motion of the rigid body is described by the following
4 x 4 homogeneous matrix:

P(t) = (R(()t) TY)) (12.7)

in the world frame.

The motion parameters s, u and w are easy to compute. Assume c” and
c! (respectively R? and R') are the initial and final positions (respective
orientations) of the rigid body in the world frame. Then s = ¢! — c’, and
(u,w) is the rotation extracted from the rotation matrix R!(R°%)7.

12.2. Arbitrary In-Between Motions 259

Screw motions. An even simpler motion can be used, for which the rotation
axis and the translation have the same direction. Such a motion is called
a screw motion.

Precisely, a screw motion V(w, s, O, u) is the commutative composition
of a rotation and a translation along the same axis. The real parameters w
and s (now a real number) respectively denote the total amount of rotation
and the total amount of translation in the transformation, O is a point
on the the screw motion axis, and u is a unit vector describing the axis
orientation. Note that the total translation is now s = s.u. A screw motion
is depicted in Figure 12.3. In this example, the screw motion transforms the
point A into A’. Depending on whether the rotation or the translation is
applied first to the point A, the intermediate point is respectively A or As.
The benefit of using screw motions
comes from the fact that they al-
low us to interpolate any two rigid
positions with less degrees of free-
dom and thus reduce the compu-
tational cost of evaluating the mo-
tion matrix. Whatever the ob-
ject positions at times ¢, and t,,41,
Chasles’ theorem states that there
exists a unique screw motion that
transforms the initial position (i.e.,
at time t,) into the final position
(i.e., at time t,41) (when O on
the screw motion axis is fixed, and
when w is required to be positive
[Chasles 31]). In theory, using a
screw motion to interpolate two
successive positions could lead to a Figure 12.3. A screw motion is the com-
nonnatural in-between motion. In mpygative composition of a rotation and
Figure 12.4, the real object motion a translation of the same axis.

(on the left) has been replaced by

the equivalent screw motion with positive angle (on the right). For appli-
cations that require a very large rotation angle over the time interval [0, 1],
it might be advisable to subdivide the time interval into several smaller
ones.

We can now build a general class of screw-motion-based arbitrary in-
between motions. Assume, without loss of generality, that the current time
interval is the interval [0, 1]. In order to get a rigid and continuous motion
that interpolates the initial and final positions, it is sufficient to make the
parameters wand s vary continuously. This can be achieved by choosing
two functions a : IR? x [0,1] — IR and b : R? x [0,1] — IR such as, for all

260 12. Continuous Collision Detection

@) (b)

Figure 12.4. Using a screw motion to replace the real object motion. (a) The real
object motion is a pure translation at constant velocity (from top to bottom)
combined to a rotation at constant velocity around the object’s center of mass.
(b) The real object motion has been replaced by the equivalent (and unique)
screw motion with positive angle. For applications that require a very large
rotation angle over the time interval [0, 1], it might be advisable to subdivide the
time interval into several smaller ones.

pairs (w, s) in IR?, the functions

) [0, 1] — R

By * { t— w(t) = a(w,s,t) (12.8)
) [0, 1] — 1R

e { b s(t) = b(w,s,0) 29

are C' and monotonous, and respect the interpolation constraint, i.e.,
ay.5(0) = by, s(0) =0, and a,, (1) = w and b, 4(1) = s.

The class of screw-motion-based arbitrary in-between motions has the
form

M { [0,1] x R® — R? (12.10)

(t,A) — A(t) = V(aw,s(t), by s(t), 0, %) (Ao),

where Ag is a point of the object at time 0 and A(t) the same point during
the arbitrary in-between motion. It is worth noticing that the two functions
a and b depend on the screw motion parameters only, and not on the object
shape or part. This guarantees that all points of the object have the same
rigid motion. Besides, thanks to the conditions imposed on the functions

12.2. Arbitrary In-Between Motions 261

ay,s and by, s, arbitrary motions of form (Equation (12.10)) are truly rigid,
continuous and interpolating.

A motion in the class (Equation (12.10)) can be expressed simply in
matrix form. Define first a screw motion frame as a frame in which the Oz
axis is the screw motion axis. Because of axial symmetry, there exists an
infinity of such frames, and it is sufficient to choose one of them. In one of
these frames, the screw motion can be expressed simply:

cos(ay,s(t)) —sin(ay s(t)) 0 0

| sin(aws(t)) cos(aws(t)) O
Vi(t) = 0 0 1 bua(t) (12.11)
0 0 0 1
for t € [0,1]. In the global frame, the screw motion is then
S(t) = P! V(t)Py, (12.12)

where V(t) is the screw motion with Oz axis, Py is the transformation
matrix from the global frame to the screw motion frame, and P‘_,1 is the
inverse of Py .

Thanks to the expression of the screw motion in the global frame (Equa-
tion (12.12)), it is possible to get the coordinates of any object point x(t)
during the arbitrary in-between motion:

x(t) = P(t)x, = P! V(t)Py Pox,, (12.13)

where x, denotes the point coordinates in the object frame, and Py is the
object’s position matrix at time 0. The object’s position matrix during the
arbitrary motion is P(t).

12.2.4 Articulated Bodies

An articulated body is defined as a set of rigid bodies, or links, connected
by bilateral constraints. Assuming there is no loop in the articulated body,
an arbitrary in-between motion can be easily defined, by expressing the
motion of each link in the reference frame of its parent link, and not in the
world frame (the motion of the root link of the articulated model is still
expressed in the world frame).

To simplify notation, let us assume that the parent of link i is 7 — 1.
The index denoting the world frame is 0. Let P!~ !(¢) denote the position
matrix of link 7 in the reference frame of its parent link ¢ — 1. Then the
matrix

PY(t) = PY(t).P3(t).. P (1) (12.14)

describes the motion of link ¢ in the world frame. The matrices Pgil(t)
can then have the form suggested for rigid bodies.

262 12. Continuous Collision Detection

12.3 Interval Arithmetic

A simple way to robustly perform the computations involved in the var-
ious steps of a continuous collision detection algorithm is to use interval
arithmetic.

Interval arithmetic consists of computing with intervals instead of num-
bers. Several good introductions to interval arithmetic can be found, for
example, in [Moore 62, Snyder 92, Kearfott 96]. As is well known, the defi-
nition of a closed real interval [a, b] is

I=[a,b]={x €R, a<z<b}. (12.15)

This definition can be generalized to vectors. A vector interval is simply a
vector whose components are intervals:

In = [al,bl] X ..o X [an,bn] (1216)
={x=(r1,xn) ER", a; <a; <b; Vi, 1<i<n}. (12.17)

In IR?, for example, a simple alternate notation can be

[xlv xu]
Wi, yul | - (12.18)
[zlv ZU]

The set of intervals is denoted IR, while the set of vector intervals is denoted
]]Rn
Basic operations can be transposed to intervals:

[a,b] + [c,d] = [a+ ¢,b+ d]
[a,b] — [e,d] = [a—d,b— (]
[a,b] x [¢,d] = [min(ac, ad, be, bd), maz(ac, ad, be, bd))
1/[a,b] =[1/b,1/a] ifa>0o0rb<0 (12.19)
[a,b] /[c,d] =[a,b] x (1/]c,d]) ifc>0o0rd<0
[a,b] < [e,d] ifb<e.

Elementary operations in IR are performed component-wise. Operations
between real numbers and real intervals can be performed by identifying
IR and the set of “point” intervals {[z,z],z € IR}.

Interval arithmetic can be used to bound a function over an interval
very easily, provided the analytic expression of the function is known, and
provided we can easily bound the sub-expressions in the function.

An example will make this clear. Assume we want to bound the function
t +— +/3cos(t) + sin(t) over the time interval [0,7/2]. This function is

12.3. Interval Arithmetic 263

very similar to the ones we obtain when we plug the arbitrary in-between
motions described above into the continuous collision detection equations.

Being able to bound the sine and cosine sub-expressions is all that is
required to bound this function. We know that

te [0, g} = { :?ns((f)) Ee [[(()):11]]

Note that this is not deduced from the elementary interval operations, but
has to be known. This is what is meant by “we can bound easily the sub-
expressions in the function.” From now on, however, we only need to use
the elementary interval operations to provide some bounds on the function.
Since, by definition,

V3e [V3.val,

and -
cos(t) € [0,1], V¢ € [0, E] ,

we determine that

Vaeos(t) € [V3,v3] x 0,1 = [0.v3] v e [0.7],

by performing a simple interval multiplication.
Similarly, using the interval addition, we know that

V3 cos(t) + sin(t) € [0, \/ﬂ +1[0,1] = [0, V3 + 1} Vit € {0, g} ,

and we have thus bounded the function.

Note that the bounds we have obtained are not exact, since the tightest
bounding interval is actually [1,2]. In this example, the reason for the
looseness of the bounds is that the sine function is increasing while the
cosine function is decreasing.? Provided we know exact bounds on these
sub-expressions, however, it can be shown that the bounds on the function
tend to be exact when the size of the time interval tends towards zero.

Exact bounds on the sub-expressions we encounter in this chapter are
actually very easy to obtain. For example, since the cosine function is
decreasing over [0, 7/2], we know that

a,be [0, g} ,a < b= cos(t) € [cos(b), cos(a)],Vt € [a,].

The power of interval arithmetic for our purpose comes from the fact
that efficient interval operations can be simply implemented (see the ap-
pendix for the implementation of a basic interval class in C++).

20ne way to improve the quality of the bounds is to use higher-order approximations
of the elementary functions, called Taylor models (see e.g., [Zhang et al. 07c]), but this
is beyond the scope of this introductory chapter.

264 12. Continuous Collision Detection

We can now describe how interval arithmetic can be used to perform
continuous collision detection between elementary features and bounding
volumes.

12.4 Elementary Continuous Collision Detection

Continuous collision detection methods for polyhedral objects must only
detect three types of contact. Indeed, all contacts between two polyhedral
objects A and B include at least one of these three elementary contact

types:
e An edge of A contacts an edge of B;
e A vertex of A contacts a face of B;
e A face of A contacts a point of B.

These contact types are easily expressed geometrically. For the edge/edge
case, we only have to detect a collision between the lines containing the
edges. If a(t)b(t) is the first edge and c(t)d(t) is the second edge, then the
lines intersect when

a(t)c(t) - (a(t)b(t) Act)d(t)) = 0, (12.20)

i.e., when the vector a(t)c(t) is in the plane defined by the two edges
(cf Figure 12.5(left)). Once an intersection has been detected at some
instant between the two lines, we check whether it belongs to the edges or,
equivalently, if the edges inters